
Citation: Choudhary, N.; Chaudhari,

J.; Mochi, V.; Patel, P.; Ali, D.; Alarifi,

S.; Sahoo, D.K.; Patel, A.; Yadav, V.K.

Phytonanofabrication of Copper

Oxide from Albizia saman and Its

Potential as an Antimicrobial Agent

and Remediation of Congo Red Dye

from Wastewater. Water 2023, 15,

3787. https://doi.org/10.3390/

w15213787

Academic Editor: Manuel

Toledo Padrón

Received: 7 October 2023

Revised: 25 October 2023

Accepted: 27 October 2023

Published: 29 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Phytonanofabrication of Copper Oxide from Albizia saman and
Its Potential as an Antimicrobial Agent and Remediation of
Congo Red Dye from Wastewater
Nisha Choudhary 1,*, Jaimina Chaudhari 1, Vidhi Mochi 1, Pritee Patel 1, Daoud Ali 2, Saud Alarifi 2,
Dipak Kumar Sahoo 3 , Ashish Patel 1,* and Virendra Kumar Yadav 1,*

1 Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
jaiminachaudhari976@gmail.com (J.C.); mochividhi23@gmail.com (V.M.); patelpriti9800@gmail.com (P.P.)

2 Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
3 Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University,

Ames, IA 50011, USA; dsahoo@iastate.edu
* Correspondence: nishanaseer03@gmail.com (N.C.); uni.ashish@gmail.com (A.P.);

yadava94@gmail.com (V.K.Y.)

Abstract: Metal nanoparticle fabrication through plant-based green methods is considered the gold
standard among the various synthesis techniques owing to its simplicity, eco-friendliness, ease of use,
and the huge diversity of plant species. Copper nanoparticles (CuONPs) have proven their potential
in the fields of medicine, agriculture, pharmaceutics, and catalysis, and are being synthesized using
various physicochemical and biological methods. Here, the authors have reported on the first-ever
use of Albizia saman leaf extract for the development of CuONPs. Phytochemical analysis of the
methanolic extracts of the plant exhibited the presence of phenols (32.31%), tannins (12.27%), and
flavonoids (16.72%). The phytonutrients existing in leaf extract successfully reduced the copper
salt in the CuONPs. A detailed investigation of the synthesized CuONPs was performed using
advanced instruments. The UV-Vis spectra exhibited an absorbance peak at 290 nm, while the X-ray
diffraction pattern (XRD) revealed that the average crystallite size was about 29.86 nm. Dynamic
light scattering (DLS) revealed that the average hydrodynamic size of the CuONPs was 72.3 nm in
diameter, while its zeta potential was −0.49, with a negative polarity. Fourier transform infrared
spectroscopy showed the major bands in the region of 400 to 1000 cm−1, suggesting the formation of
CuONPs, while the band in the region of 1100 to 2600 cm−1 shows the association of plant molecules
with the phytonanofabricated CuO particles. Transmission and scanning electron microscopy showed
the spherical shape of the CuONPs, whose size was about 20–50 nm. The phytonanofabricated
CuO exhibited antibacterial activity by forming a zone of inhibition (ZOI) against Escherichia coli,
Staphylococcus aureus, and Candida albicans. The removal efficiency of the CuONPs was 33.33% for
Congo Red dye. The removal efficiency of the phytonanofabricated CuO for CR dye was reduced to
16% after the 4th cycle.

Keywords: nano bioremediation; photosynthesis; antimicrobial activity; percentage removal;
copper oxide

1. Introduction

Nano metals such as silver [1], gold, copper, nano zero-valent iron (NZVI), plat-
inum [2], palladium [3], etc., and metallic nano-oxide particles, for instance, oxides of
Cu, Mg, Fe, Ti, Si, Zn, etc. [4–9], are the most versatile nanocrystalline materials. These
metallic and metal oxide nanoparticles (NPs) have found widespread applications across
diverse fields, such as catalysis (electro and photocatalysts) [10], medicine (antimicrobial
agents and drug carriers for drug delivery) [11], and environmental remediation (waste
treatment) [12–14] due to their remarkable characteristics. The uniqueness of these NPs lies
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in their nano size, higher surface area, higher reactivity, higher bioavailability, lower toxic-
ity, specific targeting, and precise release [15,16]. Amongst numerous metal nano-oxide
particles, copper oxide nanoparticles (CuONPs) have attracted significant research attention
in recent years owing to their unique properties and comprehensive applications [17,18].

Copper was the first metal antimicrobial agent recognized by the US Environmental
Protection Agency. Copper has shown effective neutralizing effects against viruses such as
poliovirus, HIV 1, bronchitis viruses, etc. [19,20]. It has oxidation-reducing properties, due
to which it can be utilized as an acceptor or donor of electrons in enzymes and can efficiently
act as a catalyst for certain reactions [21]. These nanoparticles can be impregnated into
protective wear, filters, and facial masks. Copper-based coatings have revealed bactericidal
activities against important human pathogens [22–25]. CuONPs are effective in adsorbing,
degrading, or immobilizing contaminants, thereby reducing environmental hazards [26].
The biocompatibility of these nanoparticles reduces the risk of toxicity, making them
an attractive option for medical applications. They have also found applications in the
area of agriculture to enhance crop yield and tolerance against abiotic stress, such as
drought [27–29].

