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Abstract: This study examines whether the fluvial flood defense system of Korea is appropriate for
risk reduction. Using spatial socioeconomic data and remote sensing, we estimated the potential
economic damage that can be caused by the flooding of local streams and rivers along the Nakdong
River (the longest river in Korea). For the analysis, a river risk map including return periods
(50, 80, 100, and 200 years) and spatial inventories (residential, agricultural, industrial assets, and
human lives) was employed to determine flood-prone areas and assess the damage within the
inundation areas. A quantitative flood analysis was conducted using an object-based method to
estimate the expected annual damage. We then compared the estimated damage for each tributary
within the designed return periods and found no correlation. Numerous tributaries with low-defense
targets were considered high-risk, while those with high-defense targets were assessed as low-risk.
The dataset used in this study covered four damage categories. Among them, flood damage to
residential assets appeared to have the highest value, whereas flood damage to industrial assets
had the lowest value. The results demonstrate that the Korean government needs to tailor its flood
defense policy based on quantitative risk assessments to effectively manage flood risks, especially
given the increasing risk of climate change.

Keywords: differentiated flood defense level; expected annual damage; improvement of flood
defense criteria; quantitative flood risk analysis; flood defense plans considering climate change

1. Introduction

Globally, there has been a significant increase in the number of heavy rainfall events,
leading to substantial flood damage [1,2]. With climate change anticipated to amplify the
frequency and intensity of such extreme rainfall events in the coming decades, potential
damage to both human lives and the economy has become a growing concern [3–5]. This
trend is not limited to any particular region. For instance, Korea has experienced a rising
number of floods over the past decade. Specifically, from 2011 to 2020, excessive rainfall-
induced floods resulted in the deaths of 182 individuals and approximating 3 billion USD
in damages [6].

Historically, flood defense policies have predominantly focused on hazard reduction,
primarily by diminishing the likelihood of flooding events [7]. Nevertheless, this approach
has proven inadequate in substantially mitigating flood risks and the resulting damage [8,9].
Recognizing this, several countries, including Germany [10], the UK [11], and the EU [12],
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have initiated a shift towards risk management. In the coming decades, this defensive
strategy could be further enhanced by emerging methods, such as machine learning and
artificial intelligence, which offer improved identification of flood-prone areas [13–16].
Additionally, recent research has provided insights into how climate change influences
flood risks both locally [17–19] and globally [20,21], thus contributing to the formulation of
more informed defense strategies. However, the flood defenses in the Republic of Korea
are still based on the classification of rivers rather than assessing real risks, making it
challenging to adapt to changing climate conditions [22,23].

This study quantitatively examines this policy issue. First, we assessed the flood
risk associated with the local rivers in the Republic of Korea and explored the nature of
these risks. We employed an object-based methodology [24] that leveraged diverse spatial
and economic datasets [25–33] to enable a detailed risk assessment for individual objects.
Such an approach, based on geographic information systems (GISs), promises a more
harmonized alignment between actual and calculated damage metrics while factoring in
the unique spatial attributes of each asset. As a result, it offers a more precise representation
of the potential damage. We then compared these risks with the current defense levels for
each local river in the Republic of Korea.

Understanding the flood risks in river basins is vital for developing flood defense
policies. When assessing these risks, it is essential to determine the spatial dimensions
while considering the local environmental, economic, and social contexts within river
basins [34–36]. By incorporating economic and social valuations, sophisticated decision-
making procedures can be developed for flood disaster prevention. This can be achieved
through a cost–benefit analysis combined with a flood risk assessment [37]. Policies for
flood risk defense based on quantitative risk analysis can serve as effective and efficient tools
for flood disaster management [38]. As climate change has led to increasingly unpredictable
rainfall patterns, the need for smart and proactive flood defense measures has become more
pressing. Considering the time required to modify policies, proactive planning is essential.

2. Dataset
2.1. Study Area

The Nakdong River Basin is located at latitudes of ~35.05◦ to 37.22◦ and longitudes of
~127.48◦ to 129.18◦, and it includes the Nakdong, Hyeongsan, Taehwa, and Hoeya·Suyeong
Rivers, along with the east and south coasts of the Nakdong River. The main stream
lengths of the Nakdong, Hyeongsan, Taehwa, and Hoeya·Suyeong Rivers are 7225.38,
270.84, 308.21, and 1779.96 km, and land use of the Nakdong River Basin mostly presents
dry paddy fields, rivers, embankments, and rice fields, respectively. In 2019, the population
densities of the six sub-basins were 279.8, 311.3, 1322.9, 3362.8, 225.8, and 651.4 people/km2,
respectively [39,40]. In this study, 798 local streams and rivers in the Nakdong River zone
of the Republic of Korea were analyzed to estimate the flood damage. According to the
Korean Annual Disaster Report [41], the cost of flood damage to the Nakdong River from
2011 to 2020 was approximately 1.3 billion USD, accounting for 41% of the total flood
damage cost in the Republic of Korea. This significant proportion can be attributed to
the occurrence of severe typhoons in this zone, which resulted in significant damage to
both general assets and populations due to extreme rainfall. Furthermore, more flood
damage occurred in the downstream regions of the Nakdong River, specifically in areas
like Namgang Dam, Mirayng-si, and Nakdong River estuary bank, as compared to the
upstream regions.

