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Abstract: To accurately capture wave dynamics in porous media, the higher-order Boussinesq-type
equations for wave propagation in deep water are derived in this paper. Starting with the Laplace
equations combined with the linear and nonlinear resistance force of the dynamic conditions on the
free surface, the governing equations were formulated using various independent velocity variables,
such as the depth-averaged velocity and the velocity at the still water level and at an arbitrary vertical
position in the water column. The derived equations were then improved, and theoretical analyses
were carried out to investigate the linear performances with respect to phase celerity and damping
rate. It is shown that Boussinesq-type models with Padé [4, 4] dispersion can be applied in deep water.
A numerical implementation for one-dimensional equations expressed with free surface elevation
and depth-averaged velocity is presented. Solitary wave propagation in porous media was simulated,
and the computed results were found to be generally in good agreement with the measurements.

Keywords: porous media; wave; Boussinesq equations; dispersion; damping rate

1. Introduction

Human-made porous structures, such as rock breakwaters and revetments, are often
built close to the shore to protect coastal buildings and prevent severe coastal erosion.
These types of coastal structures partially reflect wave energy and partially dissipate wave
energy due to the drag and inertial resistance of the structures, resulting in only partial
wave transmission. Therefore, it is important to have a good understanding of how the
wave motion interacts with porous structures. Much research has been carried out since
1990, and an excellent review was conducted by Losada et al. [1].

Research on the interaction between waves and porous structures has been success-
fully carried out using differential approaches such as analytical solutions [2], laboratory
measurements [1,3], and numerical modeling [4–7]. Among these works, numerical models
based on the Navier–Stokes (RANS) equations and nonlinear shallow water (NLSW) equa-
tions are commonly used to calculate wave interaction with porous structures and appear to
be more advantageous. RANS models can represent the details of the flow fields of porous
structures, as shown in research conducted by Sasikumar et al. [8], but require longer
computation times, making the application of RANS models to the interaction between
waves and porous structures very challenging at present. In contrast to RANS models,
NLSW models are much more computationally efficient as only depth-averaged parameters
are calculated, as they can efficiently simulate long waves in a shallow water region but
are not suitable for accurately describing short, dispersive waves and are inadequate for
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the interactions between waves and porous structures. Mohamed et al. [9] used NLSW
models to simulate shallow waves with porosity structures based on the finite volume
method. In recent years, smoothed-particle hydrodynamic (SPH) models have also been
used to simulate wave propagation; these are meshless and achieve similar accuracy to
RANS-type models, and their validity has been demonstrated by Ren et al. [10], but these
models still require a huge computational effort, which limits their application in modeling
wave propagation in porous structures.

In recent decades, Boussinesq-type models have been significantly enriched and
widely applied in modeling the coastal waves and currents in complex bathymetric con-
figurations, such as the FUNWAVE model [11–13] and the MIKE21 BW model [14]. The
Boussinesq-type models have better computational efficiency, with their main advantage
being the simplification of the three-dimensional problem into the two-dimensional one,
as outlined in excellent reviews by Kirby [15], Madsen and Fuhrman [16], Brocchini [17],
Kirby [18], and Sun et al. [19]. As stated by Sun et al. [19], the Boussinesq-type mod-
els can be classified into two groups: the quasi-three-dimensional (3D) Boussinesq-type
models and the two-horizontal-dimension (2HD) models. Sun et al. [19] also summa-
rized the use of Boussinesq-type models for wave propagation over a porous seabed
and in multi-layer water with different densities. The use of Boussinesq-type mod-
els for wave propagation and evolution on the impermeable seabed [20,21] has been
fully developed, and some representative types of these equations include the extended
Boussinesq-type models, with improved linear dispersion/shoaling characteristics [22–25];
the second-order nonlinear Boussinesq-type models [26,27]; the so-called fully nonlinear
Boussinesq-type models [28–32]; and the extremely dispersive and nonlinear Boussinesq-
type models [33–36]. More recently, using the methods proposed in the literature [30,33,35,37],
a Boussinesq-type model for interfacial waves over a two-density system has been proposed.

The above Boussinesq-type models with exact linear and nonlinear properties cannot
be used directly for wave propagation in porous media. As can be seen, the inclusion of
porosity in Boussinesq-type models has rarely been reported. Cruz et al. [38] first proposed
a set of weakly nonlinear Boussinesq-type models using depth-averaged velocities in both
free and permeable water surfaces to model wave propagation over a permeable seabed.
Starting with the Euler equations, Hsiao et al. [39] and Chen [40] independently proposed
two sets of higher-order Boussinesq-type equations expressed in terms of velocities at two
arbitrary vertical locations. Liu and Sun [41] extended the Boussinesq equations of Hsiao
et al. [39] to make them applicable to wave propagation in deeper water. More recently, the
composite Boussinesq-type models for use over porous beds were proposed by Klonaris
and Memos [42]. However, when the porous structures were sub-aerial with surface-
piercing boundaries, the aforementioned Boussinesq-type models could not be applied.
For such cases, Hsiao et al. [43] were the first to develop a second-order Boussinesq model
for starting to simulate similar conditions, and more recently, Fang et al. [44] developed
a Boussinesq-type wave model to simulate the interaction of coastal waves with bottom-
mounted porous structures. However, these models (e.g., [43,44]) may not be valid for
short-wave propagation from deeper water into shallower water.