The properties of CuONPs depend on the methods through which they are synthe-
sized. Laser ablation, physical vapor deposition, sol–gel [30], electrochemical [31], polymer
dispersion, solvent evaporation [29,32], ultrasonication [33], microwave [34], hydrother-
mal, solvent extraction, or diffusion are some of the physicochemical approaches used for
developing copper and CuONPs. Apart from these methods, green methods for synthesis
are gaining interest because of the lower price and toxicity, easiness, and eco-friendliness of
the synthesis mechanism [35]. The plant-based biosynthetic approach for the formation of
nano metals and metal nano-oxide particles is an economically profitable and environmen-
tally friendly fabrication method [36,37]. Additionally, the plant-based synthesis approach
offers a greener alternative to traditional remediation methods as nano metals and metal
nano-oxide particles are derived from renewable resources and require less energy for
synthesis [38].

Plants are rich sources of numerous phytoconstituents such as terpenoids, saponins,
glycosides, tannins, steroids, and flavonoids that can act as reducing and capping agents [39].
Moreover, these phytochemicals stabilize the nanoparticles developed using the nucleation
method [40]. Albizia saman, a flowering tree from the Fabaceae family commonly known as
the “Rain tree”, has high nutritional values and nitrogen-fixing capability [39]. A. saman
displays numerous bio-active compounds that possess several therapeutic properties like
antibacterial, antifungal, insecticidal, analgesic, antioxidant, antidiabetic, cytotoxic, and
anti-ulcer activities [41–43].

Earlier, several attempts were made to synthesize CuONPs using different species of
Albizia, for instance, Jayakumari and colleagues used the leaf extracts of A. lebbeck, while
Ramya and colleagues used A. amara for the development of CuONPs. To date, no attempts
have been made to synthesize CuONPs using A. saman.

Congo Red (CR) dye is used in paints, pigments, textiles, staining tissues, and the
pharmaceutical industry [44]. CR dye affects different living beings in different ways,
for instance, it may be carcinogenic, mutagenic, allergy causing, or organ damaging for
humans, may cause infertility and toxicity in certain aquatic organisms, and may increase
COD levels in water bodies, which is an indicative parameter of chemical pollution in
water systems [45,46].

In the present research work, phytonanofabrication of CuO was performed utilizing
leaf extract of A. saman for the very first time. One of the objectives was to characterize
the formulated CuONPs using analytical instruments to identify their detailed features.
Further, the antimicrobial properties of the synthesized CuONPs were assessed against
Staphylococcus aureus, Escherichia coli, and Candida albicans. Finally, one of the main objectives
was to assess the adsorption efficiency of the phytonanofabricated CuO particles for the
elimination of Congo Red dye from the contaminated water.



Water 2023, 15, 3787 3 of 25

2. Materials and Methods

A. saman leaves were plucked from the university premises of HNGU in Patan dis-
trict of Gujarat state in India. Copper sulfate (99.0% pure) was purchased from SD Fine
Chem Limited, Mumbai, India. For the analysis of the antimicrobial activity of CuONPs,
microbial cultures of S. aureus, E. coli, and C. albicans were procured from the GSBTM,
Gandhinagar, Gujarat, India, while Congo Red (C32H22N6Na2O6S2) was purchased from
SRL, Maharashtra, India. Sterile double-distilled water (ddw) was utilized for solution
preparation for the investigations.

2.1. Metal Precursor Solution Preparation

About 0.039 g of CuSO4·5H2O was weighed and added to 100 mL of ddw in a conical,
250 ml flask. The flask was capped using a cotton plug, and covered with aluminum foil
until use.

2.2. Preparation of A. saman Leaf Extract

The collected leaves of A. saman were further processed in the university laboratory
for the preparation of CuONPs. As an initial step, dust particles and other impurities
were removed from the surface of the leaves by washing them 2–3 times with tap water
followed by final washing with ddw. The washed leaves were shade-dried by placing
them on blotting paper in the laboratory at room temperature for 24 h. The dried leaves
were crushed using a mortar and pestle. To a beaker containing 100 mL of 50% methanol
(methanol and water at a ratio of 1:1), 25 g of dried and powdered leaves was added and
kept at RT for 24 h. To obtain the extract, this mixture was separated using Whatman filter
paper no. 42. Further, centrifugation of the mixture was conducted at 8000 rpm for 5 min.
The collected filtrate was used as the extract, while the residue containing plant cellular
macromolecules was discarded. This suspension obtained from the centrifugation was
employed further for reducing copper salt and capping the CuONPs [47,48].

2.3. Quantitative Analysis of Phytochemical Content and Antioxidant Activity of A. saman
2.3.1. Total Phenolics

The total concentration of phenolics was evaluated as per the modified Folin–Ciocalteu
colorimetric technique described by Singleton and Rossi [49,50]. About 0.5 mL of the
extracted solvent was diluted with ddw (4.50 mL), to which 0.5 mL of Folin–Ciocalteu’s
reagent was added. After mixing the mixture for 10 min, 5 mL of 7% Na2CO3 (w/v) was
added for its neutralization. Further, the solution was incubated under dark conditions
for 90 min, after which UV-Vis measurement was taken at 765 nm. The expression of the
results was analyzed on a weight basis (DW) as mg gallic acid equivalent/g (mg GAE/g
DW) of the sample.