One significant factor contributing to the substantial flood damage in this area is its
high population density and concentration of economic assets. This region is home to
approximately 13 million people, constituting a quarter of the Republic of Korea’s popula-
tion. Specifically, the Hoeya·Suyeong and Taehwa River areas, situated near major cities,
have high population densities of 3362.8 and 1322.9 people/km2, respectively. Economic
assets are also heavily concentrated in this region, with 34 and 24% of the retail stores and
financial institutions of the Republic of Korea being located in this area. Moreover, this area
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contains the largest farmland in the Republic of Korea and utilizes a substantial portion
of its water resources for agriculture. The combination of a dense population and high
concentration of economic assets suggests the potential for extensive damage during floods.

Precipitation data from 22 meteorological observatory sites in the Nakdong River
zone were analyzed to identify the precipitation trends. We used the Mann–Kendall
(MK) test [42,43] for detecting monotonic trends in precipitation variations at these sites.
The MK test can provide a statistical assessment when there is a monotonic upward or
downward trend in the variations over time. The analysis of precipitation characteristics
and variations showed increasing trends in annual precipitation and maximum daily
precipitation from 1976 to 2020. The simultaneous variations in precipitation parameters at
the 22 meteorological observatories are shown in Table 1. Figure 1 shows the local streams
and rivers of the Nakdong River in the Republic of Korea.
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Table 1. Change of the characteristic for precipitation in 22 meteorological observatory sites in the
Nakdong River from 1976 to 2020 years.

Meteorological
Observatory

Number

Meteorological
Observatory Latitude Longitude

Average Annual Precipitation Maximum Daily Precipitation per Year

Average
(mm)

Increase
Rate

(mm/year)

Increasing
Trend

Average
(mm)

Increase
Rate

(mm/year)

Increasing
Trend

294 Geoje 34.888 128.605 1860.5 8.1 4 * 184 0.5 4
295 Namhae 34.817 127.926 1848.5 8.3 4 * 190.4 0.3 4
289 Sancheong 35.413 127.879 1537.9 3.9 4 172.4 0.8 4
159 Busan 35.105 129.032 1528.2 5.6 4 153.9 0.4 4
155 Changwon 35.17 128.573 1509.3 1.2 4 150.1 0.3 4
192 Jinju 35.164 128.04 1507.5 1.8 4 * 150.6 −0.3 H
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Table 1. Cont.

Meteorological
Observatory

Number

Meteorological
Observatory Latitude Longitude

Average Annual Precipitation Maximum Daily Precipitation per Year

Average
(mm)

Increase
Rate

(mm/year)

Increasing
Trend

Average
(mm)

Increase
Rate

(mm/year)

Increasing
Trend

162 Tongyeong 34.845 128.436 1477.7 8.0 4 138.9 0.0 -
285 Hapcheon 35.565 128.17 1288.4 3.5 4 135.4 1.1 4
284 Geochang 35.667 127.909 1280.9 1.6 4 123.6 0.3 4
272 Yeongju 36.872 128.517 1276.5 3.5 4 121.2 0.0 -
152 Ulsan 35.56 129.32 1271.7 0.6 4 136.9 0.1 4
273 Mungyeong 36.627 128.149 1257.2 3.8 4 108.4 0.4 4
288 Miryang 35.491 128.744 1227.3 −1.1 H 125.4 −0.7 H
271 Bonghwa 36.944 128.915 1178.9 −6.1 H 126.4 −0.8 H
138 Pohang 36.033 129.38 1151.9 3.3 4 126.4 0.9 4
130 Uljin 36.992 129.413 1139.9 5.0 4 118.2 1.7 4 **
277 Yeongdeok 36.533 129.409 1078.8 3.7 4 112.4 0.9 4
279 Gumi 36.131 128.321 1070.2 5.4 4 104.1 0.9 4
143 Daegu 35.885 128.619 1059.8 2.1 4 109.3 0.5 4
281 Yeongcheon 35.977 128.951 1045.9 2.7 4 107.3 0.0 -
136 Andong 36.573 128.707 1018.0 3.4 4 95.8 0.4 4
278 Uiseong 36.356 128.689 995.8 0.4 4 94.5 −0.1 H

Notes: - no trend,4 upward trend, H downward trend, * 95% confidence level, and ** 99% confidence level.