To overcome these shortcomings and to fully account for wave dispersion, nonlinearity,
and modeling efficiency, it is essential to develop Boussinesq-type models suitable for cases
of porous structures that span from deeper water to shallower water. The aim of this
study was to develop a Boussinesq-type model that is both valid for wave propagation in
deeper water and suitable for wave interactions with a surface-piercing porous structure.
By analyzing the above-mentioned Boussinesq-type models and comparing them with
the models for waves in impermeable seabed cases, the Boussinesq-type models valid for
wave interaction with a surface-penetrating porous structure have the linear and nonlinear
resistance forces resulting from the water passing through the porous media. Therefore, we
will derive the Boussinesq-type models following the main procedures as developed by
Madsen and Schäffer [45].
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This paper is organized as follows. The detailed derivation of four sets of Boussinesq-
type equations for wave propagation in a porous structure is given in Section 2. In Section 3,
the phase celerity and damping rate of the Boussinesq models are theoretically analyzed
and compared with the analytical solutions. Numerical implementation of 1D equations
and simulation of solitary wave interaction with porous breakwater are carried out to
validate the present model in Section 4. Finally, conclusions are drawn in Section 5.

2. Derivation of High Order of Boussinesq-Type Equations
2.1. Governing Equations and Boundary Conditions

The sketch of wave propagation in a porous media is shown in Figure 1, where the
computational domain is divided into non-porous media and porous media. In Figure 1,
z = 0 represents the still water level, η(x, y, t) is the free surface elevation (measured at still
water level), hb(x, y) is the depth of the porous media, and ψ(x, y, z, t) denotes the velocity
potential in non-porous and porous media.

Water 2023, 15, x FOR PEER REVIEW 3 of 20 
 

 

Therefore, we will derive the Boussinesq-type models following the main procedures as 
developed by Madsen and Schäffer [45]. 

This paper is organized as follows. The detailed derivation of four sets of Boussinesq-
type equations for wave propagation in a porous structure is given in Section 2. In Section 
3, the phase celerity and damping rate of the Boussinesq models are theoretically analyzed 
and compared with the analytical solutions. Numerical implementation of 1D equations 
and simulation of solitary wave interaction with porous breakwater are carried out to val-
idate the present model in Section 4. Finally, conclusions are drawn in Section 5. 

2. Derivation of High Order of Boussinesq-Type Equations 
2.1. Governing Equations and Boundary Conditions 

The sketch of wave propagation in a porous media is shown in Figure 1, where the 
computational domain is divided into non-porous media and porous media. In Figure 1, 

0z =  represents the still water level, ( ), ,x y tη  is the free surface elevation (measured 
at still water level), ( , )bh x y  is the depth of the porous media, and ( ), , ,x y z tψ  denotes the 
velocity potential in non-porous and porous media. 

  
Figure 1. The sketch of wave propagation in porous media. 

The flow is assumed to be impressible and irrotational, and the equation of motion 
inside and outside the porous media is derived by Cruz et al. [38] and can be written as: 

( )3
1 0s

s r i
dn p gz F F
dt

ρ
ρ

+ ∇ + + + =U
 

(1)

where n is the porosity, n = 1 represents wave propagation in non-porous media and n < 
1 represents porous media. ( , , )s s s su v w≡U   is the three-dimensional velocity vector, 

sp   is the pore pressure, ρ   is the fluid density, g is the gravity acceleration, 

3 ( / ,  / ,  / )x y z∇ = ∂ ∂ ∂ ∂ ∂ ∂   is the gradient operator, and 3/t sd d t= ∂ ∂ + ⋅∇U   de-
notes the total derivative. rF  and iF  denote drag resistance and inertial force, respec-
tively, and they are defined as 

1 2 , (1 )(1 ) s
r s s s i m

dF F n c
dt

α α= + = − + UU U U  (2)

where 1α   and 2α   denote coefficients for laminar fluid and turbulence force, respec-
tively, and mc  is the added mass coefficient. Inserting Equation (2) into Equation (1), we 
can obtain the following equation 

Figure 1. The sketch of wave propagation in porous media.

The flow is assumed to be impressible and irrotational, and the equation of motion
inside and outside the porous media is derived by Cruz et al. [38] and can be written as:

n
dUs

dt
+

1
ρ
∇3(ps + ρgz) + Fr + Fi = 0 (1)

where n is the porosity, n = 1 represents wave propagation in non-porous media and n < 1
represents porous media. Us ≡ (us, vs, ws) is the three-dimensional velocity vector, ps is the
pore pressure, ρ is the fluid density, g is the gravity acceleration, ∇3 = (∂/∂x, ∂/∂y, ∂/∂z)
is the gradient operator, and d/dt = ∂/∂t + Us · ∇3 denotes the total derivative. Fr and Fi
denote drag resistance and inertial force, respectively, and they are defined as

Fr = α1Us + α2|Us|Us, Fi = (1− n)(1 + cm)
dUs

dt
(2)

where α1 and α2 denote coefficients for laminar fluid and turbulence force, respectively, and
cm is the added mass coefficient. Inserting Equation (2) into Equation (1), we can obtain the
following equation

cr
dUs

dt
+

1
ρ
∇3 (ps + ρgz) + α1Us + α2|Us|Us = 0 (3)

where cr = n + (1− n)(1 + cm/n) is the inertial force coefficient.
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The mass conservation equation in porous media is

∇3 · (nUs) = 0 (4)

If the porosity is assumed to be a constant value, Equation (4) can be written as

∇3 ·Us = 0 (5)

At the free surface, the dynamic and kinematic conditions are

ps = 0 z = η(x, y, t) (6)

d
dt
(z− η) = ws −

∂η

∂t
− us · ∇η = 0 z = η(x, y, t) (7)

where ∇ =
(

∂
∂x , ∂

∂y

)
is the horizontal gradient operator and us = (us, vs) is the corre-

sponding velocity vector at the free surface. At the bottom boundary, we have

us · ∇hb + ws = 0 z = −hb (8)