2.3.2. Total Flavonoid Content (TFC)

The estimation of the TFC was performed in line with the protocol reported by Chang
and their group, using the AlCl3 colorimetric method [51]. The AlCl3 colorimetric technique
was used to estimate the flavonoid quantity in the extract. The preparation of the reaction
mixture was conducted by mixing (0.5 mL extract 1.50 mL ddw + 0.5 mL 10% (w/v) AlCl3
+ 0.1 mL 1 M potassium acetate). The above reaction mixture was diluted with 2.8 mL
ddw and finally placed at 22 ◦C for 35 min. To obtain the data, the absorbance was taken
at 415 nm using spectrophotometry, and the expression of the data was conducted in mg
quercetin equivalent/grams of dried weight (mg QE/g).
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2.3.3. Total Tannin Content

The estimation of the total tannin content was conducted using the protocol of Ram
and Mehrotra (1993), with minor modifications [52]. A mixture of different solvents of
(5 mL) was developed through mixing [0.5 mL Folin–Dennis reagent + 1 mL Na2CO3
(saturated solution). Further, the above mixture was kept at 22 ◦C for 20 min, and the
measurement of the blue color was performed at 700 nm. The data were expressed as mg
tannic acid equivalents/grams of dried weight (dw).

2.3.4. ABTS Free Radical Scavenging (FRS) Assay

The measurement of total antioxidant activity was conducted using an improved
Azinobis (ethylbenzothiazoline 6-sulphonic acid) radical scavenging (ABTS) process, with
slight modifications [53], as described below in Figure 1.
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2.3.5. Diphenyl-2-Picryl-Hydrazyl (DPPH) FRS Assay

The DPPH assay was carried out according to the protocol suggested by Brand-William
et al. (1995), with certain changes. The detailed steps are shown below in Figure 2 [54].

2.3.6. Ferric Reducing Antioxidant Power (FRAP) Assay

FRAP assay was performed following the protocol reported by Benzie and Strain
(1996), with certain changes [55], as shown below in Figure 3.
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2.4. Photosynthesis of CuONPs from CuSO4

About 80 mL of CuSO4 solution was poured into a 250 mL beaker, which was then
placed on a magnetic stirrer at 250 rpm and heated at 50 ◦C. About 20 mL of freshly
prepared extracts from leaves were poured into the precursor solution. The stirring was
continued until the color changed from green to dark brown. The mixture was then left on
the magnetic stirrer at 50 ◦C for 24 h, followed by centrifugation at 8000 rpm for 10 min
in order to obtain the CuONPs in the form of precipitate at the bottom of the tube. The
obtained pellet was washed thrice with sterile ddw in order to eliminate any impurities
attached to the particles. Finally, the obtained pellet was transferred to a Petri plate and was
oven-dried at 80 ◦C overnight. The dried powder was then calcined in an electrical muffle
furnace at 500 ◦C for 5 h. A brown-colored powder of CuO was thus obtained, which was
confirmed to be CuONPs through analysis using various sophisticated instruments.

2.5. Batch Adsorption Experiments

For the CR dye removal study, batch experiments were carried out for the adsorption
of CR on CuONPs. In this study, the effect of contact time on the adsorption of CR dye
molecules was studied. In the experimental set-up, a 250 mL beaker containing 50 ppm of
100 mL of dye solution with a pH of 8 was kept on a magnetic stirrer at a revolution speed
of 200 rpm. About 50 mg of CuONPs was added to the CR solutions. The mixtures were
stirred continuously using a magnetic stirrer at 200 rpm for 60 min. After a regular interval
of 5 min, an aliquot of 3 mL solution was taken out and examined for remaining CR dye
concentration using a UV-visible double beam spectrophotometer (λmax = 498 nm). The
percentage removal (%R) of CR dye and adsorption capacity of CuONPs at any time (qt)
and at equilibrium (qe) were evaluated using the following formulas [44,56].

% Removal =
A0 − At

A0
× 100 (1)

qt (mg|g) =
(A 0 − At )V

M
(2)

qe (mg|g) =
(A 0 − Ae )V

M
(3)

where,
A0 = initial conc. of CR dye (mg/L)

At = conc. of CR dye at a specific time, t (mg/L)

Ae = conc. of CR dye at equilibrium (mg/L)

V = volume of CR dye solution (L)

M = mass of CuONPs (g)

2.6. Antimicrobial Activity of Phytonanofabricated CuO

The phytofabricated CuONPs were assessed for their antimicrobial potential against
E. coli and S. aureus, measured on nutrient agar media, while the antifungal activity against
C. albicans (yeast) was conducted on potato dextrose agar (PDA) utilizing the disc diffusion
technique. A stock solution (0.1 mg per mL) of CuONPs was prepared in ddw. A filter paper
disc was placed into this solution and then, the sonication of the mixture was conducted
for 5 min. In this way, CuONPs were loaded onto the disc surface. The assessment was
performed by applying a microbial inoculum to a nutrient agar plate and potato dextrose
agar (PDA) using the swab culture technique. The inoculated Petri plates were incubated
at 37 ◦C for one day; thereafter, the Petri plates were examined for the formation of a zone
of inhibition (ZOI).
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3. Characterization of CuONPs

An FTIR investigation was conducted to identify the various functional groups at-
tached to the CuONPs. A solid KBr pellet technique was applied for the FTIR analysis,
where about 2 mg CuONPs + 98 mg of KBr was taken. The investigation was conducted
using SP 65 (Perkin Elmer, Waltham, MA, USA) in the mid-IR region 400–4000 cm−1, with
a resolution of 1 nm. The particle size distribution (PSD) of the CuONPs was examined
through dynamic light scattering (DLS), for which aqueous solution was prepared by
dispersing 1–2 mg of powder in the sterile distilled water and sonicated for 10 min in an
ultrasonicator (Sonar, Barcelona, Spain, 40 kHz). The sonication-dispersed nanoparticle
solution was used for the DLS at room temp. and UV-visible measurement was conducted
in the region of 200–800 nm using a Shimadzu UV-1900i double-beam spectrophotometer
(Japan). For FESEM analysis, about 0.5 mg of CuONPs was taken on the carbon tape,
which, in turn, was attached to the aluminum stub. Further, the CuONPs were subjected to
Au-sputtering before FESEM analysis. The external size and shape of the phytonanofabri-
cated CuO were examined utilizing Nova NanoSEM 450 FEI (USA), while the elemental
investigation was carried out using Bruker’s EDX analyzer attached with FESEM.