2.2. Flood Risk Maps

To calculate flood damage in the local streams and rivers of the Nakdong River, a
flood risk map provided by the Ministry of Environment was used to determine the flood-
prone areas (https://floodmap.go.kr; accessed on 1 April 2022) [25]. This map describes a
nonstructural flood prevention approach intended to overcome the limitations of the Korean
flood defense policies that focus on structural flood prevention measures. A flood risk map
is a special-purpose map that supports the development of structural and nonstructural
measures by establishing a flood prevention plan.

Generally, a map predicts the depth and extent of the inundation caused by flood
management failures. It comprises a flood risk map related to river flooding and an inland
flooding risk map that reflects the risk of urban inundation resulting from excessive rainfall
exceeding the capacity of the drainage system. A flood risk map is a valuable resource for
preparing against flood damage, implementing flood damage defense, and formulating
relevant flood management strategies. This can also determine the extent of the flood effects
at various frequencies. Overall, this nonstructural flood-prevention technique denotes an
activity of reducing damage by anticipating a significantly lower range and flood damage.

The spatial range of the flood risk map for river flooding consisted of the target
river region, its branches, and the floodplain areas influenced by simulated flooding. The
inland flooding risk map presents drainage areas that may experience urban flooding
damage due to increased external water levels, the occurrence of extreme rainfall, and
the failure of a pump station if the amount of rainfall exceeds the designed drain system.
The simulation conditions for the floods occurring in the target area were set to create
virtual inundation situations. Based on the simulation analysis, flooding scenarios can
be classified as local river inundation caused by river flooding, national river inundation
caused by river flooding, or urban inundation caused by drain system failure. National
river inundation includes three return periods of 100, 200, and 500 years, and the local river
inundation includes four return periods of 50, 80, 100, and 200 years. Urban inundation
has three return periods of 30, 50, and 100 years. In this study, we focused on estimating
flood damage in flooded areas using inundation simulations, particularly in the context of
local river inundation, considering the data availability. Figure 2 illustrates the process of
establishing a flood risk map based on local and national river inundations.

https://floodmap.go.kr
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2.3. Spatial Inventory

We examined the impact of flood damage on five asset categories, namely residential
buildings, agricultural assets (including both structures and crop yields), industrial assets,
human impact, and vehicles. We collected the asset value information for each category
from various sources [26–33]. Figure 3 presents these five categories along with the data
sources used to calculate the damage to each asset.

We calculated the values of human lives and vehicles in each area. Based on the
literature, we estimated the loss of human life to be 310 thousand USD [44]. The value
of vehicles varied depending on the type and age; however, we assumed the average
price of a used car for each vehicle type. For instance, we used an average of 7 and
4.7–8.6 thousand USD for personal and commercial vehicles, respectively [44]. The total
value of human lives or vehicles was calculated by multiplying the population or number
of vehicles, respectively, by their respective values.

To improve the accuracy of our predictions, we created spatial data for each asset
category using a 100 m × 100 m grid system. The Nakdong River in the study region
contains approximately 4.6 million such grids. Each grid contains data on all five asset types.
Information on residential buildings and agricultural assets was supplied at an individual
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property level. For example, the building registry and property appraisal database of the
Ministry of Land, Transport, and Maritime Affairs (MOLIT) [27,28] includes geophysical
data for all houses in the research region, such as location, size, height, and price. Similarly,
for all agricultural assets, a remote sensing-based farm map provided by the Ministry of
Agriculture, Food, and Rural Affairs (MAFRA) [26] included spatial information on the
location, size, and crop types of all farmlands. Therefore, we allocated these data to the
corresponding grids to construct a gridded asset inventory.

In contrast, data for population and vehicle counts were obtained at a broader ad-
ministrative level, such as the county or town level [29,30]. Thus, we reallocated these
district-level data to our high-resolution 100 m × 100 m grid system. The total ground area
of residential buildings served as a weighting factor when allocating the data [27]. This
procedure is based on our assumption that damage to human lives and vehicles primarily
occurs in residential areas, in line with the statistical records from Korea.