To reduce the number of unknown variables in the derivation, the three-dimensional
velocity vector can be replaced by the velocity potential, as shown in the following formula

Us ≡ ∇3ψ (9)

The mass conservation equation is thus transformed into the Laplace equations

∇2ψ + ψzz = 0, −hb < z < η (10)

and Equation (3) can be written as

cr(ψt +
1
2
∇3ψ2) + ps + gz + αψ = 0 (11)

According to Equation (11), the dynamic and kinematic conditions at the free surface
can be written as follows

cr(ψt +
1
2
∇3ψ2) + gη + αψ = 0 z = η(x, y, t) (12)

ψz =
∂η

∂t
−∇ψ · ∇η = 0 z = η(x, y, t) (13)

And at the bottom, the boundary condition is

∇ψ · ∇hb + ψz = 0 z = −hb (14)

Thus, Equations (10) and (12)–(14) are the motion equations and boundary conditions
inside the porous media expressed by velocity potential.

2.2. Dimensionless Equations

To obtain the dimensionless equations, we normalize the variables using characteristic
wave amplitude a, characteristic water depth h0, and characteristic wavelength l0 as follows

x′ =
x
l0

, y′ =
y
l0

, z′ =
z
h0

, hb
′ =

hb
h0

, η′ =
η

a
, t′ =

t
√

gh0

l0
, ψ′ =

ψ

a
√

gh0

l0
h0

(15)
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Two parameters representing nonlinearity and dispersion are introduced in the deriva-
tion as

ε =
a
h0

, µ =
h0

l0
(16)

Omitting primes for simplicity, the Equations (10) and (12)–(14) can be written as

µ2∇2ψ + ψzz = 0, −hb < z < εη (17)

µ2(crψt + αψ + η) + εcr
1
2
[µ2(∇ψ)2 + ψz

2] = 0 z = εη (18)

µ2(ηt + ε∇ψ · ∇η) = ψz z = εη (19)

µ2∇ψ · ∇hb + ψz = 0, z = −hb (20)

Notice that by setting cr = 1 and α = 0, Equation (18) recovers to the expressions
presented in the original paper of Madsen and Schäffer [45].

2.3. Power Series Solution to the Laplace Equations

The main advantage of the Boussinesq equations is to simplify the three-dimensional
problem into a two-dimensional one. We first expand the velocity potential as

ψ(x, y, z, t) = ∑
n=0

znψ(n)(x, y, t) (21)

The first and second order of the potential derivatives can be expressed as

∇ψ(x, y, z, t) = ∑
n=0

zn∇ψ(n)(x, y, t) (22)

∇2ψ(x, y, z, t) = ∑
n=0

zn∇2ψ(n)(x, y, t) (23)

ψz(x, y, z, t) = ∑
n=0

(n + 1)zn
ψ(n+1)(x, y, t) (24)

ψzz(x, y, z, t) = ∑
n=0

(n + 2)(n + 1)zn
ψ(n+2)(x, y, t) (25)

Inserting Equations (23) and (24) into Equation (17), we obtain a recurrence relation as

ψ(n+2) = − 1
(n + 1)(n + 2)

µ2∇2ψ(n) n = 0, 1, 2, . . . . . . (26)

The velocity potential is thus expressed as follows

ψ(x, y, z, t) = ∑
n=0

(−1)nµ2n
(

z2n

(2n)!
∇2nψ(0) +

z2n+1

(2n + 1)!
∇2nψ(1)

)
(27)

Equation (27) indicates that the velocity potential can be expressed by the expansion
ψ(0) and ψ(1). The derivatives of velocity potential over horizontal plane (x, y) and vertical
plane z direction can be written as

us(x, y, z, t) = ∑
n=0

(−1)nµ2n
(

z2n

(2n)!
∇(∇2n−2(∇ · us)) +

z2n+1

(2n + 1)!
µ2∇(∇2nws)

)
(28)

ws(x, y, z, t) = ∑
n=0

(−1)nµ2n+2
(
− z2n+1

(2n + 1)!
∇2n(∇ · us) +

z2n

(2n)!
∇2nws

)
(29)
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where us ≡ ∇ψ(0), ws ≡ (1/µ2)ψ(1), i.e.,

us(x, y, 0, t) = us, ws(x, y, 0, t) = µ2ws (30)

Inserting Expression (29) into Equation (20), we obtain

ws + ∑
n=0

(−1)nµ2n∇ ·
(

hb
2n+1

(2n + 1)!
∇(∇2n−2(∇ · us)))− µ2 hb

2n+2

(2n + 2)!
∇(∇2nws)

)
= 0 (31)

Similarly, ws(x, y, t) = ∑
m=0

µ2nws
(n)(x, y, t) is introduced and truncated to the order of

O(µ6), and we have

ws(x, y, t) = −∇ · (hbus) + µ2∇ ·
{

1
6 hb

3∇(∇ · us)− 1
2 hb

2∇[∇ · (hbus)]
}

+µ4∇ ·
{

1
24 hb

4∇[∇2(∇ · (hbus))]− 1
120 hb

5∇[∇2(∇ · us)]

+ 1
2 hb

2∇[∇ · ( 1
6 hb

3∇(∇ · us)− 1
2 hb

2∇(∇ · (hbus)))]
}
+ O(µ6)

(32)

2.4. Boussinesq Equations in Terms of Velocity at the Free Surface ûs

Inserting Equations (27) and (28) into Equation (18), applying the horizontal gradient
operator, and eliminating ws(x, y, t) using Expression (32) under the assumption that
ε = O(µ), we have