4. Results and Discussion
4.1. Phytochemical Analysis of A. saman Methanolic Leaf Extract

The data obtained via phytochemical assay of the methanol extract of A. saman leaves
indicated the presence of secondary metabolites such as phenols, tannins, and flavonoids
(Table 1). The total phenolic content was about 32.31 mg GAE/g, the total tannin con-
tent was 12.27 mg TAE/g, whereas the total flavonoid content was 16.72 mg QE/g of
the methanolic extract of A. saman. The results of the antioxidant activity evaluated by
measuring FRAP, ABTS, and DPPH assay are presented in Figure 4.

Table 1. Total phenolic, tannin, and flavonoid content in methanol extract of A. saman.

S. No. Secondary
Metabolite Conc. (mg/g) Study by Anil et al.

(Per/Gram)

1. Phenols 32.31

2. Tannins 12.27

3. Flavonoids 16.72 2.12 mg
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Previously, Venugopal also reported the phytochemical analysis of the methanolic
extract of A saman. Further, investigators have reported on DPPH assay, reducing power
assay, and nitric oxide scavenging assay [57]. Anil and colleagues also investigated the
phytochemical analysis (phenol content, tannin content, flavonoids, etc.) of the fruit pulp of
A. saman (Jacq.) Merr. The investigators revealed that the flavonoids were about 2.2 mg/g in
the fruit samples of A. saman. The presence of terpenoids and tannins along with catalase,
oleic acid, etc. was also observed in the fruit sample [58].

4.2. Mechanism of Formation of CuONPs from A. saman

A. saman has numerous phytochemicals like tannins, flavonoids, and terpenoids in
addition to several others. These phytochemicals have various functional groups through
which these Cu2+ ions bind. Further, there is a formation of Cu2+ metal complexes which
are reduced to form CuO seed particles. Further, these seed CuO particles then undergo ag-
gregation and nucleation [59]. Earlier, a team of investigators suggested that the flavonoids
in the leaf extract of Solanum nigrum release an H-atom, where there is a tautomeric change
(enol to keto) via the reduction of Cu(NO3)2 to CuONPs. Due to this bioreduction, there
is a color change of the medium i.e., from blue to brown [60]. A schematic representation
is shown in Figure 5a, depicting the phytonanofabrication of CuO from the plant extract,
while Figure 5b shows the mechanism of the formation of CuONPs from E. golobulus
leaf extract.
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4.3. PSD of CuONPs Using DLS

Figure 6 shows a typical PSD graph of the CuONPs, where the CuONPs exhibit particle
size between 60 and 120 nm. The average hydrodynamic size of the phytosynthesized
CuONPs was 72.30 nm (dm) and the zeta potential was −0.49 mv. The conductivity was
about 22 µS/cm, while mobility was −0.04 µ/s/V/cm. In addition to this, the synthesized
CuONPs had a negative polarity, with a charge of about −0.01271 Fc, which indicates the
association of negatively charged molecules on the surface of the CuONPs. The obtained
results were in good agreement.
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Earlier, Nazilu and colleagues synthesized CuONPs from the aqueous extracts of the
whole Parthenium hysterophorus plant, performed the DLS, and obtained particles of sizes
varying from 0 to 200 nm in diameter. There were two types of particles, i.e., smaller ones
with a size in the range of 0–200 nm, and a large population of an average size <100 nm. The
PDI was 0.3 or less, indicating that the individual particle size distribution was monodis-
persed. The DLS showed the polydisperse nature of the synthesized CuONPs, while SEM
showed the monodisperse nature of the CuONPs [61].

Zahrah Alhalili (2022) obtained a hydrodynamic size of about 85.3 nm in diameter
for the CuONPs synthesized from the Eucalyptus golobulus, and the maximum particle
size distribution was 81.92 nm. Moreover, the zeta potential was found to be −30, which
suggested the high stability of the particle in the solution. Earlier, investigators concluded
that the average zeta potential of the CuONPs could vary from −20 to +45, depending
on the pH between 2 and 12 [59]. Venkata and colleagues also synthesized CuONPs from
Solanum nigrum, where the zeta potential was found to be −12.5 ± 3.59 mV at pH 6.8 and
PDI was 0.445. The investigators suggested that the negative polarity might be due to the
presence of negatively charged molecules on the surface of CuONPs, like OH, or due to the
dissociation of acidic groups on the surface of the NPs after dispersing into the water.