All asset values are based on 2019 prices. When the original 2019 data were unavailable,
we adjusted the prices to 2019 levels using the CPI of Korea [45].
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3. Methodology
3.1. Development of Flood Risk Measurement Methodology in Republic of Korea

Several methodologies have been explored to estimate the cost of flood damage on
the social and economic development of the Republic of Korea. Initially, in 1993, a simple
method was applied to estimate the flood damage. It focused on agricultural assets and
involved multiplying them with coefficients obtained based on the cost of damage to the
crops, which constituted a significant proportion of the flood damage [46]. However, this
approach had limitations in providing accurate estimates for more extensive calculations
because of the unavailability of data and techniques. In the improved version, an advanced
method was developed using a regression technique based on the size of the flooded
area to estimate the flood damage [47]. This approach was examined by determining the
relationship between the amount of rainfall and the size of the flooded region in several
categories, including major cities, small- and medium-sized cities, garden cities, rural
regions, and mountainous regions. In 2004, a multi-dimensional method for practical tasks
employing a geographic information system (GIS) was developed to explore various types
of geographical statistics and data related to asset size [48]. To determine the cost of flood
damage, the ratio of the flooded region to the residential region was multiplied by the
flooding-damaged assets in the examined district. We used an object-based approach that
measured the flood risk for each object and estimated the flood risk based on the asset
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data. By setting the conditions of the study area based on high-resolution data and using a
damage function, this approach resolves the issues of the multi-dimensional method [24].
This approach can reduce the difference between the actual and calculated damage by
considering the spatial features of each asset. Therefore, utilizing an object-based method
to analyze flood damage increases the accuracy and reliability of the estimation.

3.2. Range and Depth of Inundation

This study calculated the expected annual damage as the cost of flood damage us-
ing a flood risk map of local river inundation. Data of the floods that occurred in the
798 local streams and rivers within the Nakdong River area for four return periods (50,
80, 100, and 200 years) were used to obtain the expected annual damage. We estimated
the expected annual damage according to the high-resolution unit of space gained by GIS
(100 m× 100 m) instead of the unit of an administrative district. Using these spatial data, an
object-based method was employed to increase the reliability and accuracy of the expected
annual damage.

In the inundation regions, the damage in each area was calculated based on five types
of damaged items, namely residential assets, agricultural assets, industrial assets, vehicles,
and human life. The expected annual damage was estimated using an established database.
To estimate the cost of damage to life, we assumed that the cost of human life loss such
that the cost was proportional to the flooded region. Flood damage in local rivers and
streams during the four return periods was used to interpolate the flood damage for periods
not provided in the flood risk map by minimizing bias. Subsequently, it determined the
expected annual damage by multiplying the sum of the asset-based flood damage costs
and the probability of annual occurrence. More details on estimating the flood damage to
assets and expected annual damage are provided in the following sections.

3.3. Damage Estimation

Flood damage is essentially a product of asset value and percentage of damage.

D = asset value×%damage, (1)

The percentages of damage are listed in Table 2. We employed the most appropriate
depth-damage function for each asset group, as determined from the literature [44,49].

Table 2. Depth-damage function expressed as a percentage of asset value for each asset group.

Asset Groups Below 0.5 m 0.5 m~1.0 m 1.0 m~2.0 m 2.0 m~5.0 m above 5.0 m

Residential
Buildings

Building
Structure 0 9.1 24.5 53.8 66.8

Building
Contents 6.6 15.3 60.8 98.8 100

Agricultural
Assets

Paddy 27.0 27.0 100 100 100
Farm 51.0 51.0 100 100 100

Farm Building 31.0 31.0 100 100 100
Industrial

Assets
Fixed Assets 23.2 45.3 78.9 98.9 100
Stock Assets 12.8 26.7 58.6 96.6 100

Human Impact
Vulnerable
Population 0.03 0.03 0.09 0.09 0.09

General
Population 0.01 0.01 0.04 0.04 0.04

Vehicles
Personal
Vehicles 3.9 53.5 97.2 100 100

Commercial
Vehicles 1.3 34.8 91.4 100 100

Motorcycles 3.9 53.5 97.2 100 100

Note: Damage is expressed as a percentage (%) of each asset value.
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In particular, assessing human impact, which encompasses the loss of life and injuries,
is a crucial but challenging task [3,50]. Following the relevant literature [51], we evaluated
this risk by multiplying the likelihood of mortality or injury by the value of statistical life.
This likelihood varies based on age (below 5 years or above 65 years vs. between 5 and
65 years) and inundation depth. We sourced the most appropriate average value of sta-
tistical life for the Republic of Korea (290 thousand USD) from the local literature [44]. In
addition to the life-threatening impacts, we accounted for the costs incurred by temporary
loss of livelihood, which can be calculated as follows:

Impact due to temporary loss of livelihoods = likelihood × average days of
loss × average daily income

(2)

Based on the literature, we assumed that the probability of livelihood loss per flood
event, average duration of loss, and average daily income were 2.5%, 10 days, and 70 USD,
respectively [44].

The total flood damage for the flooding scenario f was the sum of the damage across
all five categories.