ûst + α/crûs +∇η/cr + ε
1
2
∇(ûs)

2 + µ2
{

εT21 + ε2T22 + ε3T23

}
+ µ4(εT41) = O(µ6, ε2µ4) (33)

T21 = ∇[−η∇ · (hbûst)− α/crη∇ · (hbûs) +
1
2
(∇ · (hbûs))

2] (34a)

T22 = ∇[−1
2

η2∇ · ûst −
1
2

α/crη2∇ · ûs − ηûs · ∇∇ · (hbûs) + η∇ · (hbûs)∇ · ûs] (34b)

T23 = ∇[−1
2

η2ûs · ∇∇ · ûs +
1
2
(η∇ · ûs)

2] (34c)

T41 = ∇[η∇ · (hb
2Γt) + α/crη∇ · (hb

2Γ)−∇ · (hb
2Γ)∇ · (hbus)] (34d)

Γ =
1
6

hb∇(∇ · us)−
1
2
∇(∇ · (hbus)) (34e)

Similarly, using the same simplification method, we can obtain the depth-integrated
continuity equations

ηt +∇ ·Q = 0 (35)

where

Q ≡
∫ εη
−hb
∇ψdz

= ûs(hb + εη)− µ2
{

1
6 (ε

3η3 + hb
3)∇(∇ · ûs) +

1
2 (ε

2η2 − hb
2)∇[∇ · (hbûs)]

}
+µ4

{
1
2 (ε

2η2 − hb
2)∇[∇ · (hb

2Γ)] + 1
24 (ε

4η4 − hb
4)∇[∇2(∇ · (hbûs))]

+ 1
120 (ε

5η5 + hb
5)∇[∇2(∇ · ûs)]

}
+ O(µ6)

(36)
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2.5. Boussinesq Equations in Terms of Depth-Averaged Velocity us

The depth-averaged velocity us is defined as

us =
1

hb + εη

∫ εη

−hb

∇ψdz (37)

and it can be expressed in terms of ûs as

us = ûs + µ2
{

1
2 (hb − εη)∇[∇ · (hbûs)]− 1

6
(
hb

2 − εhbη + ε2η2)∇(∇ · ûs)
}

+µ4
{
− 1

2 (hb − εη)∇[∇ · (hb
2Γ)]− 1

24 (hb
3 − εhb

2η + ε2η2hb − ε3η3)∇[∇2(∇ · (hbûs))]

+ 1
120 (hb

4 − εhb
3η + ε2η2hb

2 − ε3η3hb + ε4η4)∇[∇2(∇ · ûs)]
}
+ O(µ6)

(38)

From the expression, we can obtain

ûs = us − µ2
{

1
2 (hb − εη)∇[∇ · (hbus)]− 1

6 (hb
2 − εhbη + ε2η2)∇(∇ · us)

}
+µ4

{
1

24 (hb
3 − εhb

2η + ε2η2hb − ε3η3)∇[∇2(∇ · (hbus))]

− 1
120 (hb

4 − εhb
3η + ε2η2hb

2 − ε3η3hb + ε4η4)∇[∇2(∇ · us)]

− 1
2 (hb − εη)∇[∇ · ( 1

2 εηhb∇(∇ · (hbus))− 1
6 (εηhb

2 − ε2η2hb)∇(∇ · us))]

− 1
6 (hb

2 − εhbη + ε2η2)∇[∇ · ( 1
2 (hb − εη)∇(∇ · (hbus))

− 1
6 (hb

2 − εhbη + ε2η2)∇(∇ · us))]
}
+ O(µ6)

(39)

The continuity equation in terms of us is

ηt +∇ · [(hb + εη)us] = 0 (40)

Inserting Expression (39) into Equations (33) and (34), and introducing the mild-slope
assumption |∇n(hb)| = O(µ), n = 1, 2, 3, we obtain

ust + α/crus +∇η/cr + ε 1
2∇(us)

2 + µ2{TM20 + εTM21 + ε2TM22 + ε3TM23
}

+µ4(TM40 + εTM41) = O(µ6, ε2µ4)
(41)

TM20 = hbΓt + α/crhbΓ (42a)

TM21 = −ηΓt − α/crηΓ +∇[us · (hbΓ)− η∇ · (hbust)− α/crη∇ · (hbus) +
1
2
(∇ · (hbus))

2] (42b)

TM22 = 1
6 η2∇(∇ · ust) + α/crη2∇(∇ · us)− 1

3 η∇ · (hbus)∇(∇ · us) +∇ · (ηus)Γ

+∇[ηus · Γ− 1
2 η2∇ · ust − 1

2 α/crη2∇ · us − ηus · ∇∇ · (hbus) + η∇ · (hbus)∇ · us]
(42c)

TM23 = −1
3

η∇ · (ηus)∇(∇ · us) +∇[−
1
3

η2us · ∇∇ · us +
1
2
(η∇ · us)

2] (42d)

TM40 = 1
24 hb

3∇(∇2(∇ · (hbust)))− 1
120 hb

4∇(∇2(∇ · ust)) +
1
6 hb

2∇(∇ · (hbΓt))

+α/cr[
1

24 hb
3∇(∇2(∇ · (hbus)))− 1

120 hb
4∇(∇2(∇ · us)) +

1
6 hb

2∇(∇ · (hbΓ))]
(42e)

TM41 = 1
45 hb

3η∇(∇2(∇ · ust))− 1
9 hb

3∇(∇ · (η∇(∇ · ust)))

