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Abstract: Groundwater level (GLW) prediction is essential for monitoring water resources. Our
study introduces a novel model called convolutional neural network (CNN)–long short-term memory
neural network (LSTM)–Multiple linear regression (MLR) for groundwater level prediction. We
combine two deep learning models with the MLR model to predict GWL and overcome the limitations
of the MLR model. The current paper has several innovations. Our study develops an advanced
hybrid model for predicting groundwater levels (GWLs). The study also presents a novel feature
selection method for selecting optimal input scenarios. Finally, an advanced method is developed
to examine the impact of inputs and model parameters on output uncertainty. The current paper
introduces the gannet optimization algorithm (GOA) for choosing the optimal input scenario. A CNN-
LSTM-MLR model (CLM), CNN, LSTM, MLR model, CNN-MLR model (CNM), LSTM-MLR model
(LSM), and CNN-LSTM model (CNL) were built to predict one-month-ahead GWLs using climate
data and lagged GWL data. Output uncertainty was also decomposed into parameter uncertainty
(PU) and input uncertainty (IU) using the analysis of variance (ANOVA) method. Based on our
findings, the CLM model can successfully predict GWLs, reduce the uncertainty of CNN, LSTM,
and MLR models, and extract spatial and temporal features. Based on the study’s findings, the
combination of linear models and deep learning models can improve the performance of linear
models in predicting outcomes. The GOA method can also contribute to feature selection and input
selection. The study findings indicated that the CLM model improved the training Nash–Sutcliffe
efficiency coefficient (NSE) of the CNL, LSM, CNM, LSTM, CNN, and MLR models by 6.12%, 9.12%,
12%, 18%, 22%, and 30%, respectively. The width intervals (WIs) of the CLM, CNL, LSM, and CNM
models were 0.03, 0.04, 0.07, and, 0.12, respectively, based on IU. The WIs of the CLM, CNL, LSM,
and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively, based on PU. Our study proposes the
CLM model as a reliable model for predicting GWLs in different basins.

Keywords: deep learning models; feature selection models; groundwater level; hybrid models

1. Introduction

Groundwater plays a key role in managing water demands [1]. Groundwater is a
valuable resource for reducing droughts. Groundwater level prediction is essential for
sustainable water resource management [2]. Predicting groundwater levels can be used
to monitor water availability during droughts [3]. Coastal areas may experience saltwater
intrusion into freshwater aquifers due to excessive groundwater extraction.

Groundwater level (GWL) prediction is necessary to prevent saltwater intrusion into
freshwater aquifers [3,4]. GWL prediction is complex because it is affected by many
variables, including human activities and climatic conditions [5]. Human activities can
affect groundwater levels. Climate parameters also influence the GWL [5]. Variables such
as precipitation, temperature, humidity, and evaporation can alter groundwater levels [6].
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Machine learning and numerical models can be used to predict the GWL. There are
different packages and numerical models for predicting the GWL. For example, the modular
groundwater flow model is a mathematical groundwater model that can predict the GWL.
Numerical models have complex equations and boundary conditions [7]. The complexity
of numerical models can limit their interpretation [8].

A machine learning model can predict a variety of hydrological variables [7]. Machine
learning models (MLM) can capture nonlinear components of time series data [8]. Since
MLM models use different layers and operators, they can accurately predict the GWL [8].
Hydrologists look for simple and accurate models to predict hydrological variables [8].

Multiple linear regression (MLR) is a simple and accurate machine learning model.
The MLR model provides a linear relationship between inputs and outputs [9]. Since the
MLR model is user-friendly, scholars use it for hydrological predictions [9]. Table 1 displays
a review of studies implementing the MLR model for GWL prediction.

Table 1. Summary of studies employing multiple linear regression for Groundwater Level Prediction.

References Results Discussion

Sahoo and Jha [10]

Developed the MLR model to predict
Groundwater Level (GWL). Rainfall, river stage,
and temperature were used to predict GWL. They
tested different input combinations for predicting
GWL. They reported that the MLR model was a
reliable tool for groundwater modeling

For predicting GWL, the paper used the
original SVM and MLR models. However, the
original versions of these models may not fully
extract important features and accurately
predict GWL. Furthermore, random input
selection may not result in high accuracy.

Ebrahimi and Rajaee [11]

Ebrahimi and Rajaee [11] coupled the wavelet
method with the MLR, artificial neural network
models (ANNs), and support vector machine
models (SVMs) to predict GWL. They used the
wavelet method to decompose time series into
multiple subtime series. Compared to other
wavelets, the Db5 wavelets performed better. The
wavelet-MLR model improved the precision of the
MLR model for predicting GW.

Wavelet preprocessed data points. Wavelet
transforms can be used to extract valuable
features from time series data. These features
allow predictive models to capture both
high-frequency and low-frequency
components.

Bahmani and Ouarda [12]

Bahmani and Ouarda [12] used the decision-tree
model, the genetic programming (GEP) model,
and the MLR model for predicting Groundwater
Level (GWL). The Ensemble Empirical Mode
Decomposition (EEMD) was used to preprocess
the data. Wavelet-GEP performed better than other
models.

Since the MLR model lacked advanced
operators for analyzing nonlinear data, its
accuracy was lower than that of the GEP and
EEMD-GEP models. EEMD decomposes the
original signal into IMFs that capture more
detailed and local features.

Poursaeid et al. [13]

Poursaeid et al. [13] used the MLR, the extreme
learning machine model (ELM), and the SVM
model to predict GWL. The study concluded that
the ELM model performed better than the MLR
model.

Due to the lack of robust optimizers, the model
did not achieve high accuracy. To improve the
performance of the ELM, SVM, and MLR
models, robust optimizers were needed.

The MLR model has been widely used to predict GWLs, but its main limitations have
not been addressed. Studies have failed to improve the performance of the MLR model
for analyzing nonlinear data. While GWL data exhibit spatial and temporal variations,
MLR models have not been developed to extract spatial and temporal features. The main
problem is that MLR assumptions cannot handle GWL data and nonlinear relationships.

The MLR model does not capture nonlinear components of time series data, so it
cannot accurately predict the GWL [10]. MLR uses linear assumptions to predict the GWL,
but inputs and outputs may have intricate and nonlinear relationships [13]. By improving
the efficiency of the MLR model, we can ensure that it captures the underlying relationships
between variables more effectively.