D( f )Tot = D( f )RB + D( f )AA + D( f )IA + D( f )HI + D( f )V (3)

3.4. Expected Annual Damage Estimation

Theoretically, the expected annual damage (EAD) for each grid (r) can be calculated
by considering the expected damage across the flood scenarios or return periods. However,
given the limited number of available flood scenarios, the estimates can be significantly
biased. For example, the most frequent flood scenario in our analysis is the 50-year event.
This implies that we may not have fully captured the variations in the flood damage that
occurred more frequently than every 50 years, thus poorly capturing the impact of floods
that are observed every 1–50 years.

To address this issue, we interpolated and extrapolated the damage for the four flood
scenarios considered. We first assumed that highly frequent floods with return periods of
less than five years did not cause any damage, i.e., D( f ) = 0, for f < 5. Following the
literature [49], we assumed that the damage of frequent floods adheres to a log function,
D( f ) = α log( f ) + β, where α and β are coefficients.

The EAD for floods with return periods of 5–50 years is represented as follows:

E[D( f )] | f=50
f=5 =

∫ 1/5

1/50

[
α log

(
1
f

)
+ β

]
d f (4)

The annual likelihood was the inverse of the return period. Given our assumption
D( f = 5 ) = α log(5) + β = 0, we can compute α and β based on the damage estimated for
the 50-year return flood, D(50).

α =
D(50)

log
( 50

5
) , β = −α log(5) (5)

For closely spaced likelihoods, such as for floods occurring over a 50-year period, the
choice of the function form becomes less significant. For the purpose of calculation, we
used a linear function when interpolating the flood damage associated with rare flood
events. If the two flood scenarios have return periods of L and H, the EAD between their
damage can be estimated as follows:

E[D( f )] | f=H
f=L =

D(L) + D(H)

2
(

1
L −

1
H

) (6)
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Ultimately, the total EAD across all return periods can be calculated as the sum of the
partial EAD calculations.

4. Results and Discussion
4.1. Analysis of Flood Damage

Figure 4 shows a comparison of the flood risk map (left) [25] with the estimated EAD
(right) for the study region. Darker shades represent higher EAD or heightened flood risks.
Our assessment was based on a flood risk map that measured the anticipated depth of
flooding in the affected areas. The resulting damage map, which estimated the potential
impact, differed significantly. For example, regions with minimal inundation but significant
assets may incur more severe damage than regions with extensive inundation but limited
assets. Consequently, the primary distinction between the two maps arises from the assets
exposed to flood risks.
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Figure 4. Comparison of the flood risk map and the EAD map across the study region: (a) the flood
risk map; (b) the estimated EAD map. The flood risk map shows areas susceptible to inundation
from floods with a 200-year return period, with the anticipated depth of flooding represented by
varying colors. The EAD Map depicts the expected extent of damage within each 100 m × 100 m
grid, quantified in USD.

Figure 5 shows that the probability density function of flooding damage exhibits a long
tail. For each 100 m × 100 m grid, the median damage was 34 USD, but the mean damage
significantly increased to 1000 USD. This contrast indicates that while most risk-prone
areas usually incur minor damage, significant flood damage is concentrated in a limited
number of regions. Specifically, 41% of the grids identified as at-risk on the flood risk map
had EADs lower than 10 USD. Furthermore, only 20% of the grids exceeded the average.
This disparity emphasizes that flood damage is not uniformly distributed, implying that
national flood defenses should focus on high-risk areas.

As illustrated in Figure 6, agricultural and automobile damage, at 37 and 35%, respectively,
accounted for the largest proportion of flood damage. Residential building damage accounted
for 35% of the total damage. Given the prominence of agriculture in the study area, agricultural
assets pose a significant risk of flooding. Similarly, floods in economically developed cities
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can significantly harm vehicles and infrastructure. This finding suggests the need for national
flood-defense policies that prioritize these categories. Notably, human impacts and industrial
damage remained at the lower end owing to adaptive flood-response strategies.
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Figure 6. Ratio of damage across five asset categories.

The vulnerability of assets to damage varies by region as shown in Table 3. For
example, the highest EAD of the Haeban Stream can be ascribed to automobiles, agriculture,
and residential buildings. This aligns with the stream routes through both urban and
agricultural landscapes. Damage in the Buk Stream and Jucheon River areas, with the next
highest EADs, is also related to vehicles, agriculture, and residential buildings. Conversely,
the EAD of the Dabang Stream area is primarily related to residential buildings and vehicles,
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owing to its urban passage. In contrast, the EAD in the Dong Stream prioritizes agricultural
assets as it courses through farmlands. These variations emphasize that flood defense
strategies should be tailored to the surrounding conditions of each river.

Table 3. EAD by asset categories across the five most affected streams/rivers (in million USD,
annually).