+α/cr[
1

45 hb
3η∇(∇2(∇ · us))− 1

9 hb
3∇(∇ · (η∇(∇ · us)))]

− 1
45 hb

4∇ · us∇(∇2(∇ · us)) +
1
9 hb

4∇[∇ · (∇ · us(∇(∇ · us)))]

+ 1
18 hb

4∇(∇(∇us))
2

(42f)

Γ =
1
6

hb∇(∇ · us)−
1
2
∇(∇ · (hbus)) (42g)



Water 2023, 15, 3900 8 of 19

2.6. Boussinesq Equations in Terms of Velocity at an Arbitrary Water Column usa

Keeping the order accurate up to O
(
µ4), the velocity at an arbitrary water depth can

be written as

ψ(x, y, zαhb, t) = ψ(0) − µ2z∇ · (hb∇ψ(0)) − 1
2

µ2z2hb
2∇2ψ(0) + O(µ4) (43)

The expression of usα in terms of ûs is given

usα = ûs − µ2
{

zα hb∇∇ · (hbûs) +
1
2

zα
2hb

2∇∇ · ûs

}
(44)

So, we can obtain the following expression

ûs = usα + µ2
{

zα hb∇∇ · (hbusα) +
1
2

zα
2hb

2∇∇ · usα

}
(45)

Inserting (45) into momentum Equation (33), we have

usat + α/crusa +∇η/cr + ε
1
2
∇(usa)

2 + µ2
(

Ts20 + εTs21 + ε2Ts22 + ε3Ts23

)
= O(µ4) (46)

Ts20 = Γsat + α/crΓsa (47a)

Ts21 = ∇[−η∇ · (hbusαt)− α/cr η∇ · (hbusα) +
1
2
(∇ · (hbusα))

2 + usα · Γsα] (47b)

Ts22 = ∇[−1
2

η2∇ · usαt −
1
2

α/crη2∇ · usα − ηusα · ∇∇ · (hbusα) + η∇ · (hbusα)∇ · usα] (47c)

Ts23 = ∇[−1
2

η2usα · ∇∇ · usα +
1
2
(η∇ · usα)

2] (47d)

Γsα = zα hb∇∇ · (hbusα) +
1
2

zα
2hb

2∇∇ · usα (47e)

Inserting (45) into continuity Equation (35), we obtain

ηt +∇ · [(hb + εη)usa + µ2[( 1
2 hb

2 + zαhb
2 + εzαηhb − 1

2 ε2η2)∇(∇ · (hbusa))

( 1
2 zα

2hb
3 − 1

6 hb
3 + εzα

2ηhb
2 − 1

6 ε3η3)∇(∇ · usa)] = 0
(48)

2.7. Boussinesq Models Extended to Deeper Water Depth

In order to extend the applicability of the models to deeper water, the technique
presented by Madsen and Schäffer [45] is used to improve the derived model. This method
has been widely used in the literature to obtain the improved Boussinesq-type equations
for open water problems [45,46].

2.7.1. The Improvement of Equations in Terms of Depth-Averaged Velocity

(1) Keeping at order O(µ2)

Keeping at order O(µ2), the depth-averaged velocity Equations (40)–(42) have identical
dispersion as the classical Boussinesq equations [47] and are only valid in the shallow water
region. To extend its application range, we introduce the following Expression [48].

Texta1 = β2(hb + εη)µ2∇∇ · ((hb + εη)(ust +∇η/cr + α/crus + ε∇(us
2)/2))

+β1(hb + εη)2µ2∇∇ · (ust +∇η/cr + α/crus + ε∇(us
2)/2) = O(µ4)

(49)

where β1 and β2 are dispersive parameters.
By adding Equation (49) to Equation (41), the resulting equation is written as
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ust + α/crus +∇η/cr + ε
1
2
∇(us)

2 + µ2
{

TM20 + εTM21 + ε2TM22 + ε3TM23

}
+ Textra1 = O(µ4) (50)

(2) Keeping at order O(µ4)

Following Madsen and Schäffer [45], we add the following terms into Equation (41)

Texta2 = (γ2 − γ1)hb
2µ2[∇∇ · (ust +∇η/cr + α/crus + ε∇(us

2)/2) + µ2∇∇ · (TM20)

+εµ2∇∇ · (TM21)]γ2hbµ2{∇∇ · [hb(ust +∇η/cr + α/crus + ε∇(us
2)/2)]

+µ2∇∇ · (hbTM20) + εµ2∇∇ · (hbTM21)
}
+ γ3hb

4µ4{∇[∇2(∇ · (ust +∇η/cr + α/crus

+ε∇(us
2)/2))]

}
+ γ4hb

3∇hbµ4[∇2(∇ · (ust +∇η/cr + α/crus )] = O(µ6, ε2µ4)

(51)

where γ1 and γ3 are dispersive parameters, γ2 and γ4 are shoaling parameters. The
enhanced version of Equation (41) can be written as

ust + α/crus +∇η/cr + ε 1
2∇(us)

2 + µ2{TM20 + εTM21 + ε2TM22 + ε3TM23
}

+µ4(TM40 + εTM41) + Textra2 = O(µ6, ε2µ4)
(52)

2.7.2. The Improvement of Equations in Terms of usα

Neglecting high-order terms, Equations (46)–(48) are written as follows

ηt +∇ · [(h + εη)usα] = O(µ2) (53)

usαt + εusα · ∇usα +∇η + α/crusα = O(µ2) (54)

Also following Madsen and Schäffer [45], we have

Textra3 = (δ2 − δ1)µ
2∇ ·

{
hb

2∇[ηt +∇ · ((hb + εη)usa)]
}

−δ2µ2{hb
2[ηt +∇ · ((hb + εη)usa)