4.4. UV-Visible Spectroscopic Analysis

Figure 7 presents the UV-Vis spectrum of crude leaf extract of the A. saman plant
and CuONPs. A change in color suggests the phytonanofabrication of CuO, revealing an
absorbance peak at 290 nm due to the surface plasmon resonance (SPR) [62]. Similar results
were also obtained by a team led by Swathilakshmi for phytosynthesized CuONPs using A.
amara [63]. Ramya and colleagues obtained a peak at 288 nm for the CuONPs synthesized
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from the leaf extracts of A. amara. A group led by Jayakumari obtained an absorbance peak
of 413 nm for the CuONPs formed using A. lebbeck. Here, the investigators noticed a color
change after 24 h of incubation, where the color change was due to the excitation of SPR of
CuONPs [64]. The CuONPs formed in our study were in close agreement with previous
results, which reported that CuONPs formed in the range of 200–350 nm.
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4.5. FTIR Analysis of CuONPs for the Identification of Functional Groups

FTIR measurement of CuONPs was performed in order to identify the attached
biomolecules that acted as a capping and stabilizing agent. FTIR spectrum (Figure 8)
of CuONPs was observed at 3616 cm−1, 3153, 2933, 1652, 1369, 1155, 1079, 1020, 611, 545,
and 510 cm−1. The band at 3616 and 3153 cm−1 could be attributed to the O-H stretching of
alcohols and phenols. The band at 2933 cm−1 could be attributed to –NH bond stretching.
The bands at 1652 cm−1 and 1369 cm−1 may be attributed to C=C and C-OH stretching
vibrations. The band at 1155 cm−1 and 1079 cm−1 could correspond to the bending vibration
of C-OH, whereas the bands at 1020 cm−1 and 611 cm−1 could correspond to C-O stretching
vibrations in carboxylic acid and flavonoids. The bands at 545 cm−1 and 510 cm−1 could
correspond to the Cu-O band vibrations, which confirms the synthesis of CuONPs. The
major FTIR bands of the phytonanofabricated CuO are shown in Table 2.

Table 2. Functional group associated with phytosynthesized CuONPs.

Wavenumber (cm−1) Assigned Functional Groups References

3607, 3165 O-H stretching of -OH group from phenols [65]

2931 N-H bond stretching [66]

1652 C=C stretching [67]

1364 C-OH stretching vibrations [68]

1161, 1079 C-OH bending vibrations [69]

1020 C-O stretching vibrations in carboxylic acid
and flavonoids [69]

763

611 C-O bending vibrations [65]

545 Cu-O vibrations [65]

510 Cu (II)-O bond vibrations [65]
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Earlier, Ramya and colleagues investigated both leaf extract and CuONPs synthesized
from A. smara and obtained bands at 763 cm−1, 1653 cm−1, 2054 cm−1, and 3445 cm−1

for the aqueous extract of leaves and for CuONPs at 535 cm−1, 709 cm−1, 1015 cm−1,
1632 cm−1, and 3393 cm−1. The bands and their attributes were suggested as following
3393 cm−1 (OH stretching), 1632 cm−1 (OH bending), and 1015 cm−1 (C-O stretching),
while a narrow band at 535 cm−1 was attributed to the Cu-O bond, confirming the formation
of CuONPs [70].

4.6. Phase Identification and Crystallinity Determination of CuONPs Using XRD

A typical XRD pattern of CuONPs synthesized from the plant is depicted in Figure 9.
It shows diffraction peaks at 16.9, 36.4, 43.3, 50.4, and 74.1◦. A high-intensity, sharp peak is
at 43.3, which indicates the crystalline size of the synthesized CuONPs. Moreover, there
are two more peaks—one at 50.4 and the other at 36.4◦. Furthermore, there are two more
small intensity peaks at 16.9 and 74.1◦. In addition to this, there are no other peaks that
suggests the purity of the phytonanofabricated CuO. The calculation of the crystallite size
of the CuONPs was conducted using the Scherrer formula, as shown below in Equation (4):

D =
kλ

βCosθ
(4)

where, D = crystalline size, k = constant (0.9), and β = full-width half maximum (FWHM)
values of the diffracted peaks.

All the parameters used in the Scherrer equation were calculated using the highest
intensity. The FWHM values and exact theta values were calculated using the Gaussian
peak fits. The crystallite size of the synthesized CuONPs was 29.86 nm.
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Figure 9. XRD pattern of CuONPs synthesized by A. saman.

The results of the current study were in close agreement with a previous study by
Jayakumari and colleagues. The diffraction peaks along with their corresponding lattice
planes of cubic CuONPs were obtained at (2θ) = 28.63 (1 1 1), 32.08 (2 0 0), 44.48 (2 0 0), 46.12
(2 2 0), 61.68 (0 2 2), 64.52 (2 2 0), and 71.48◦ (3 1 1) [64]. Ramya and colleagues obtained
diffraction bands for CuONPs synthesized from A. amara at 2θ = 33.3, 35.4, 38.8, 48.7, 58.3,
61.8, 66.28, and 68.0, which corresponds with the planes (110), (022), (111), (200), (202),
(020), (202), and (022), respectively. The following group obtained an average crystallite
size below 21 nm and a crystallite size of about 38.93 nm for the synthesized CuONPs [70].

4.7. Morphological Analysis of CuONPs

Figure 10a–d shows the FESEM micrographs of CuONPs synthesized from A. saman at
different scales. Figure 10a shows the spherical-shaped CuONPs at 1 µ, while Figure 10b,c
shows the CuONPs at 200 nm, depicting spherical-shaped CuONPs. Figure 10d shows the
spherical-shaped CuONPs at 100 nm scale. The size of the particle varies from 30 to 90 nm,
which is present as an individual and in aggregates. The size of the CuONPs synthesized
by Ramya and colleagues from the aqueous extracts of A. amara was about 60–80 nm, which
was roughly spherical in shape.

Figure 10e shows the EDS spot while Figure 10f depicts the EDS spectra and elemental
table, respectively. The former exhibit peaks for C, O, and Cu. The presence of Cu indicates
the formation of CuO, while the presence of carbon supports the association of plant organic
compounds with the synthesized CuONPs. The EDX analysis of CuONPs indicates that
they contain Cu (38.93%) and O (61.07%).