Streams
Residential

Building
Damage

Agricultural
Asset

Damage

Industrial
Asset

Damage

Human
Impact

Vehicle
Damage EAD

Flood
Defense
Return
Period

(Upstream)

Flood
Defense
Return
Period
(Down-
stream)

Haeban 7.1 10.7 0.4 0.6 11.8 30.6 30 100
Buk 7.5 4.4 0.1 0.3 5.2 17.6 80 100

Jucheon 4.9 2.9 0.1 0.3 6.2 14.4 100 100
Dabang 7.0 0.0 0.0 0.3 5.9 13.2 NA 100

Dong 0.4 5.7 0.1 0.1 0.7 7.1 50 50

Note: Damage is expressed in million USD, and the flood defense return period is expressed in years.

4.2. Relationship between the Flood Defense Level and Flood Damage Cost

Based on the estimated EAD and flood prevention levels, we determined an appro-
priate flood defense system. Figure 7 demonstrates that despite having high EADs, the
designated flood defenses for these rivers were designed for return periods of 30–100 years.
This implies that the national flood defense strategy of Korea was not established based
on damage potential. Figure 7 shows the relationship between the flood defense return
period [52] and the estimated EAD for all rivers in the study area. If defense targets are set
based on the EAD, we can expect an upward trend; the higher the EAD, the more stringent
the defense target. However, the scatterplot did not exhibit a consistent trend. In some
cases, areas with high EADs have low defense targets and vice versa. This indicates that
national flood defense strategies are not based on the evaluation of the EAD.
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4.3. Enhancement of Policies, Plans, and Measures on Flood Defense Criteria

In this study, we determined that the probability distribution function for the expected
damage appears to be an asymmetric distribution function with a long tail. This is because
a large number of regions are expected to experience low levels of damage, and a small
number of regions are expected to encounter high levels of damage. Furthermore, we
identified that flood prevention level and the cost of flood damage are independent and that
the levels of streams and rivers, which feature large-scale damage, have been established at
significantly low defense levels. However, the flood defense levels of streams and rivers,
which show low levels of damage, have been established at high prevention levels. The
results indicate that the scale of the expected flood damage in the flood-prone regions
of the Nakdong River zone tends to have a significantly uneven distribution. Therefore,
the flood prevention level for large-scale flood damage should be increased, whereas that
for small-scale damage should be decreased to efficiently use the limited flood defense
budget of the Korean government. These results seem to be similar to the results of several
analyses that identified the adjustment of the flood defense level based on the levee effect
and quantitative risk evaluation [53–55]. In their research, the design criteria and policies
for flood management need to be modified to reduce flood damages by enhancing the
levee systems.

This study found that the current flood prevention level in the Republic of Korea does
not appear to be proportional to the expected flood damage calculated for the streams
and rivers in the Nakdong River, verifying that they are likely to cause large-scale flood
damage. Existing flood prevention strategies based on river grades had been established
without reflecting the quantitative flood damage. Hence, more unique flood prevention
strategies that enhance flood defense criteria by focusing on vulnerable points need to be
considered. The flood defense plan in the basic river plan of the Republic of Korea presents
insufficient content for determining flood defense goals and considering the economic
and social significance, vulnerability to flooding, and climate change. Table 4 shows the
need to revise the return period of the flood defense structures in the river basin plan of
the Republic of Korea. The design flood should be estimated by considering its economic
and social importance based on a quantitative flood analysis to adopt an optimal flood
prevention plan that reflects the occurrence of floods exceeding the designed scale. Based
on the quantitative results, the government can develop a flood prevention plan under
the basic river plan of the country by considering floods due to climate change, which
can exceed the flood defense capability. In addition, national laws, such as the River Act
and the Investigation, Planning, and Management of Water Resources Act, are needed to
improve the flood prevention criteria reflecting climate impact and adaptation measures
to protect vulnerable regions from floods. The development of the Acts and plans for the
benefit of the flood defense level were also presented with studies of risk analysis and
uncertainty in flood damages and flood risk assessment in different countries, including
the US and the Netherlands [56,57].

Table 4. Improvement of return period of flood defense structures in rivers by considering flood
vulnerability in the basin river plan of Republic of Korea.

River—Grade
Scale of the Flood

Defense Plan
(Return Period)

Flood
Vulnerability Remarks

Populated areas, Asset-dense areas,
Industrial complexes, Major national
facilities, etc. (Flood defense grade A)

200~500 years or
more

Very High
or High

Determination of design frequency
considering climate change and

quantitative flood analysis (if
necessary, up to 500 years or more)

Commercial facilities, Industrial facilities,
Public facilities, etc. (Flood defense grade B) 100~200 years High -

Agricultural land, etc. (Flood defense grade
C) 50~80 years Medium -
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Table 4. Cont.