}
= O(µ4)

(55)

Textra4 = (δ4 − δ3)µ
2(hb + εη)2∇2[usαt + εusα · ∇usα +∇η/cr + α/crusα]

−δ4µ2(hb + εη)∇2{(hb + εη)[usαt + εusα · ∇usα +∇η/cr + α/crusα} = O(µ4)
(56)

Adding Expression (55) to Equation (46) and Expression (56) to Equation (48),
we obtain

usαt + α/crusα +∇η/cr + ε
1
2
∇(usα)

2 + µ2
{

Ts0 + εTs1 + ε2Ts2 + ε3Ts3

}
+ Textra4 = O(µ4) (57)

ηt +∇ · [(hb + εη)usa + µ2[( 1
2 hb

2 + zαhb
2 + εzαηhb − 1

2 ε2η2)∇(∇ · (hbusa))

( 1
2 zα

2hb
3 − 1

6 hb
3 + εzα

2ηhb
2 − 1

6 ε3η3)∇(∇ · usa)] + Textra3 = O(µ4)
(58)

In summary, four sets of higher-order Boussinesq models for wave propagation in
a porous structure have been derived, i.e., Model 1, Equations (40) and (50); Model 2,
Equations (40) and (52); Model 3, Equations (46) and (48); and Model 4, Equations (57) and (58).
By neglecting the drag and inertial force induced by the porosity, the four models presented
here recover those of Madsen and Schäffer [45]. Compared with the Boussinesq-type
models in the literature, Models 2 and 4 are the new Boussinesq-type models that are
not presented in any literature. Model 3 can be seen as a slightly different version of
Hsiao et al. [43], while Model 1 can be seen as an alternative choice to the Boussiensq-type
model of Hsiao et al. [43]. Meanwhile, Models 1 and 3 have more accuracy in regards to
second-order nonlinear terms compared with Fang et al. [44].
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3. Dispersive Analysis on a Horizontal Bottom

The dispersive analysis of the four sets of Boussinesq models is performed on a
horizontal bed in one dimension, neglecting the nonlinear terms and focusing on the phase
velocity and damping rate. Following a similar procedure in Hsiao et al. [43], we can obtain
the following dispersion expressions for the different models.

For Model 1, the dispersive expression is

ω2(cr + α1i/ω) = gKhb
1 + (β1 + β2)K2hb

2

1 + (1/3 + β1 + β2)K2hb
2 (59)

where ω denotes wave frequency and K = kr + iki is the complex wave number (i2 = −1).
For Model 2, the dispersive expression is

ω2(cr + α1i/ω) = gKhb
1 + γ1K2hb

2 + γ3K4hb
4

1 + (1/3 + γ1)K2hb
2 + (γ3 + γ1/3− 1/45)K4hb

4 (60)

For Model 3, we have the following expression

ω2(cr + α1i/ω) = gKhb
1− (1/3 + B)K2hb

2

1− BK2hb
2 (61)

where B = zα + zα
2/2.

For Model 4, the dispersive expression is

ω2(cr + α1i/ω) = gKhb
1 + (δ1 + δ3 − B− 1/3)K2hb

2 + δ1(δ3 − B− 1/3)K4hb
4

1 + (δ1 + δ3 − B)K2hb
2 + δ3(δ1 − B)K4hb

4 (62)

If we choose B = −(1/3 + β1 + β2), the dispersion expressions of Model 1 and Model
3 are equivalent. Similarly, the expression of Model 2 is equivalent to that of Model 4 if
the parameters are chosen appropriately. Therefore, in the following section, we will focus
on Model 1 and Model 2. As suggested by Madsen and Schäffer [45], these dispersion
expressions can be closer to the Padé [2, 2] or Padé [4, 4] expansion of the Stokes analytic
solutions without considering the porosity effect, if appropriate parameter values are
chosen. The coefficients are summarized in Table 1, where two sets of parameter values are
given for Model 1.

Table 1. The determined values for coefficient in different models.

Model Sets Parameter Values

1 β1 = −0.0013, β2 = −0.0654 (I) or β1 = 0.0073, β2 = −0.064 (II)
2 γ1 = 1/9, γ2 = 0.146488, γ3 = 1/945, γ4 = 0.00798359
3 B = −0.4 or B = −0.395
4 δ1= 0.101, δ3 = 0.039, B = −0.305, δ3 = 0.082 *, δ4 = 0.162 *

Note: * The two parameters are determined by reanalysis of the shoaling property, which differs from Madsen
and Schäffer [45].

The following analytic dispersive Expression [43] is adopted to evaluate the accuracy
of the models

ω2(cr + α1i/ω) = gKtanh(Khb) (63)

Phase celerity (c = ω/kr) of the different models is compared to the analytic solution
for α1 = 0.2, 2, and 4 s−1 in Figures 2–4 (where c is normalized by the analytic value), where
Model 1 uses the two set group parameters in Table 1. It can be seen from the figures that
Model 2 presents much more accurate results than Model 1, and the maximum error is only
2.5% when the applicable range of water depth is krh = 6.0 The applicable range of water
depth for Model 1 using the second set of parameter value is krh ≤ 4.05, 4.57, 1.58 with a
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5% tolerance error for three considered cases, which is higher than that using the first set of
parameter value krh ≤ 3.2, 3.75, 1.67.
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Defining c(ki) as the ratio of imaginary wave number between the model equations
and analytic solutions, we could obtain the variation trend of c(ki) with water depth for
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Models 1 and 2, as shown in Figures 5–7 for α1 = 0.2, 2, and 4 s−1. Model 2 again presents
better results than Model 1. The figures show that Model 2 is applicable for water depth
krh ≤ 4.19, 4.41, 4.98 for three cases within 2% error, whilst Model 1 with the first set
of parameter values is only applicable for krh ≤ 2.0, 2.16, 1.55 with 5% error, and with
the second set of values only for krh ≤ 2.62, 2.68, 1.52. According to the above analysis,
Model 2 is better adapted to deep water conditions, and its accuracy in deep water varies
for different linear force coefficients.