Additionally, MLR cannot effectively handle output uncertainty. Furthermore, the
performance of the MLR model depends on the correct selection of inputs [10]. In recent
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years, researchers have used hybrid models to overcome the limitations of classical machine
learning models [14]. By combining multiple models, a hybrid model improves prediction
accuracy and overcomes the shortcomings of traditional models [14]. We present an
innovative model for predicting GWLs that addresses the limitations of the MLR model.
This new model improves the ability of the MLR model to capture nonlinear components,
quantify uncertainty values, and determine the best input scenarios.

Since linear models such as MLR cannot fully extract important features from GWL
data [10], our article focuses on developing robust models to predict GWLs spatially and
temporally. To overcome the drawbacks of linear models, this article combines two robust
deep learning models with MLR to predict GWLs spatially and temporally. Since deep
learning models use advanced operators to extract spatial and temporal features, we
choose them to improve the performance of the MLR model for extracting features and
predicting data.

A deep learning model consists of multiple layers that analyze and predict data with
high accuracy [4]. A convolutional neural network (CNN) is a deep learning algorithm that
extracts valuable features from time series data [15]. The CNN model is a reliable tool for
spatially analyzing GWL data and extracting important patterns [16]. The long short-term
memory (LSTM) neural network is another robust tool for temporal analysis of groundwater
level (GWL) data [17]. CNN and LSTM models can be used to improve the accuracy of the
MLR model by analyzing and predicting nonlinear and complex data [15,16].

Ghasemlounia et al. [18] reported that different variants of the LSTM model could
improve the accuracy of GWL predictions. They indicated that the bidirectional LSTM
model could successfully predict the GWL. Sheikh Khozani et al. [19] stated that LSTM
models were robust tools for improving the accuracy of linear models. A linear-LSTM
model was used to predict groundwater levels (GWL) and the hybrid models enhanced the
linear models’ performance. Afshari Nia et al. [14] stated that the CNN model played a key
role in extracting spatial features from hydrological time series data.

Our study employs a new model called convolutional neural network–long short-term
memory neural network–MLR (CLM) to predict GWLs. The new method uses CNNs and
LSTMs to analyze GWL data spatially and temporally. As a result, the hybrid structure of
the new model can improve the predictive capability of the MLR model. A hybrid model
improves the ability of the MLR model to analyze nonlinear time series data. This paper
also proposes an efficient method for quantifying output uncertainty, which is necessary
for evaluating the accuracy of models.

To select the optimal input scenario for groundwater level prediction, the current study
proposes a novel feature selection method and compares it with other methods. The main
novelties of this paper are the development of a new predictive model for groundwater
level prediction and the introduction of a new method for selecting the best input scenarios.

The current paper includes the following novelties:

• An advanced machine learning model is developed to predict the monthly GWL. We
combine three models to predict monthly groundwater levels. As our proposed model
consists of two robust deep learning models, it can be superior to linear models such
as MLR models. Since our proposed model uses the capabilities of CNN and LSTM
models simultaneously, it outperforms standalone CNN and LSTM models. The CLM
model is presented as a reliable tool for predicting GWLs in different basins. Since
it can be adapted to different watersheds, it can be a reliable tool for water resource
managers around the world.

• A new optimizer is introduced to identify the best input combination. An optimization
algorithm determines the best input combination, while the correlation method only
determines important inputs. To identify the most optimal set of features, the new
method performs an extensive search and explores various combinations. The new
optimization method handles high-dimensional feature spaces and can be fine-tuned
to maximize model accuracy, minimize error, or enhance specific evaluation metrics.
As a result, our study contributes to feature selection.
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• An effective method is suggested to quantify uncertainty values. This study con-
tributes to the quantification of output uncertainty values. The study illustrates how
model parameters and inputs contribute to model uncertainties. Through the analysis
of variance (ANOVA) method, the study provides insight into the sources and values
of output uncertainty.

• We use an advanced method to decompose the output uncertainty into different
sources of uncertainty. Our study proposes a new method to calculate the percentage
contribution of inputs and model parameters to overall uncertainty.

This research contributes to water resource management by providing a reliable model
for predicting groundwater levels. It addresses the limitations of traditional methods,
introduces innovative techniques, and provides a comprehensive analysis of uncertainty
and model performance.

The second section of the current study presents materials and methods The third,
fourth, and fifth sections present the case study, result, and the discussion, respectively.

2. Materials and Methods
2.1. MLR Model

The MLR model is a linear regression model that uses regression coefficients to de-
termine the relationship between inputs and outputs [20]. The MLR model assumes a
linear relationship between input and output data. An MLR model optimizes regression
coefficients by minimizing prediction error. Equation (1) is used to provide outputs for the
MLR model [20]:

Out = β0 + β1X1 . . . + βnXn (1)

where Out: Output of variable X1: input variable, Xn: nth input variable, β0, β1 and βn:
regression coefficients. As the MLR model does not use advanced operators, it may not be
able to predict complex phenomena accurately. Since the original MLR model was unable to
analyze nonlinear data, our study developed the MLR model to overcome these limitations.

2.2. Mathematical Model of the LSTM

The LSTM is a type of recurrent neural network that utilizes information gates and
advanced structures to predict outputs [21]. The LSTM automatically extracts relevant
features from sequences without the need for manual feature engineering. The input gate is
one of the most important components of an LSTM model [22]. An input gate controls the
flow of information. The current input data and the previous hidden state are processed
using the TANH (hyperbolic tangent) activation function. LSTM models use forget gates to
remember and forget information at each time step [23]. Output gates monitor the flow of
information between memory cells and model outputs. Equations (2)–(6) provide outputs.