Previously, Jayakumarai and colleagues also reported the formation of spherical-
shaped CuONPs from A. lebbeck, whose size was below 100 nm [64]. The EDS analysis of
the synthesized CuONPs showed peaks for only Cu and O, which were 34.78% (wt.%) and
65.22% (wt.%) [64]. The EDS analysis of CuONPs synthesized by Ramya and colleagues
from A. amara revealed peaks for Cu and O, which were 78.07 (wt.%) and 21.93 (wt.%),
respectively [70].
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Figure 10. SEM micrographs (a–d) EDS spot (e) and EDS spectra (f) of CuONPs synthesized by
A. saman.

4.8. Morphological Analysis of CuONPs Using TEM

Figure 11a–c shows the TEM images of the CuONPs synthesized from A. saman at
different nm scales. Figure 11a shows roughly spherical-shaped CuONPs at 200 nm scale.
The dark spots are Cu-rich regions, while the bright spots are organic carbon-rich regions,
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indicating the association of carbon compounds with the synthesized CuONPs. Figure 11b
also shows roughly spherical-shaped CuONPs along with aggregation. Figure 11c shows
the CuONPs at 50 nm scale, where the particles are clearly visible in their almost spherical
shape. Moreover, the particles are also showing aggregation, which is revealed by the TEM
images. The size of the individual roughly spherical CuONPS is 20–50 nm. Figure 11d
shows the scattering area electron diffraction pattern of the CuONPs synthesized from A.
saman at a 10 nm scale, where the sharp spots in a ring pattern show the polycrystalline
nature of the phytonanofabricated CuO. Earlier, a team led by Jayakumarai utilized the leaf
extract of A. lebbeck and synthesized CuONPs of a size below 100 nm [64].
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Figure 11. TEM micrographs (a–c) and SAED pattern (d) of CuONPs.

4.9. Adsorption Results of Congo Red Using CuONPs

The adsorption capacity of phytofabricated CuONPs was evaluated by measuring the
leftover concentration of dye in an aqueous medium using a UV-Vis spectrophotometer [71].
The CR dye showed a maximum absorption peak (λmax) at 498 nm. The concentration
of dye was measured up to 1 h at regular intervals of 5 min. Figure 12a shows the CR
adsorption spectrum, and based on this spectrum effect of contact time, a kinetic study for
the adsorption of CR dye was conducted.
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Figure 12. Absorption spectrum of Congo Red dye (a) and removal percentage of CR dye (b) CuONPs.

The remediation of CR from its aqueous medium takes place either via physisorption,
chemosorption method, or photocatalytic degradation. The adsorption of CR onto the
surface of CuONPs continuously increased up to 60 min. The percent removal [72] of CR
using a fixed amount of adsorbent for up to 60 min is shown in Figure 12b.

Figure 13b,c shows that CR removal efficiency was enhanced with time, whereas the
percent remediation of CR decreased with the increase in CR concentration. After 60 min,
the removal percentage of CR was 33.3% for 50 ppm. The results obtained here were in
close agreement with the previous results reported by Swathilakshmi and colleagues for
CR dye adsorption by CuONPs [63]. The adsorption capacity of CuONPs varied from 5 to
17.53 mg/g against the adsorption of CR dye. The pseudo-first-order kinetics (Figure 13b)
and pseudo-second-order kinetics (Figure 13c) were performed and their values are given
below in Table 3.

Table 3. Kinetics study of CuONPs for adsorption of CR dye.

Co (mg/L) qe (mg/g) PFO PSO

K1 (min−1) R2 K2 (min−1) R2

50 16 −0.2142 0.6927 0.0642 0.8995

Earlier, Batool obtained the highest removal for CR dye in 120 min, i.e., 1.1 mg/g from
the 80 to 120 nm sized CuONPs synthesized from Aloe vera [73]. Jethave and colleagues
also synthesized CuONPs from the Nyctanthes arbortristis leaf extract and removed CR
dye from aqueous solution. The kinetic study revealed that the CR dye adsorption on
CuONPs followed PFO reactions. Langmuir isotherm modeling was found to be best
fitted and describes the CR dye adsorption by CuONPs in 1 hour 30 min with Qmax at
333.33 (mg/g) [74]. Rasheed and colleagues obtained a photocatalytic degradation of about
94% with Cu2O and 54% with CuONPs for the remediation of CR dye [75]. Zahrah
Alhalili (2022) synthesized spherical-shaped CuONPs of an average size of 88 nm from the
leaf extract of E. golobulus. The nano adsorbent remediated the methyl orange dye up to
95 mg/g from the aqueous solution [59]. Venkata and colleagues used CuONPs synthesized
from S. nigrum for the efficient removal of CR with 64.448 ± 1.141%, Coomassie Brilliant
Blue R-250 (CBB) 75.302 ± 2.072%, and Methylene Blue 89.339 ± 0.739%. Table 4 shows a
comparison of CR dye remediation from aqueous solution using different adsorbents.
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Table 4. A comparative investigation of the remediation of CR dye from aqueous solution utilizing
various adsorbents.