Water 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

Defining ( )ic k  as the ratio of imaginary wave number between the model equations 
and analytic solutions, we could obtain the variation trend of ( )ic k  with water depth for 
Models 1 and 2, as shown in Figures 5–7 for 1α  = 0.2, 2, and 4 s−1. Model 2 again presents 
better results than Model 1. The figures show that Model 2 is applicable for water depth 

4.19, 4.41, 4.98rk h ≤  for three cases within 2% error, whilst Model 1 with the first set 
of parameter values is only applicable for 2.0, 2.16,1.55rk h ≤  with 5% error, and with 
the second set of values only for 2.62, 2.68,1.52rk h ≤ . According to the above analysis, 
Model 2 is better adapted to deep water conditions, and its accuracy in deep water varies 
for different linear force coefficients. 

 
Figure 5. Non-dimensional imaginary wave number versus water depth ( 1 0.2, 1rcα = = ). 

 
Figure 6. Non-dimensional imaginary wave number versus water depth ( 1 2, 1rcα = = ). 

c 
(k

i)
c 

(k
i)

Figure 5. Non-dimensional imaginary wave number versus water depth (α1 = 0.2, cr = 1).

Water 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

Defining ( )ic k  as the ratio of imaginary wave number between the model equations 
and analytic solutions, we could obtain the variation trend of ( )ic k  with water depth for 
Models 1 and 2, as shown in Figures 5–7 for 1α  = 0.2, 2, and 4 s−1. Model 2 again presents 
better results than Model 1. The figures show that Model 2 is applicable for water depth 

4.19, 4.41, 4.98rk h ≤  for three cases within 2% error, whilst Model 1 with the first set 
of parameter values is only applicable for 2.0, 2.16,1.55rk h ≤  with 5% error, and with 
the second set of values only for 2.62, 2.68,1.52rk h ≤ . According to the above analysis, 
Model 2 is better adapted to deep water conditions, and its accuracy in deep water varies 
for different linear force coefficients. 

 
Figure 5. Non-dimensional imaginary wave number versus water depth ( 1 0.2, 1rcα = = ). 

 
Figure 6. Non-dimensional imaginary wave number versus water depth ( 1 2, 1rcα = = ). 

c 
(k

i)
c 

(k
i)

Figure 6. Non-dimensional imaginary wave number versus water depth (α1 = 2, cr = 1).

The above comparisons are carried out without considering the effect of the inertial
force coefficient cr, now let us discuss its effect. From the expression cr = 1 + (1− n)cm,
we can know that cr = 1 is the minimum value. For α1 = 1, the phase celerity of Model 2 is
compared against the analytical solutions for cr = 1, 1.1, 1.2, and 1.3, which is plotted in
Figure 8. It shows that the applicable water depth decreases with the increase in cr, and the
value of the inertial force coefficient cr greatly affects the results with the increase in the
water depth.
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4. Numerical Implementation and Validation
4.1. Numerical Implementation

Considering the overall accuracy of the derived model equations, the one-dimensional
version of Model 2 is chosen for numerical implementation. The details of the numerical
implementation are given in Kirby et al. [49], with a summary of the core procedures
provided for clarity.

The one-dimensional equations of Model 2 are discretized on uniform grids. Higher-
order finite difference formulations are used to approximate both the temporal and spatial
derivatives. A composite fourth-order Adams–Bashforth–Moulton integration scheme is
used for time marching. In the calculation of η and u values at time step n + 1, the third-
order Adams–Bashforth time scheme is used for the prediction step, and the fourth-order
Adams–Moulton scheme is used for the correction step, which is:

ηn+1 − ηn =
∆t
12

(23 f n − 16 f n−1 + 5 f n−2) (64)

ηn+1 − ηn =
∆t
24

(9 f n+1 + 19 f n − 5 f n−1 + f n−2) (65)

where the superscript n denotes the time step corresponding to the parameter value at time
n× ∆t and n + 1 corresponds to the parameter value at time (n + 1)× ∆t, f represents the
remaining terms in Equations (40) and (52) except the time derivative term.

The derivatives of the space in Equations (40) and (52) are discretized by the 4th order
Taylor formats as Equations (66) and (67), which uses 5-point data on the spatial grid, so
the velocity components are solved by a bandwidth of 5 broadband solution.

fx = (− fi+2 + 8 fi+1 − 8 fi−1 + fi+2)/(12∆x) + O(∆x)4 (66)

fxx = (− fi−2 + 16 fi+1 − 30 fi + 16 fi−1 − fi+2)/(12∆x)2 + O(∆x)4 (67)

To enhance numerical stability, the model is solved using a predictor–corrector iterative
approach. During the correction stage, the process is repeated until the difference in
calculated variables between the two iterations reaches a pre-determined value, typically
0.0001. And the convergence of the iterations is accelerated by using an over-relaxation
technique proposed by Kirby et al. [49].