f ou = sigmoid
(

ρ f int + ρ fh
ht−1 + b f

)
(2)

iu = sigmoid
(

ρiint + ρhiht−1 + b f

)
(3)

ou = sigmoid(ρoint + ρhoht−1 + b0) (4)

ct = ct−1 ⊗ ( f ou) + (iu)t ⊗ (tanh(ρcint + ρhcht−1 + bc)) (5)

ht = ot ⊗ tanh(ct−1) (6)

where f ou: output of forget gate; ρ f and ρ fh
: weight coefficients of forget gate; iu: output

of the input gate; int: input, bc, b f and b0: bias values; ρi and ρhi: weight coefficients of
the input gate; sigmoid: an activation function; ht−1: previous hidden state; ρo and ρho:
weight coefficients of the output gate; ρc and ρhc: weight coefficients of the cell state; ct:
new state of the cell state; ou: output of the output gate; ct−1: previous state of the cell state;
⊗: the element-wise multiplication; and ht: the hidden state. Our research applies a robust
algorithm to determine the best values of the LSTM parameters.
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2.3. Mathematical Model of the CNN Model

The CNN model extracts spatial features from time series data [24]. CNNs use convo-
lutional layers to automatically learn hierarchical features from input data. These layers
consist of small filters (also called kernels) that slide over the input data and extract spatial
features [25]. Convolutional layers produce feature maps. The pooling layer is the next
layer of the CNN model. The pooling layer reduces the spatial dimension of feature ma-
trixes. The fully connected layer is the final layer of the CNN model. The average pooling
method reduces the dimension of feature maps [26].

CNNs usually have one or more fully connected layers (also called dense layers) that
perform classification or regression tasks [15]. Before applying the LSTM model, CNN
output should be flattened into a one-dimensional vector [24].

2.4. Input Selection

Different climate parameters can change GWLs, so choosing the right input combina-
tion is important. Binary optimization algorithms are powerful tools for selecting the best
input scenario. The algorithms can find the optimal input scenario by accurately searching
the problem space [27]. Correlation coefficients only identify key input parameters, while
binary algorithms automatically identify the best input combination. The Gannet opti-
mization algorithm (GOA) is a novel algorithm for solving optimization problems. It was
inspired by the life of Gannets. Pan et al. [28] reported that GOA was capable of solving
mathematical functions and engineering problems. The GOA method converged faster
than other algorithms. Our study selected this method because it provided promising
results. Binary and continuous versions of the GOA were used to determine the LSTM and
CNN parameters.

2.4.1. Structure of GOA

Gannets are fat birds with slender necks. A gannet is a seabird that resides in cold-
temperate regions and uses unique methods to catch fish [28]. Gannets will form a straight
line to catch fish. The gannet dives below the surface of the water to catch fish [28]. First,
the initial position of the gannets is initialized:

GHij = r1 ×
(
UBj − LBj

)
+ LBj (7)

where GHij: location of the ith gannet in the jth dimension, UBj and LBj: upper and lower
bounds of the decision variable, respectively; and r1: random value. Gannets follow prey
using two types of diving patterns. Gannets use the U-shaped dive to reach deeper depths.
Gannets use V-shaped dives to rapidly enter and exit the water [28]. Equations (8)–(10) are
used to simulate these dive patterns. Equations (9) and (10) define the controller parameters.
Equation (11) also defines a function based on the V-shaped dive to update the location
of gannets.

χ = 1− IT
ITmax

(8)

a = 2× cos(2× π × r2)× χ (9)

b = 2×V(2× π × r3)× χ (10)

V(φ) =

[
− 1

π × φ + 1, φ ∈ (0, π)
1
π × φ− 1, φ ∈ (π, 2π)

]
(11)

where φ: the current solution; a and b: controller parameters; V(φ): the V-shaped dive; IT:
iteration number; ITmax: maximum number of iterations; and r2 and r3: random numbers.
Equations (13)–(16) are used to define controller parameters for updating the location of
gannets. We choose one of the diving strategies to update the agent’s location.
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MGHi(t + 1) =
[

GHi(t) + m1 + m2, q ≥ 0.50
GHi(t) + n2 + n1, q < 0.50

]
(12)

m2 = E× (GHi(t)− GHr(t)) (13)

n2 = F× (GHi(t)− GHm(t)) (14)

E = (2× r4 − 1) ∗ a (15)

F = (2× r5 − 1) ∗ b (16)

where MGHi(t + 1): new location of gannet; r4 and r5: random numbers; m1: a random
number between −a and a; n1: a random number between −b and b; GHi(t): the location
of the ith gannet; GHm(t): the average location; and GHr(t): the random location of gannet.
Based on two scenarios, gannets pursue fish. The first scenario assumes that the gannet
has enough energy to chase fish. However, the second scenario assumes that the gannet
lacks the energy to chase fish [28]. In order to determine the energy level of gannets, we
define a parameter called capture ability. Equation (17) is used to define the capture ability
parameter. This equation consists of two controller parameters. Equations (19) and (20) are
used to define values of controller parameters.

capture(ability) =
1

R ∗ χ2
(17)

χ2 = 1 +
IT

ITMAX
(18)

R =
M ∗VEL2

K
(19)

K = 0.20 + (2− 0.2)× r6 (20)

where r6: random number, M = mass of gannet (2.5), VEL: velocity (1.5 m/s), and r6:
random number. When the gannet’s energy level exceeds the threshold, the position of the
gannet is updated, and the fish is captured. Otherwise, the gannet randomly moves [28].

MGHi =

[
χ× delat(GHi − GHbest(t)) + GHi(t), (capture)(ability) > υ

GHbest − (GHi(t)− GHbest(t))× F× χ, (capture)(ability) < υ

]
(21)

delta = capture(ability) ∗ |GHi(t)− GHbest| (22)

F = Levy(Dim) (23)

where υ: constant value (υ = 0.20), GHbest(t): the best location of gannet, and Levy(Dim):
levy flight function.

Levy(Dim) = 0.01× µ× σ

|κ|
1
τ

(24)

σ =

 Γ(1 + ψ)× sin
(

πψ
2

)
Γ
(

1+ψ
2

)
× ψ× 2(

ψ−1
2 )


1
ψ

(25)

where µ and σ: random values and ψ: constant value. A comparison is made between GOA
and several algorithms to evaluate its capabilities in selecting inputs and adjusting model
parameters. The following algorithms are selected as they can provide accurate solutions.

