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Abstract: Accurately computing river discharge is crucial, but traditional computing methods are
complex and need the assistance of many other hydraulic parameters. Therefore, it is of practical
value to develop a convenient and effective auto-computation technique for river discharge. Water
surface elevation is relatively easy to obtain and there is a strong relationship between river discharge
and water surface elevation, which can be used to compute river discharge. Unlike previous usage
of deep learning to predict short-term river discharge that need multiple parameters besides water
level, this paper proved that deep learning has the potential to accurately compute long-term river
discharge purely based on water level. It showed that the majority of relative errors on the test dataset
were within ±5%, particularly it could operate continuously for almost one year with high precision
without retraining. Then, we used BiGRU to compute river flow with different hyperparameters,
and its best RMSE, NSE, MAE, and MAPE values were 256 m3/s, 0.9973, 207 m3/s, and 0.0336,
respectively. With this data-driven based technology, it will be more convenient to obtain river
discharge time series directly from local water surface elevation time series accurately in natural
rivers, which is of practical value to water resources management and flood protection.

Keywords: river flow; water level; river stage; deep learning networks; RNN; Yangtze River

1. Introduction

RD (river discharge) is a critical hydrologic variable that links atmospheric, oceanic,
and terrestrial processes, which plays a key role in addressing various aspects such as
assessing food risks and guiding hydropower stations’ operation. The Global Climate
Observing System (GCOS) considers it essential to understanding the hydrological cycle
and managing water supplies [1]. In most cases, however, RD cannot be measured directly
and needs relevant hydraulic parameters to compute its value, such as flow rate at mul-
tiple points and cross-section area. Thus, it is meaningful to develop a convenient RD
computation method purely based on water level.

The watershed model assumes a pivotal role in the calculation of river discharge using
conventional hydrodynamic principles. This approach offers the capacity to encompass a
designated regional area and furnish precise data on water flow characteristics, alongside
key water quality parameters, such as EFDC (Environmental Fluid Dynamics Code) [2–4].
Nevertheless, these numerical simulation methods necessitate a lot of effort in grid generation,
and the computational process is time consuming.

Nowadays, monitoring discharge in one river cross is replaced by many indirect
methods, such as SDRC (stage-discharge rating curve) [5], IVRC (index velocity rating
curve) [6,7], and CSA (continuous slope-area) [8–10]. These approaches estimate RDs
by collecting some important hydraulic parameters, and they are widely used around
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the world. SDRC observes the local WSE (water surface elevation) and converts it into
RD through the rating curve. SDRC’s limitation is obvious, because it cannot recognize
two different hydraulic phases, including rising and falling, and the hysteresis will lead to
significant bias [11]. Consequently, IVRC takes the mean velocity of river cross-section into
consideration, and hopes to improve RD computation’s accuracy [6]. However, in practical
terms, this improvement still cannot achieve satisfying performances [10]. For CSA, it is a
relatively novel method, which uses two WSE observations and calculates the RD based
on the Manning equation, and this method has been used in some small rivers with mild
slopes [10].

It can be seen that WSE plays an important role in computing RD, and the key compo-
nent of RD computation is the relationship between the WSE and RD. However, there are
many limitations affecting accurate RD computation, for instance, non-stationarities of river
flow [12], the variety of hydraulic roughness [13], and human activities [14]. Considering
these factors, scholars worldwide have designed many correction ways, including the use
of physical parameters in rating curve formulations [15] and hydraulic models [16,17].

Despite the various correction approaches provided, these correction protocols are
based on purely empirical or semi-empirical approaches or analytical models and will
bring additional operational costs [10]. Moreover, existing correction methods for rating
curves have typically neglected the temporal continuity in both of RD and WSE. Since
traditional methods estimate RD using WSE at discrete time points, these methods are
unable to recognize different hydraulic processes (rising or falling). In reality, RD and
WSE are typical time series data, with each value tightly connected to neighboring values.
Therefore, using WSE sequences to estimate corresponding RD sequences may be more
effective than the single point to single point computation from rating curves. A continuous
WSE time series will most likely help us distinguish whether the river stage is rising or not.

Some deep learning networks are born to handle data with time steps, RNN (recurrent
neural network) for instance, their hidden states can be passed along time steps, and
RNNs (RNN and its variants) are successfully employed to various kinds of hydrology
tasks [18–25]. In particular, to deal with short-term runoff prediction problems, a deep
learning multi-dimensional ensemble method has proven to be effective [26,27]. LSTM (long
short-term memory) is also used to improve runoff forecasting performance through error
predictions [28], which has shown excellent results in the Russian River basin, California,
the United States. For medium to long-term water level prediction tasks, an improved
spatio-temporal attention mechanism has been designed for LSTM [29]. Additionally,
LSTM is combined with a Seq2Seq (sequence-to-sequence) learning structure to predict the
errors in the forecasted runoff from a hydrological model [30].