Sponger layers are placed on either side of the numerical flume to absorb wave energy
and wave generation occurs internally in the computational domain through the addition
of a source function to the mass continuity equation. In this paper, we numerically simulate
the propagation of a solitary wave in a porous media, due to the transient characteristics
of the solitary wave, the surface elevation and velocities of the solitary wave are directly
specified in the computational domain as the initial conditions to generate solitary waves,
which is:

η(t) = H sec h2

(√
3H
4h3 (x− ct)

)
(68)

c =
√

gH
(

1 +
1
2

H
h

)
≈
√

g(H + h) (69)

u =
√

gh
η

h
(70)

where η is the water surface change; H is the solitary wave height; h is the water depth; t is
the time; c is the wave speed; g is the acceleration of gravity. u is the solitary wave of any
mass in the water body of the horizontal velocity.
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4.2. Model Validation

The experimental data of the solitary wave interaction with the porous breakwater
were obtained by Vidal et al. [50], which has been used to verify the numerical models of
Lynett et al. [4] and Lin and Karunarathna [51]. The sketch of the solitary wave interaction
with the porous breakwater is shown in Figure 9, where H and h are the wave height and still
water depth respectively, and a, d50, and n are the porous structure width, mean diameter,
and material porosity. Due to the transient nature of solitary waves, incident and reflected
waves do not superimpose in the flume. Wave heights of reflected and transmitted waves
on the left and right sides of the porous structure can be directly obtained. Therefore, the
calculated reflection coefficient is defined as Kr = HL/H0, and the transmission coefficient
is defined as Kt= HR/H0, where H0 is the input wave height of the solitary wave in the
wave generation region, and HL is the wave height on the left side of the solitary wave after
passing through the porous structure, HR is the wave height on the right side of the solitary
wave. The numerical results were also compared with the experimental data.
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In the experiment of Vidal et al. [50], the porous breakwater width is 20 cm or 40 cm,
and the water depth ranges from 25 cm to 32 cm. The material porosity is 0.44 with two
particle diameters d50 = 1.43 cm and 2.43 cm. In the numerical simulation, the space interval
is 0.01 m, and the time interval is 0.005 s. By setting α1 = 18 s−1 and α2 = 234.45 m for
the d50 = 1.43 cm case, and α1 = 6.23 s−1 and α2 = 137.97 m for the d50 = 2.43 cm case,
the reflection coefficient and transmission coefficient are calculated numerically using
Model 2, as shown in Figure 10. For the breakwater with d50 = 2.43 cm, both the calculated
reflection and transmission coefficients are in good agreement with the experimental results.
However, for the breakwater with d50 = 1.43 cm, the calculated reflection coefficients are
slightly larger than the experimental data, and the calculated transmission coefficients
are slightly smaller than the experimental data, but the trend with wave height (H/h) is
consistent with the measured values. Considering the errors introduced by the modeling
assumptions and parameters, the model developed in this paper can better simulate the
wave interaction with porous structures which has surface-piercing boundaries.

The experiments of Lynett et al. [4] are nearly identical to those of Vidal et al. [50],
where four types of porous breakwaters were tested. The gravels in two of the tests had
mean diameters of 1.6 and 2.0 cm, and the breakwater length was 15 cm. The mean
diameters of the others were 1.6 and 2.0 cm, with a breakwater length of 30 cm. The
porosity of the porous media was n = 0.5. The water depth was 10 cm. The solitary waves
had amplitudes between 1–4 cm. The reflection and transmission coefficient are computed
using the free surface time series recorded at 1 m in front of and 1 m behind the breakwater.
In the numerical simulation, the spatial interval is 0.01 m, and the time interval is 0.005 s.
For d50 = 1.6 cm, α1 = 9.5 s−1 and α2 = 200 m are used, and for d50 = 2.0 cm, α1 = 8 s−1 and
α2 = 160 m are used. Figure 11 shows the numerical reflection and transmission coefficients
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and the measurements from Lynett et al. [4]. For the 15 cm breakwater, both the calculated
reflection and transmission coefficients are in good agreement with the experimental results.
However, for the 30 cm breakwater, only the reflection coefficients are in good agreement
with the experimental data. The numerical results for the thin breakwater are slightly better
than those for the wide breakwater. In general, the agreements between the model results
and the experiment data are acceptable after choosing the appropriate coefficients.
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5. Conclusions

To accurately capture the wave motion in porous structures, four sets of Boussinesq-
type equations with different linear and nonlinear performances are derived by including
the drag resistance and inertial force induced by the media porosity. Two of them can
be considered slightly different versions of Hsiao et al. [43], and the others are the new
Boussinesq-type models, which have more accuracy of the second-order nonlinear terms
compared to Fang et al. [44]. Two Boussinesq-type models (Mode 2 and Model 4) have
Padé [4, 4] dispersion with accurate second or fourth-order nonlinearity, while the other
Boussinesq-type models (Mode 1 and Model 3) have Padé [2, 2] dispersion with accurate
second-order nonlinearity.

The phase celerity and damping rate of the four models are analyzed and compared
with the analytical solutions. The results show that the fourth-order dispersive Boussinesq-
type equations have accurate linear phase celerity and damping rate. In particular, the
model works in the range of 0 < kh < 6.19 for damping rate and 0 < kh < 6.06 for phase celerity.

Some preliminary numerical results are presented for the solitary wave propagating
through a vertical porous breakwater. The calculated reflection and transmission coef-
ficients are compared with published experimental data, the variation trend with wave
height (H/h) is consistent with the measured values, and the agreements between the model
result and experiment data are acceptable after selecting the appropriate coefficients.

Porous structures have an effect on the nonlinearity of waves propagation. The analysis
of the nonlinear performance of the models and the implementation of the two-dimensional
numerical model are left for further study.
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