2.4.2. Bat Algorithm (BA)

The bat optimization algorithm was inspired by bat life. The echolocation ability of
bats helps them locate prey [29]. The bat makes loud noises and receives echoes from its
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surroundings to find prey [30]. The optimization process begins with the installation of
frequency. Bats change their velocity at each iteration.

f ri = f rmin + ( f rmax − f rmin)ε (26)

VEt
i = VEt−1

i +
(

Xt−1
i − X∗i

)
f ri (27)

where ε: a random value; f ri: the ith frequency; f rmin: minimum frequency; f rmax: maxi-
mum frequency; VEt

i : the ith velocity at iteration t; VEt−1
i : the ith velocity at iteration t – 1;

Xt−1
i : the position of the ith agent at iteration t – 1; and X∗i : the best location of the bat. The

bats perform a local search based on loudness:

Xnew
i = Xold

i + ξAt (28)

where Xnew
i : the new location of bat; Xold

i : the old location of bat; At: loudness; and
ξ: a random number. Finally, we update loudness and rate of pulse emission (RAP) at
each iteration:

At
i = ςAt−1

i (29)

RAPt
i = RAP0

i + (1− exp(−γt)) (30)

where At−1
i : the ith loudness at iteration t – 1; RAP0

i : the previous value of RAP, and RAPt
i :

the new value of RAP.

2.4.3. Particle Swarm Optimization (PSO)

The PSO was inspired by the behavior particles. The PSO is selected for optimization
and input selection due to its simple structure and high accuracy [31]. The velocity of the
particles is updated using Equation (34) [32]:

VEt+1
i = ω×VEt

i + r1 × α1 ×
(

LOpbest − LOt
i

)
+ r2 × α2 ×

(
LGbest − Lt

i
)

(31)

LOt+1
i = LOt

i + VEt
i (32)

where VEt+1
i : the particle velocity i; particle number, t + 1: iteration t + 1; LOpbest: the local

best solution; LGbest: the global best solution; ω: weight coefficient; α1 and α2: acceleration
coefficients; LOt+1

i : the best location; and r1 and r2: random parameters. The optimization
process begins with the installation of an initial population of particles. For updating the
particle’s velocity and position, Equations (31) and (32) are used. Until convergence is
reached, the optimization process continues.

2.4.4. Genetic Algorithm (GA)

GA is one of the most popular algorithms for solving optimization problems. GA
consists of a group of chromosomes [33]. Three operators, namely selection, mutation, and
crossover, are used to maintain population diversity. The selection operator is used to select
the best solution. Crossover plays a key role in the evolution of solutions. A crossover
operator combines genetic information to create new offspring [34]. The mutation operator
randomly alters genes to maintain genetic diversity in a population.

2.4.5. Binary Version of Optimization Algorithms

Binary algorithms select inputs. Conversion of a continuous algorithm to a binary
version is necessary for feature selection. Transfer functions convert continuous values to
binary values [35]. The S-shaped function is used as a transfer function. Previous articles
reported that the S-shaped transfer function gave the most accurate results [36].

S
(

GHt
m,j

)
=

1

1 + e−xt
m,j

(33)
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GHt
m,j =

 1← rand < S
(

GHt
m,j

)
0← rand ≥ S

(
GHt

m,j

)  (34)

where rand: random number, S
(

GHt
m,j

)
: the transfer function value, and GHt

m,j: the jth
solution in the mth position.

2.5. Hybrid CLM Model for Predicting GWL

Our study uses the CLM model to predict GWLs. We follow the following steps to
create the hybrid CLM model.

• The parameters of the CNN model and the names of the inputs are initialized as
the initial population of the binary GOA. In the modeling process, it is important to
determine the training and testing data. K-fold cross-validation (KCV) is one of the
suitable methods for partitioning input data into training and testing datasets [37].
The KCV method evaluates model accuracy by dividing data into K folds. Training
data are divided into K-1 folds. Finally, the model is run K times to calculate the
average error function. The average error function value is used to evaluate model
performance and determine the optimal number of folds [38].

• Each possible input scenario is encoded as a binary string. Each bit represents the
presence (1) or absence (0) of a specific input variable. An initial population of potential
solutions (binary strings) is generated. These strings represent various combinations of
input variables. The binary string 11,111 indicates that all inputs are considered during
modeling. The algorithm can identify the most influential input combinations based
on the defined fitness function by exploring various combinations and evaluating
their performance.

• The CNN model is executed by using training data.
• CNN is run in the testing phase if termination criteria are met; otherwise, CNN is

connected to GOA. CNN parameters and input names are updated using optimiz-
ation algorithms.

• LSTM models use CNN outputs as inputs. The LSTM model is run using training data.
The LSTM parameters are defined as the initial population of optimizers. The LSTM
model is run at the testing level if the termination criteria are met; otherwise, the GOA
is connected to the LSTM mode.

• MLR uses the outputs of the LSTM model as inputs. The LSTM model extracts
temporal features from time series data. Temporal features can capture relationships
between different data points. Then, the extracted features are sent to the MLR model
to predict GWLs. The MLR model produces final outputs.

Our study uses the RMSE as a fitness function. By finding input combinations with the
smallest prediction errors, RMSE is minimized. The GWL prediction model is trained and
tested using the appropriate subset of input variables (denoted by “1” in the binary string).
The model’s predictions are compared with the actual GWL values. The RMSE value is then
calculated to determine the quality of the selected input combination. If a solution violates
constraints (upper and lower values of decision variables), we should correct the decision
variables to achieve feasible solutions. When an infeasible solution is identified, boundary
correction methods are applied to modify the solution. For example, if a decision variable
xi violates its upper or lower bounds, it can be updated using Equation (35). Figure 1 shows
the values of decision variables and constraints.

xi = Min(max(xi, Lower(Bound), Upper(Bound))) (35)

If the current value of xi is below the lower bound, Equation (35) uses the maximum
value between xi and the lower bound to correct it. If the current value of xi exceeds
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the upper bound, Equation (35) uses the minimum between xi and the upper bound to
correct it.

We benchmark the CLM model against the LSTM-MLR (LSM), CNN-MLR (CNM),
CNN-LSTM (CNL), LSTM, CNN, and MLR models. In order to create the LSM, LTC, and
CNM models, the input data are fed into the first model. Then, the outputs of the first
model are fed into the second model.
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Decisions variables for CNN model:

1- The number of convolution layers; Lower and upper limits: [1-4]

2- Kernel number of layer 1; Lower and upper limits: [5-30]

3- Kernel number of layer 2; Lower and upper limits: [5-30]

4- Kernel number of layer 3; Lower and upper limits: [5-30]

Decisions variables for LSTM modeL 

1- Number of hidden layers; Lower and upper limits: [100-400]

2- The maximum epoch: [20 – 100]                                                                     

3- Number of hidden neurons: 100]

Figure 1. Values of decision variables and constraints.