Adsorbent Dose of
Adsorbent (g/L)

Removal
Efficiency

Adsorption
Capacity (mg/g) Temp Contact Time

(Minutes) References

Coal fly ash

1 13.5

[76]2.5 9

4 6

CuONPs 5 mg/g 1.1 10 [73]

CuONPs
10 mg/L 100% 35

[77]
60 mg/L 100% 2

ZnONPs 0.05 g 95.5% 20 [78]

IONPs from
incense stick ash 10 mg/L 72% 30 °C 60 [44]

Groundnut shell
charcoal 100 mg in 100 mL 80% 117.6 318 K

[79]
Eichhornia charcoal

(EC) 100 mg in 100 mL 60% 56.8 318 K

Pine bark 1–10 g L−1 23.4 to 100% 0.3 to 1.6 mg·g−1 25–60 ◦C 0–7 days [80]

Moringa oleifera
seed coat >90% 321 K 90 min [81]

CuONPs 33.3% 17.53 mg/g Current
investigation

From the above table, it can be seen that the dye removal percentage depends on
several factors, like temperature and Ph, the dose of adsorbent, contact time, and the mor-
phology of the adsorbent. A study led by Kaur showed that increasing the temperature by
a few degrees may drastically increase Congo Red dye removal efficiency using groundnut
shell charcoal and EC [79].

4.10. Mechanism of Congo Red Dye Removal by CuONPs

Copper oxide exhibits photocatalytic properties in sunlight and UV light, which
remediates the colored dye much more efficiently. The removal percentage of color dye
from wastewater or aqueous solution depends on the size of the CuONPs and the charge
on the synthesized CuONPs. Figure 14 shows the probable mechanism of removal of CR
dye from aqueous solution using CuONPs. When the dye is removed in open conditions
in the laboratory, the CuONPs simply act as an adsorbent that adsorbs the dye molecules
through various interactions, like Vander Wall forces, electrostatic interaction, etc. [82].
Moreover, the CuONPs have various charged functional groups, which attract or repel the
dye molecules and remove the dye from the medium. In the presence of sunlight, electron
from the valence band (VB) of CuONPs excites and reaches the conduction band (CB),
which leads to the formation of an electron–hole pair. These holes in the BV react with the
OH group on the surface of the CuONPs and reduce them to more reactive [OH·]. Further,
the e-s in the CB react with O2 molecules adsorbed on the surface of the CuONPs, which
are being oxidized into superoxide anion radicals [O2·]. The developed highly reactive
free radicals interact with the CR dye molecules, which results in the generation of CO2,
H2O, and other by-products through oxidative decomposition. A similar mechanism has
also been elucidated by Venkata and colleagues via CuONPs synthesized from the leaf
extract of S. nigrum under sunlight [83]. A team led by Kumar also showed a similar kind
of mechanism for the remediation of organic pollutants and heavy metals from wastewater
using a porous boron nitride-magnetic hydrogel [84].
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4.11. Regeneration Study of CuONPs

The regeneration study of the adsorbent was conducted by collecting the adsorbent
after the 1st cycle, followed by washing with distilled water and ethanol. Further, the
CuONPs were dried overnight in an oven at 50 °C. The dried CuONPs were then reused for
the removal of 50 ppm CR dye from aqueous solution. An aliquot was taken after 60 min of
contact time, which was analyzed using a UV-Vis instrument to detect the conc. A similar
step was also performed for cycles 3 and 4. All other conditions were almost the same in
all the cycles, like temperature, conc of CR dye, stirring speed, and contact time. After the
first cycle, the removal percentage of CR dye was about 33.5% at 60 min for 50 ppm CR
dye, which was further reduced to 25.6% after the 2nd cycle, 19.3% after the 3rd cycle, and
16% after the 4th cycle. Said and colleagues also conducted a reusability test of CuONPs
synthesized via the chemical route. The removal efficiency for the first cycle was almost
100%, which decreased to 98% after the second cycle, 97% after the 3rd cycle, and 95% after
the 4th cycle [77], as shown in Figure 15.
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4.12. Antimicrobial Activity of CuONPs

The antimicrobial activity of CuONPs was evaluated by calculating the ZOI technique
against E. coli [Gram-negative (GN)] and S. aureus [Gram-positive (GP)] bacteria and C.
albicans yeast. An aqueous solution of 1 mg per 3 mL of ddw was found effective against
all the microbial strains and exhibited antimicrobial activity. The antimicrobial activity
revealed a ZOI of about 15 mm against E. coli, whereas the ZOI against S. aureus was about
14 mm. So, the phytonanofabricated CuO particles were found to be more effective against
GN E. coli than GP S. aureus. CuONPs, being smaller in size, may easily gain access to the
bacteria and inhibit the enzyme activity, thereby affecting the major metabolic functions.
Moreover, Cu is a heavy metal that reacts with the sulfhydryl groups of the enzyme and
inhibits their growth. Furthermore, being GN, E. coli has a thin layer of peptidoglycan
compared with the GP S. aureus. Therefore, there might be more entry of CuONPs into
the E. coli, inhibiting their growth. The antimicrobial activity of CuONPs of the same
concentration was evaluated against C. Albicans and showed a ZOI of 12 mm (Figure 16).
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Earlier, a team led by Singh also observed the antimicrobial effect of 500 and 1000 µg
of CuONPs synthesized from the plant extract of Annona squamosa. The investigators
obtained a ZOI of about 21 mm against E. coli and 17 mm against Microbacterium testaceum
at a concentration of 1000 µg. The investigators also obtained a higher ZOI against GN E.
coli in comparison with GP M. testaceum. Moreover, the investigators suggested that the
antimicrobial effect of the phytonanofabricated CuONPs could be due to their interaction
with the bacterial plasma membrane, which leads to the formation of holes in the membrane,
and ultimately, cell lysis. Furthermore, it was observed that the Cu2+ ions interact with
the bacterial components of the cell wall, resulting in a negative charge, which causes the
denaturation and alteration of membranous proteins. In addition to this, once the Cu2+

ions reach the inside of the bacterial cell, they produce ROS, which leads to alterations
in the cellular signaling and interference with the nucleic acid. This ultimately results
in altered helical morphology [85]. A group led by Chen synthesized 40–80 nm sized
CuONPs from papaya leaf extracts and evaluated their antimicrobial activity against the
soil-borne pathogen, Rolstania solanacearum. The investigators obtained a reduction of about
35–37% in the growth of R. solanacearum, whose optical density was measured at 600 nm
wavelength [86]. Nabila and Kannabiran (2018) synthesized 61.7 nm sized CuONPs and
assessed their antimicrobial property against several fish pathogenic bacteria, out of which
Bacillus cereus was found to be the most susceptible, i.e., 25.3 mm (ZOI) [87]. Table 5 shows
a comparative study of the antimicrobial properties of CuONPs.
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Table 5. A comparative study of the antimicrobial properties of CuONPs synthesized from plants.