In this study, we used deep learning networks to compute RD time series accurately
based on WSE time series only, rather than approximately forecasting, which is differ-
ent from previous applications. Compared to conventional computing approaches, this
data-driven based technique is more convenient and accurate. In detail, we evaluate the
performance of eight different deep learning networks using the dataset observed from
Zhutuo gauging station on the Yangtze River. Then, the BiGRU (bi-directional gated
recurrent unit) network is selected as the representative model to explore the effects of
different hyperparameters on the outcomes. Finally, we test the applicability of the BiGRU
by applying it to six gauging stations along the Yangtze River, including both tributaries
and the mainstream.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area

In this paper, the Yangtze River is selected to be the research objective, because of its
various, complex and diverse hydraulic properties along the different river cross sections,
which will be helpful to adequately examine the DLNs’ RD computation effects.
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It is well-known that the Yangtze River basin boasts a subtropical monsoon climate
characterized by frequent heavy rainfall and abundant water resources. The Yangtze River
basin exhibits a significant variation in yearly average precipitation, spanning from 300 to
2400 mm from west to east, accompanied by a considerable annual average temperature
range from 9 to 18 ◦C [31]. Besides, the Yangtze River in China is the largest river in Asia
and the third largest around the world, originating from Tangela Mountain in Qinghai
Province and running approximately 6300 km through over 7000 tributaries. The upper
reaches of the Yangtze River, stretching 4504 km with a basin area of 106 km2, are located
above Yichang and hold a strategic position in China’s water resource management and
regulation. Figure 1 shows the location of the Yangtze River basin and the hydrologic
observation stations used in this paper.
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Figure 1. Location of the Yangtze River basin and hydrologic observation stations located within the
basin.

2.1.2. Data Description

In this study, the possibility of using water level data to directly compute river flow is
explored. To ensure the training effect, the data collected in this paper is re-organized and
verified by experts in every station according to water quantity balance throughout a year,
which means it will reduce the errors introduced by conventional computation methods.
The data used in this study consists of water level and river flow data collected from six
different stations with various hydrodynamic conditions in the Yangtze River basin. Each
location has a training dataset that covers one year, including 2020 for Gaochang and
Fushun, and 2018 for Panzhihua, Sanduizi, Wudongde, and Zhutuo. The corresponding
test dataset covers the subsequent year, including 2021 for Gaochang and Fushun, 2019 for
Panzhihua, Sanduizi, Wudongde, and August 2015 to March 2016 for Zhutuo. The relation-
ships between river stage and river discharge in different stations are shown in Figure 2.
The river discharge distribution in different stations can be seen in Figure 3. The river
discharge in Gaochang has the largest change and Panzhihua has the smallest change.
Zhutuo has the largest average river discharge and Fushun has the smallest.
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Water level is used as the input variable in the deep learning networks, while river
flow is the output variable. Prior to analysis, the data was preprocessed, including cleaning
and filtering for outliers, and scaling of the input and output variables to a common range.
To compare the performance of different deep learning networks and hyperparameters,
we use the data from Zhutuo as a reference to evaluate their performance under the
same conditions. Then, we select one of the appropriate networks and a combination of
hyperparameters, and apply it to the data from all six stations and observe the network’s
results in various sites.
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2.2. Deep Learning Networks

There are eight kinds of DLNs employed in this paper, including GRU (gated recur-
rent unit), BiGRU (bi-directional gated recurrent unit), LSTM (long short-term memory),
BiLSTM (bi-directional long short term memory), RNN (recurrent neural network), BiRNN
(bi-directional recurrent neural network), Seq2Seq (sequence-to-sequence), and Seq2Seq
attention (sequence-to-sequence with attention mechanism).

RNN’s hidden states can be passed along time steps, and every time step’s output
is calculated by the previous hidden state and the current input, as shown in Figure 4a.
Therefore, RNN’s unique structure has a huge advantage in coupling with time series.
However, when RNN gets deeper, the gradient explosion will significantly affect RNN’s
performance, so LSTM and GRU [32] are proposed to solve this problem. LSTM brings
an output gate, input gate and forget gate in hidden state, and the basic unit of LSTM is
displayed in Figure 4b. GRU adopts the reset gate and update gate in the hidden state, and
the basic unit of GRU is displayed in Figure 4c. As GRU has less parameters in hidden state
than LSTM, but achieves the same function, GRU usually has a faster calculation speed than
LSTM, and the performances are very close [33]. Bi-directional DLNs can use information
from past and future observations to estimate current observations because they add a
hidden layer that passes information in reverse, as shown in Figure 4d. Seq2Seq [32,34]
uses a structure of encoder and decoder to solve sequence to sequence problems. The
encoder copes with input sequences and transforms them into context, and the decoder
then concatenates this context and the input of the decoder to predict the output sequences,
as shown in Figure 4e. As not every piece of context is associated with the output sequence,
the Bahdanau attention mechanism comes up [35], which allows the decoder to predict
output with relevant context, as shown in Figure 4f.
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Figure 4. Basic structure of deep learning networks. (a) Workflow of RNN, (b) the basic unit of LSTM,
(c) the basic unit of GRU, (d) the typical structure of Bi-direction networks, (e) the typical structure of
Seq2eq, and (f) the typical structure of Seq2eq attention.