2.6. Quantitation of Uncertainty Values

The input parameter is one of the most important sources of uncertainty. The model
parameter is another source of uncertainty [39]. Therefore, it is important to quantify
output uncertainty based on input and model parameters. The normal distribution is
used as a prior distribution of input parameters. Normal distributions cannot be used
as prior distributions for model parameters, because they may not have any physical
meaning [39]. We study the variability of parameters during the training process to
calculate the prior distribution of model parameters. The Monte Carlo simulation method
is applied to regenerate sample parameters, including model and input parameters. Then,
the Nash–Sutcliffe model efficiency (NSE) coefficient is applied to estimate the likelihood
function value. If the likelihood value of a parameter is below a threshold, the parameter is
removed from the calculation cycle. Finally, the posterior distribution of the parameter is
calculated based on the prior distribution and the likelihood function.

2.7. Determination of Contribution of Input Parameters and Models to Output Uncertainty

In order to study the effect of input parameters and models on output uncertainty,
it is necessary to decompose output uncertainty into parameter uncertainty and input
uncertainty. The analysis of variance (ANOVA) method can be used to decompose output
uncertainty [40]. The ANOVA method decomposes the total sum of squared errors (SSE) to
determine the percentage contribution of each uncertainty factor [40]. Equations (34)–(40)
explain the mathematical model of ANOVA.

SSE =
N

∑
i=1

M

∑
j=1

(
GWLij − GWLo,o

)2

(36)

SSE = SS(IN) + SS(PA) + SS(IN_PA) (37)

SS(IN) = M.
N

∑
i=1

(
GWLi,o − GWLo,o

)2

(38)

SS(PA) = N.
M

∑
j=1

(
GWLo,j − GWLo,o

)2

(39)

SS(IN_PA) =
N

∑
h=1

M

∑
j=1

(
GWLi,j − GWLi,o − GWL0,j + GWLo,o

)2

(40)

where GWLij: predicted GWL based on ith input and jth model parameter; GWLi,o: pre-
dicted GWL based on ith input; GWL0,j: predicted GWL based on jth parameter; GWLo,o:
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the mean monthly GWL; N: the number of input parameters; M: the number of model
parameters; SS(IN_PA): the SSE based on the interaction between input parameter and
model parameter; SS(IN): the SSE based on the input parameter; and SS(IN_PA): the SSE
based on the model parameter.

Finally, we use Equations (40)–(42) to determine the contribution of the uncertainty
resource to the total uncertainty:

η2
IN =

SS(IN)

SSE
(41)

η2
PA =

SS(PA)

SSE
(42)

η2
IN_PA =

SS(IN − PA)

SSE
(43)

where η2
IN : the percentage contribution of input parameter to the output uncertainty; η2

PA:
the percentage contribution of model parameter to the output uncertainty; and η2

IN_PA: the
percentage contribution of the interaction between inputs and model parameters to the
output uncertainty.

2.8. Trend Analysis

Water resources management requires trend detection of groundwater levels (GWL).
GWL trend detection helps determine groundwater sustainability and availability in basins.
Our study uses the Innovative-Şen trend (IŞT) method for trend analysis of GWLs [41].
Time-series data are split into two equal sets. The data of the first and second half of a time
series are plotted on the x-axis and y-axis. The slope is calculated using Equation (44):

S =
2(X2 − X1)

N
(44)

where S: slope; X2: the average value of the second subset; X1: the average value of the
first subset; and N: the number of data. If |S| is higher than |Scr| (critical slope), the trend
is significant.

Scr = 1.96× σ (45)

σ: Standard deviation.

3. Case Study
3.1. Details of Case Study

Yazd-Ardekan, located in the desert, has a dry and hot climate. Water scarcity is
a serious challenge in the study area due to the dry climate and excessive groundwater
consumption. There has been a reduction in aquifer storage by 65 MCM. To predict the
groundwater level in the study, the GWL of all piezometers is estimated. Thiessen polygons
are defined by the geometric scope of each piezometer. Then, the area of each polygon
is multiplied by the groundwater level of the corresponding piezometer. This process is
repeated for all piezometers. The obtained outputs are summed together, and their average
value represents the groundwater level in the area. Figure 2a,b show the study area and
time series data. Table 2 lists the characteristics of data points. The lagged GWL data
and climate parameters are used to predict one-month-ahead GWLs. Climate parameters
include wind speed (WSP), evaporation (EVA), relative humidity (REH), rainfall, and
temperature (TEM). There are 1194 pumping wells in this basin. Overexploitation of the
aquifer reduces groundwater storage by 65.93 MCM.

Since the study area experiences hot and dry summers, water supply is one of the
real challenges for decision-makers. The months of July, June, and May have the lowest
rainfall amounts. Furthermore, these months have the highest evaporation rates observed.
The data of 71 piezometers were used to predict GWLs. The data were collected from 1995
to 2010.
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Our study used different inputs, such as lagged climate and GWL data, to predict
GWLs. Data augmentation involves creating modified or synthetic versions of existing data
to increase the dataset’s size, diversity, and richness. Feature augmentation enhances the
richness of the input data and helps the model learn from the temporal dependencies and
trends of the historical data. A lagged data set consists of features that represent historical
GWL measurements over different periods of time. Adding lagged data to the dataset can
enrich the information available. This technique can enhance the model’s understanding of
temporal dependencies and patterns of GWL time series data. While feature augmentation
using lagged data is valuable for predicting GWLs, it does not create new data samples or
artificially augment the dataset. The next studies can use augmentation methods such as
window slicing, time wrapping, and data decomposition to improve model performance.
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Table 2. Characteristics of monthly data.