River—Grade
Scale of the Flood

Defense Plan
(Return Period)

Flood
Vulnerability Remarks

Wetlands, Bare areas, etc. (Flood defense
grade D) less than 50 years Low

Establishment of adaptation
measures instead of defense in

consideration of climate change and
quantitative flood analysis

National rivers, Local rivers 100~200 years,
50~200 years -

Setting the frequency of differentiated
design considering the amount of

flood damage

5. Conclusions

A quantitative flood analysis was conducted to estimate the damage caused by river
flooding based on the local rivers and streams in the Nakdong River zone of the Republic
of Korea. In this investigation, we focused on four damaged items, namely residential
assets, agricultural assets, industrial assets, and loss of life in flooded regions, for the return
periods of 50, 80, 100, and 200 years. Using the obtained asset database, the EAD in the
flooded area was computed by multiplying the entire cost by the sum of the flood damage
in the four asset categories and the probability of annual recurrence. In the quantitative
flood study, the object-based method and GIS were applied based on the spatial data within
100 m × 100 m grids to improve the reliability and accuracy of the high-resolution flood
damage estimations.

The five assets—residential buildings, agricultural assets, industrial assets, human
lives, and vehicles—defined as spatial inventories were examined for flood damage in the
flooding areas identified by the flood risk maps, containing local rivers and streams. Flood
damage to agricultural and vehicle assets appears to have the largest value, accounting for
37 and 35% of total flood damage, respectively, among the five damaged assets. However,
the flood damage of industrial assets has the lowest value, with a ratio of 1% of the
five damage components. These results might be because we limited the study to the
local streams and rivers and had difficulty in acquiring the industrial asset data used to
estimate the flood damage. These results could have changed if national rivers and urban
inundation were included in the analysis. Among the tributaries of the Nakdong River, the
five with the highest EAD are the Haeban (30.6 million USD), Daban (17.6 million USD),
Buk (14.4 million USD), Jucheon (13.2 million USD), and Sangnam Rivers (7.1 million USD).

The EAD calculated using quantitative flood risk analysis can be used to propose
distinct flood defense levels based on social and economic conditions. The calculated EAD
for the local streams and rivers was also analyzed to identify the appropriate application
of the flood defense levels. Although these regions are expected to experience large-scale
flood damage, the flood prevention level appears to be relatively low, indicating a need
for improvement. Using the determined values, the scale of the flood prevention plan
can be selected by identifying and differentiating the defense levels. In this study, we
focused on local rivers to determine the flood defense plans by examining the relationship
between flood damage costs and flood defense within the return periods. The flood defense
structures for the local rivers and streams are essentially the river banks, as analyzed when
creating the flood risk map. Other facilities to reduce flood damage need to be investigated
in the future when the flood damage costs for the risk of urban inundation are estimated.
When we determine the return period for the flood prevention structures in an area that
is expected to face financially and socially significant damage, the EAD can be applied
to reinforce the flood defense based on vulnerability analyses for potential flood damage.
Further research needs to be performed to evaluate the flood risk by including the national
and local rivers in the Nakdong River region. In the future, the priority of prospective flood
hazards caused by climate change needs to be determined using several types of climate
change and social and economic development scenarios to assess the economic feasibility of
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varying the preventive levels. Also, the flood risk maps of the local rivers in this river basin
cover a significant proportion compared to other nations’ river basins, such as the Han,
Seomjin·Yeongsan, and Geum River Basins. In this study, we focused on the Nakdong River
Basin among these four river basins. The flood prevention systems, based on quantitative
analyses, can effectively improve the implementation of flood defense measures and reduce
flood damage by enhancing the flood prevention criteria in the Republic of Korea.

Finally, we conclude by highlighting the limitations of this study. Our quantitative
assessment of flood risk (i.e., EAD) was conducted across five categories based on high-
resolution 100 m× 100 m grid sets. However, other important damage categories, including
the damage to public and service sectors, lifelines, and infrastructure, need to be considered.
These categories were not included in our assessment because of the lack of comprehensive
asset data and damage functions. Nevertheless, considering the potentially significant dam-
age these categories can cause, their assessment is imperative for future research [7,58,59].
Additionally, our study does not account for the indirect economic damage that can ripple
through economic systems and affect other areas [60]. Future research should incorporate
input–output and computable general equilibrium models to estimate such impacts [61,62].