Plant Used Tested Microorganism ZOI (mm) Method Used References

Annona squamosa
Microbacterium testaceum 17 Agar-well

diffusion
[85]

E. coli 21

Silybum marianum (leaf extract) Enterobacter aerogenes 18 ± 1.3
[88]

Salmonella typhi 17 ± 1.2

Bacillus cereus 225.3 [87]

Aerva javanica
(at 100 µg/mL): leaf extract

E. coli 6 ± 1

Agar-well
diffusion

[89]

Acinetobacter baumannii 12 ± 1

S. aureus 12 ± 1

Pseudomonas aeruginosa 10 ± 1

C. albicans 9 + 0.5

C. albicans 7 + 1

C. krusei 5 + 1

C. tropicalis 4 + 0

A. javanica
(at 200 µg/mL): leaf extract

E. coli 7 ± 0.57

A. baumannii 12 ± 1

S. aureus 12 ± 1

P. aeruginosa 13 ± 1

Berberis vulgaris
(leaf extract)

S. aureus ATCC 29213 MIC (µg/mL): 0.3
MBC (µg/mL): 2.4

Tube dilution
method

[90]K. pneumoniae ATCC 700603 MIC (µg/mL): 1.2
MBC (µg/mL): 4.8

E. coli ATCC 25922 MIC (µg/mL): 0.6
MBC (µg/mL): 2.4

Silybum marianum
(Leaf extract) 4 mg mL−1 Micrococcus luteus 5 ± 0.8

Agar-disc
diffusion

[88]

Salmonella typhi 9 ± 1.1

Salmonella setubal 8 ± 0.9

S. aureus 4 ± 0.6

E. aerogenes 9 ± 0.9

S. marianum
(Leaf extract) 20 mg mL−1 M. luteus 8 ± 0.7

S. typhi 17 ± 1.2

S. setubal 16 ± 1.2

S. aureus 7 ± 0.7

E. aerogenes 18 ± 1.3

Albizia saman
(leaf extract)

E. coli 15
Agar-well
diffusion

Current
investigation

S. aureus 14

C. albicans 12
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From the above table, it could be concluded that the dose of CuONPs may exert a
positive effect on antimicrobial activity, i.e., at higher doses, there is more interaction with
the pathogenic microorganisms, leading to their greater inhibition, and ultimately, a higher
ZOI [89]. However, in a study, higher concentrations of CuONPs, i.e., 20 mg/mL, exhibited
a higher bactericidal effect of the CuONPs compared with the 4 mg/mL concentration. The
inhibitory effect might be due to the interaction of the external bacterial membrane with the
CuONPs. These CuONPs may disrupt the integrity of the membrane of the bacteria, which
may further cause malfunctioning of enzymes and enhanced cell permeability, leading to
the death of the bacteria. Moreover, the integration of the CuONPs inside the cell membrane
might be due to the smaller size of the pores on the bacterial cell membrane [88].

4.13. Mechanism of Antimicrobial Activity of CuONPs

The Cu itself is considered a heavy metal that reacts with the proteins and enzymes
of microbes and inhibits their growth. The nanosized CuO easily enters microbes and
affects the internal organelles of the microorganism (mainly bacteria), resulting in damage,
and ultimately, death of the microorganisms. The exact mode of action of CuONPs as
an antimicrobial agent is not yet clear, but it is considered that there might be a release
of ionic Cu from the metallic Cu surfaces. Secondly, there could be leaching of copper
ions from CuONPs. Thirdly, there might be the production of reactive oxygen species
(ROS), which may irreversibly damage membranes. Previously, a study demonstrated that
the antibacterial activity of CuONPs is due to the release of Cu2+. Due to the very small
size of the Cu2+, it could easily gain access through the bacteria cell membranes, thereby
disrupting the functions of the enzyme. Moreover, there is an indirect effect through
changes in the surrounding charge environment of microorganisms [91,92].

5. Conclusions

The roughly spherical-shaped CuONPs of 20–50 nm was successfully synthesized
using methanolic leaf extracts of A. saman. The methanolic extracts of the A. saman leaf
have flavonoids, tannins, terpenoids, and several other biomolecules. These phytochemical
acts as major capping and reducing agents during the formation of CuONPs. The phyto-
nanofabricated CuO particles were analyzed to determine their detailed properties using
analytical instruments. The FTIR revealed the band at 530 cm−1, which was attributed
to Cu-O. The FTIR and FESEM showed the association of organic molecules with the
developed CuONPs. The average size of the crystalline CuONPs was 29 nm. The CR
adsorption study showed that 33.3% remediation of the dye compound from its aqueous
solution was achieved, whereas the highest adsorption capacity of CuONPs was measured
as 17.53 mg/g against adsorption of 50 ppm of CR dye. The removal efficiency of CR dye
by the phytonanofabricated CuO was reduced to almost half after the 4th cycle.
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