Parameter Maximum Average Minimum

(EVA) (mm) 51 31 14
(RELH)% 75 56 44

(RA) (mm) 20 8 0
WIS (m/s) 14.01 11.59 2.65
(TEM) ◦C 41 25 7.4
GWL (m) 1035.52 1033.281 1031.23

Our study uses Equations (46)–(53) to explore the potential of models for predicting GWLs:

• Root mean square error (RMSE)

RMSE =

√√√√√ N
∑

i=1
(GWes − GWob)

2

N
(46)

• Mean absolute error (MAE)

MAE =

√√√√√ N
∑

i=1
(GWes − GWob)

2

N
(47)

• Nash Sutcliffe efficiency (NSE)

NSE = 1−

N
∑

i=1
(GWob − GWes)

N
∑

i=1

(
GWob − GW

) (48)

• Percent bias (PBIAS)

PBIAS =

N
∑

i=1
(GWob − GWes)

N
∑

i=1
GW

(49)

• Reliability index (REI)

RE =

N
∑

i=1
Ji

N
× 100 (50)

Ji =

[
1← i f (REi ≤ δ)

0← else

]
(51)

RAEi =
|GWes − GWob|

GWob
× 100 (52)

• Resiliency index (RES)

RES =


100%← i f (Reliability = 100%)

N−1
∑

i=1
Ri

N−
N
∑

i=1
Ji

× 100

 (53)

Ri =

[
1, i f (RAEi > δ(and)RAEi+1 ≤ δ)
0← else

]
(54)

where GWes: estimated GWL; GWob: observed data; N: the number of data; and δ:
a constant value (δ based on the Chinese standard = 0.20). Equations (55)–(57) are
applied to quantify uncertainty values.
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• Width interval (WI)

WI =
n

∑
i=1

Ui − Li
nR

(55)

• Prediction interval coverage probability (PICP)

PICP =
1
n

n

∑
i=1

κi (56)

κi =

[
1← yi ∈ [Li, Ui]
0,← yi /∈ [Li, Ui]

]
(57)

where Li and Ui: upper and lower values of variables, yi: observed data, and R: the
difference between maximum and minimum values.

3.2. Error Function for Evaluating the Performance of Optimization Algorithms in
Choosing Inputs

There is a good balance between the exploration and exploitation capabilities of an
ideal algorithm. Equations (58) and (59) are used to compute the dimension-wise diversity.
Equations (60) and (61) are used to compute the percentage of exploration and exploitation:

divj =
1
N

N

∑
i=1

medain
(

sj
)
− sj

i (58)

divt =
1
D

N

∑
i=1

divj (59)

Exploration =
divt

max(div)
(60)

exp loitation =

∣∣divt −max(div)
∣∣

max(div)
(61)

where sj
i : the ith solution in the jth dimension, medain

(
sj): the median value of the jth

dimension, D: the number of dimensions, and max(div): maximum diversity. The average
selection size (ASS) index is used to evaluate the performance of each optimizer in selecting
the best input scenario. The ideal algorithms select a minimum number of inputs that
guarantee the highest accuracy for predicting GWL [42].

Average(selection(size)) =
1
M

M

∑
i=1

size
(
soi)

NU
(62)

U95 = 1.96
(

SD2 + RMSE
) 1

2 (63)

where M: The number of runs of optimization algorithms (M = 1000), NU: the number of
total inputs, soi: the size of chosen features at each iteration, and SD: standard deviation.
The low values of U95 and ASS show the best algorithm for choosing inputs. We couple
different algorithms with the CLM model to determine the optimal input scenarios and
model parameters for predicting GWLs. The algorithms send a chosen input scenario to
the CLM model to predict GWLs. Then, we compute the U95 of optimization algorithms to
assess their performance in choosing inputs.

4. Results
4.1. Determination of Algorithm Parameters

Random parameters affect the performance of algorithms. The maximum number of
iterations (MNOI) is one of the important random parameters of algorithms. In addition,
population size is another important random parameter. Figure 3 shows the MAE values
for different values of random parameters. The value of the error function was calculated
for different population sizes and iteration numbers. The population size (PS) of 100 and
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the MNOI of 200 yielded the lowest MAE value for GOA. The PS of 150 and the MNOI
of 200 yielded the lowest MAE values for BA and PSO. The PS of 200 and the MNOI of
100 provided the lowest MAE values for GA. The ideal parameters provide the lowest
error function. BA and PSO have different random parameters. The best values of random
parameters can be determined through sensitivity analysis. Table 3a,b show the optimal
values of the random parameters for BA and PSO. The maximum frequency of BA varied
from three to nine. The maximum frequency of seven provided the lowest error function.
Also, a maximum loudness of 0.70 gave the lowest error function values. Similarly, the
optimal values of the PSO parameters are obtained.
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4.2. Determination of Number of Folds (K)

To run the models at training and testing levels, we need to determine the num-
ber of folds. Figure 4 displays the MAE values for various sizes of k. The iteration
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number = 150 and K = 10 yielded the lowest values for the MLR and CNN models. The
iteration number = 100 and K = 10 yielded the lowest values for the LSTM and CLM models.
The iteration number = 100 and K = 10 provided an MAE value of 0.09 for the CNL model.
K = 10 was chosen for all models to run at training and testing levels. The sizes that provide
the lowest error function are ideal.

Table 3. (a): Determination of optimal values of BA parameters, (b): determination of optimal
values of PSO parameters (c): U95 and ASS values of different algorithms, and (d): optimal values of
model parameters.

(a)

Maximum
frequency MAE value Minimum

frequency
MAE
value Maximum Loudness MAE

value

3 0.14 0 0.15 0.5 0.15

5 0.12 1 0.12 0.6 0.12

7 0.09 2 0.10 0.7 0.09

9 0.15 3 0.14 0.8 0.12

(b)

α1 MAE value α2 MAE value

1.6 0.17 1.6 0.18

1.8 0.15 1.8 0.16

2.00 0.12 2.00 0.12

2.2 0.14 2.2 0.15

(c)

Algorithm U95 ASS Standard deviation

GOA 3.45 0.04 0.32

BA 5.75 0.07 0.67

PSO 8.25 0.08 0.78

GA 9.12 0.12 0.82

(d)

Model Optimal values of model parameters

CNN
The number of convolution layers: 3, Kernel number of

layer 1: 20; Kernel number of layer 2: 20, and Kernel
number of layer 3: 15, batch size:30

LSTM Number of hidden layers:200, The maximum epoch:50,
Number of hidden neurons: 100