The EAD should be interpreted with caution because of the range of uncertainties
present in the datasets, such as the flood risk maps and gridded asset data. Uncertainties
also exist in our methodologies, including the damage functions and interpolation tech-
niques. Additionally, we did not account for the damage to public facilities, utility systems,
or indirect flood damage. Finally, while we observed that the current flood defense targets
might not align with the EAD, we cannot specify the precise targets that should be adopted
for each river. Future research should focus on estimating more accurate EADs using
advanced methodologies that can guide the quantitative determination of flood targets.
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19. Ekmekcioğlu, Ö.; Koc, K.; Özger, M. Towards flood risk mapping based on multi-tiered decision making in a densely urbanized
metropolitan city of Istanbul. Sustain. Cities Soc. 2022, 80, 103759. [CrossRef]

20. Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood
risk in a warmer world. Earth’s Future 2017, 5, 171–182. [CrossRef]

21. Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite imaging
reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [CrossRef]

22. Korea Research Institute for Human Settlements. Determining the Flood Defense Level Based on the Quantitative Risk Assessment.
2021. Available online: https://library.krihs.re.kr/ (accessed on 1 May 2022).

23. Korea Environment Institute. Analysis on Establishment of Strategies for Flood Risk Evaluation and Flood Defense Criteria
against Climate Change (I). 2022. Available online: https://repository.kei.re.kr/handle/2017.oak/23922 (accessed on 1 May
2022).

24. Yugyung Na, J.C. A study on the flood damage estimation using object-based analysis. J. Korean Geogr. Soc. 2019, 54, 637–649.
25. Ministry of Environment. Flood Risk Map. Available online: https://floodmap.go.kr (accessed on 15 April 2022).
26. Ministry for Food Agriculture Forestry and Fisheries. Farm Map. Available online: https://agis.epis.or.kr (accessed on 15 April

2022).
27. Ministry of Land Infrastructure and Transport. Building Registry. Available online: https://open.eais.go.kr (accessed on 15 April

2022).
28. Ministry of Land Infrastructure and Transport. Property Appraisal Database. Available online: http://www.nsdi.go.kr (accessed

on 5 August 2022).
29. Ministry of Land Infrastructure and Transport. Vehicle Registration Database. Available online: https://stat.molit.go.kr/

(accessed on 1 August 2022).
30. Ministry of the Interior and Safety. Population Census. Available online: https://jumin.mois.go.kr/ (accessed on 1 August 2022).
31. Statistics Korea. Household Inventory Survey. Available online: https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_

ZTITLE&menuId=M_01_01#K1_20.2 (accessed on 1 August 2022).
32. Statistics Korea. Industrial Asset Valuation. Available online: https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_

ZTITLE&menuId=M_01_01#J2_17.2 (accessed on 20 May 2022).
33. Statistics Korea. Production Cost Statistics. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_

1C81&vw_cd=MT_ZTITLE&list_id=Q_7&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&
path=%252FstatisticsList%252FstatisticsListIndex.do (accessed on 20 May 2022).

34. Hall, J.W.; Meadowcroft, I.C.; Sayers, P.B.; Bramley, M.E. Integrated flood risk management in England and Wales. Nat. Hazards
Rev. 2003, 4, 126–135. [CrossRef]

www.safekorea.go.kr
https://doi.org/10.5194/nhess-10-1697-2010
https://doi.org/10.1111/j.1752-1688.1995.tb04025.x
https://doi.org/10.1080/15715124.2003.9635190
http://ec.europa.eu/environment/water/flood_risk/index.htm
http://ec.europa.eu/environment/water/flood_risk/index.htm
https://doi.org/10.1016/j.ecolind.2020.106620
https://doi.org/10.1111/jfr3.12683
https://doi.org/10.1016/j.gsf.2020.09.006
https://doi.org/10.1016/j.jhydrol.2020.125615
https://doi.org/10.3390/su11041048
https://www.ncbi.nlm.nih.gov/pubmed/30809384
https://doi.org/10.1016/j.ecoleng.2020.105765
https://doi.org/10.1016/j.scs.2022.103759
https://doi.org/10.1002/2016EF000485
https://doi.org/10.1038/s41586-021-03695-w
https://library.krihs.re.kr/
https://repository.kei.re.kr/handle/2017.oak/23922
https://floodmap.go.kr
https://agis.epis.or.kr
https://open.eais.go.kr
http://www.nsdi.go.kr
https://stat.molit.go.kr/
https://jumin.mois.go.kr/
https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01#K1_20.2
https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01#K1_20.2
https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01#J2_17.2
https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01#J2_17.2
https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1C81&vw_cd=MT_ZTITLE&list_id=Q_7&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do
https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1C81&vw_cd=MT_ZTITLE&list_id=Q_7&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do
https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1C81&vw_cd=MT_ZTITLE&list_id=Q_7&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do
https://doi.org/10.1061/(ASCE)1527-6988(2003)4:3(126)


Water 2023, 15, 3908 16 of 16
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