4.3. Selection of the Best Optimization Algorithm for Choosing Inputs

Table 3c displays the U95 and ASS values of various algorithms. The U95 values of
GHO, BA, PSO, and GA were 3.45, 5.75, 8.25, and 9.12, respectively. The ASS values of GOA,
BA, PSO, and GA were 0.04, 0.07, 0.08, and 0.12, respectively. The GAO had the lowest
ASS and U95 values. The GHO method could attain the highest accuracy. Additionally,
the GOA method used fewer inputs to predict the GWL. Figure 5 evaluates the average
exploration and exploitation percentages of different algorithms. A good optimization
algorithm should strike a balance between exploration and exploitation capabilities. The
algorithms were run 1000 times. The exploration and exploitation percentages of the GOA
were 51% and 49%, respectively, while the exploration and exploitation percentages of
the GA were 71% and 29%, respectively. The GOA achieved a good balance between
exploration and exploitation abilities. Previous studies also showed that optimization
algorithms could improve the accuracy of machine learning models [43,44]. Table 2d shows
a list of model parameter values.

Our study used climate inputs and GWL data to predict the one-month-ahead GWL.
The lag times of GWL data and climate data were variable from t = 1 to t = 12. Thus, there
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are 72((number of climate parameters = 5) × (number of lag times = 12)) + 12 (lagged
GWL data) input variables and 272 − 1 input combinations. The GOA chose the input
combination of GWL (t − 1), RELH (t − 1), WIS (t − 1), GWL (t − 2), RA (t − 1), and TEM
(t − 1) as the optimal input scenario for predicting GWLs. Previous studies also reported
that lagged climate data and GWLs had high correlation values with GWLs [45]. Seasonal
and monthly patterns of climate data can affect GWLs [46].

Feature selection is an important step in building accurate predictive models. It in-
volves choosing the most relevant and informative input variables (features) from a large
pool of candidates. Selecting the right features can significantly improve the model’s
performance. GOA automates this process by determining the optimal input features for
groundwater level prediction. GOA searches for the best combination of input features
that minimizes prediction errors or maximizes the predictive performance metric (e.g.,
Nash–Sutcliffe efficiency coefficient or other relevant metrics used in the study). By select-
ing the most important features, GOA reduces the dimensionality of the input data. It is
important because too many irrelevant or redundant features can lead to overfitting and
computational inefficiency. GOA automates the selection of optimal input features. By
selecting the most relevant features, GOA helps create more interpretable models. Features
are used to improve model accuracy. The optimization process determines which features
produce the best prediction of groundwater levels.

4.4. Evaluation of the Performance of Predictive Models in Predicting GWL

Figure 6a shows the NSE and PBIAS models for predicting GWLs. Heatmaps of NSE
and PBIAS of different models were used to evaluate the performance of the models. The
CLM improved the training NSE of the CNL, LSM, CNM, LSTM, CNN, and MLR models
by 6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. Testing NSE models of LSM and
MLR were 0.94 and 0.68, respectively. The testing PBIASs of CLM, CNL, LSM, CNM, LSTM,
CNN, and MLR were 7, 11, 14, 17, 21, 23, and 25, respectively. The study results showed
that CLM improved the MLR model’s PBIAS. Figure 6b shows scatterplots of different
models. The R2 values of the CLM, CNL, LSM, CNM, LSTM, CNN, and MLR were 0.9973,
0.9873, 0.9685, 0.9565, 0.9490, 0.9403, and 0.9351, respectively. It was observed that hybrid
models improved LSTM, CNN, and MLR NSE. The CNM model improved the testing
NSE values of CNN, LSTM, and MLR models by 4.08%, 14%, and 17%, respectively. The
LSTM model enhanced the testing and training NSE of the CNN models by 5.2% and 7.6%,
respectively. The CNN model improved the training and testing PBIAS values of the MLR
model by 8.3% and 8.0%, respectively.
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Figure 6. (a): Assessment of the efficiency of models based on NSE and PBIAS values, (b): scatterplots
of models, and (c): Taylor diagram for assessment of the precision of models.

Taylor diagram is a graphical tool that assesses the accuracy of a data set or model
compared to a reference data set. Taylor diagrams show each dataset or model as a point on
a polar coordinate system. The distance between a point and the reference dataset is used
to measure the standard deviation. The azimuth angle measures the correlation between
the dataset/model and the reference point. The contour line shows different values of
the centralized root mean square error (CRMSE). Figure 6c displays a Taylor diagram,
which compares the accuracy of models. The CRMSEs of CLM, CNL, LSM, CNM, LSTM,
CNN, and MLR were 0.19, 0.37, 0.52, 0.72, 1.07, 1.42, and 1.77, respectively. The correlation
coefficients of CLM, CNL, LSM, CNM, LSTM, CNN, and MLR were 0.99, 0.98, 0.97, 0.95,
0.93, 0.91, and 0.90, respectively.

Figure 7 displays the uncertainty bounds of models based on two scenarios. The
PICWs of the CLM model were 0.99 and 0.98 based on input and parameter uncertainties,
respectively. The PICPs of the CNL, LSM, and CNM models were 0.97, 0.95, and 0.92 based
on input uncertainty (IU). The PICPs of the CNL, LSM, and CNM models were 0.96, 0.92,
and 0.91 based on parameter uncertainty (PU). Based on the IU, the WIs of the CLM, CNL,
LSM, and CNM models were 0.03, 0.04, 0.07, and 0.12, respectively. Based on the PU, the
WIs of the CLM, CNL, LSM, and CNM models were 0.05, 0.06, 0.09, and 0.14, respectively.
The models provided a high uncertainty based on the input uncertainty. The CLM and
MLR exhibited the largest and lowest uncertainty. The arrows indicate that the data points
do not fall within the upper and lower bounds.
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Figure 7. Uncertainty bound of models for predicting GWL.

The combination of CNN and LSTM with MLR enhances the model’s capacity to
extract both local and global features from the data. By integrating two deep learning
models (CNN and LSTM) with the MLR model, the CLM method overcomes the limitations
of the traditional MLR model. The CLM model provides narrower width intervals (WIs)
for both input uncertainty (IU) and parameter uncertainty (PU) compared to the other
models, indicating a higher level of confidence in its predictions. The CLM model leverages
the advantages of individual models. CNN identifies spatial patterns and features, LSTM
models temporal dependencies, and MLR captures linear relationships. By combining these
components, CLM can represent both linear and nonlinear patterns. In summary, the CNN-
LSTM-MLR model enhances prediction accuracy by effectively capturing spatiotemporal
features, using optimal inputs, addressing output uncertainty, and outperforming other
models. The Gannet optimization algorithm (GOA) can help identify the most relevant
input features. The GOA method reduces data complexity and potentially reduces data
acquisition costs, making the model more practical for real-world applications.

The Wilcoxon signed-rank test can be employed to compare two machine learning
models. The Wilcoxon signed-rank test computes a p-value to determine statistical sig-
nificance. Table 4 shows the results of the Wilcoxon signed-rank test. The study results
indicated that the CLM model outperformed other models as p-values were lower than
0.05 (threshold value). H0 was rejected as the p-values were lower than 0.05.

Table 4. Results of the Wilcoxon signed-rank test.

Models CLM vs. LSM CLM vs. CNL CLM vs. LSM CLM vs. CNM CLM vs. LSTM CLM vs. CNN CLM vs. MLR

Assumptions H0
CLM = LSM

H0
CLM = CNL

H0,
CLM = LSM

H0,
CLM = CNM

H0,
CLM = LSTM

H0,
CLM = CNN

H0,
CLM = MLR

p-value <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002

Winner: CLM Winner: CLM Winner: CLM Winner: CLM Winner: CLM Winner: CLM Winner: CLM
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5. Discussion
5.1. Evaluation of the Accuracy of Models for Different Horizon Predictions

The CLM model was used for predicting the one-month ahead GWL. However, it
is necessary to assess the performance of the new model over different time horizons.
Figure 8a shows the REL index values for different time horizons. The CLM model was
used for one-, three-, and six-month-ahead GWL predictions. The CLM model provided
REL index values of 0.85–0.99, 0.76–0.96, and 0.69–0.96 for one-, three-, and six-month-ahead
values, respectively. The CLM model provided RES index values of 0.87–0.96, 0.82–0.90,
and 0.65–0.89 for one, three, and six months ahead. The results revealed that the accuracy of
a predictive model decreased as the prediction horizon increased. The system can become
more complex as the prediction horizon increases. Long-term trends and patterns can
change over time because of various factors, such as climate change or human intervention.
Therefore, all of these factors can affect model accuracy.
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5.2. The Contribution of Input and Parameter Uncertainty to the Output Uncertainty

The ANOVA method was utilized to determine the impact of inputs and model
parameters on total uncertainty. Figure 8b illustrates the relative contribution of inputs and
model parameters to total uncertainty. The CLM model had 46% parameter uncertainty,
34% interaction uncertainty, and 20% input uncertainty. MLR output uncertainty consisted
of 60% parameter uncertainty, 20% parameter uncertainty, and 20% interaction uncertainty.
The total uncertainty of the models was significantly influenced by parameter uncertainty.

5.3. Memory Usage Percentage of Models

The previous sections reported that the CLM model was more accurate than other
models. However, it is necessary to evaluate the computational cost of the models. Figure 9
displays the percentage of memory usage of different models. The percentage of memory
usage of the CNL, CNL, LSM, CNM, LSTM, CNN, and MLR was 42.9%, 39%, 37%, 35%, 30%,
27, 25%, and 20%, respectively. Although the CLM model requires more memory than other
models, we can utilize advanced systems and memories to run it for predicting outputs.

5.4. Trend Defection

Figure 10 shows the S values of models. All months have negative trends. Summer
months had lower S values than other months. June, July, and August had S values of
−0.04–(−0.12), −0.03–(−0.12), and −0.02–(−0.11), respectively. January Month had the
lowest S values. S values of January month varied from −0.02 to (−0.04). Winter months
had higher S values than other months. The SCr shows critical S values. Climate and
rainfall patterns can improve the GWL in the winter months.

The groundwater level showed a decreasing trend. However, different techniques
can be used for groundwater recovery. Percolation ponds or basins can be constructed
to allow surface water to infiltrate into the ground. Advanced monitoring technologies
such as groundwater level sensors and remote sensing can be used to better understand
groundwater dynamics.
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Gathering data is one of the limitations of the study. However, different climate
variables may not be available. Also, advanced computer systems are required to run
models. A modeler may not have access to advanced systems. Also, adjusting model and
algorithm parameters can be challenging as these parameters influence output accuracy.
Although the suggested models can predict GWLs accurately, they may provide high
uncertainty because of many parameters.
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Figure 10. Trend of GWL in the basin.

6. Conclusions

Groundwater plays a key role in meeting irrigation and drinking water needs. Ground-
water level prediction can be used for better water resource planning. Our study introduced
a new model to predict one-month-ahead GWL. The CNN-LSTM-MLR (CLM) was de-
veloped to enhance the efficiency of the MLR model for predicting GWL. The CNN and
LSTM models help the MLR model extract fetuses and predict GWL accurately. Different
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optimizers were used to determine the best input scenarios. GOA outperformed other
algorithms and successfully chose the inputs for predicting the GWL. The U95 values of
GOA, BA, PSO, and GA were 3.45, 5.75, 8.25, and 9.12, respectively. Also, the ASS of the
CLM was lower than that of the other algorithms. The study results indicated that CLM
improved the training NSE of the CNL, LSTM, CNM, LSTM, CNN, and MLR models by
6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The study results indicated that CLM
improved the training NSE of the CNL, LSTM, CNM, LSTM, CNN, and MLR models by
6.12%, 9.12%, 12%, 18%, 22%, and 30%, respectively. The uncertainty analysis indicated that
the CLM model was the most reliable model for predicting GWL. The input parameters
had less uncertainty than the model parameters. The total uncertainty of the CLM model
consisted of 46% parameter uncertainty, 34% interaction uncertainty, and 20% input uncer-
tainty. Long prediction horizons also decreased the accuracy of the CLM model. CLM can
be used to predict GWL under different water stress conditions in the next studies. Also,
the climate scenarios and models can be combined with the CLM model to predict GWL
for feature periods. The next studies can also utilize the GOA algorithm as a robust feature
selection method to determine optimal input scenarios and enhance the performance of
deep learning models.
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