To further elaborate the workflow in RNNs, Figure 5a displays the data structure and
Figure 5b shows the hidden state passing along the time steps. There are three dimensions
in the data, which contain batch size, input size, and time steps. Input sequences are sent
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to the input layers, where the bias between the output sequences and the target sequences
will be calculated, which will then be used to update the parameters in the DLNs.
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2.3. Computation Procedure Design
2.3.1. Computation Procedure

Deep learning networks are leveraged to precisely compute RD time series solely
from WSE time series, departing from the conventional practice of approximate forecasting
found in prior applications. In comparison to traditional computation methods, this data-
driven approach offers enhanced convenience while maintaining high levels of accuracy. To
estimate river flow from water level directly using deep learning networks, the following
five steps are recommended:

(1) Collect measured data: Collect data of river flow and water level and ensure they
cover the same time period. Divide the dataset into training and testing sets and perform
any necessary pre-processing. (2) Cut the sequences: Divide both the river flow and water
level sequences into shorter series of equal length (t). Shuffle the series to ensure diversity
in training, but ensure that each water level series corresponds to the corresponding river
flow series. (3) Train the network: Send n (batch size) water level series into the deep
learning network at one time. Compare the network output with the corresponding river
flow and compute the loss. Use this loss to update the network parameters and repeat this
process until the network converges. (4) Test the network: After training the network, input
new series of water level into the network and obtain the estimated river flow. (5) Evaluate
the performance: Evaluate the performance of the deep learning network by comparing
the estimated river flow with the actual measured river flow, using appropriate metrics
such as the mean squared error, coefficient of determination, or other relevant measures.

Besides, all deep learning networks in this study were implemented using the Pytorch
1.12.1 framework in Python 3.8, with GPU acceleration provided by CUDA 11.3.1. Each
network was trained for a duration of 24 h on a computing system comprising Intel i7-
11700K CPU, Nvidia RTX 2060 GPU, and 32 GB of RAM operating at 3200 MHz.

2.3.2. Evaluation Metrics

The four metrics used in this study to evaluate the performance of deep learning networks
are relative mean absolute percentage error (RMSE), Nash–Sutcliffe efficiency coefficient (NSE),
mean absolute error (MAE), and mean absolute percentage error (MAPE). This research chose
these metrics because they are widely used in previous literatures [36–39]. Smaller values of
MAE, RMSE, and MAPE indicate better performance of the network in terms of the difference
between measured and estimated data. On the other hand, NSE quantifies the closeness
between the estimated and measured data, and a value of NSE closest to 1 indicates the
highest computation accuracy. The expressions for these metrics are given below:
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RMSE =

√
1
n∑n

i=1 (yp − yo)
2 (1)

NSE = 1 − ∑n
i=1 (yo − yp)

2

∑n
i=1 (yo − yo)

2 (2)

MAE =
1
n

n

∑
i=1

∣∣yp − yo
∣∣ (3)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yo − yp

yo

∣∣∣∣ (4)

where n is the number of inputs, yo is the observed data, yp is the estimated, and yo is the
average value of the observed data.

3. Results
3.1. Comparison of the Effect of Different Deep Learning Networks

Based on the measured river flow and water level in Zhutuo station, which is located
in the middle of Yangtze River, this study employed eight deep learning networks to
estimate river flow directly from the water level. The performance of each network was
evaluated on both the training dataset and the test dataset, as shown in Figure 6.
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(a,b) BiGRU’s performances on the training dataset and testing dataset respectively; (c,d) BiLSTM’s
performances on the training dataset and testing dataset, respectively; (e,f) BiRNN’s performances
on the training dataset and testing dataset, respectively; (g,h) GRU’s performances on the training
dataset and testing dataset, respectively; (i,j) LSTM’s performances on the training dataset and
testing dataset, respectively; (k,l) RNN’s performances on the training dataset and testing dataset,
respectively; (m,n) Seq2Seq’s performances on the training dataset and testing dataset, respectively;
(o,p) Sq2Seq attention’s performances on the training dataset and testing dataset, respectively.

The results indicated that most of the deep learning models performed exceptionally
well. In particular, BiGRU and BiLSTM exhibited outstanding learning ability (as shown
in Figure 7), with relative errors under 2.5% in the entire year. The learning ability of
GRU and LSTM was also impressive, with relative errors under 5%. The Seq2Seq and
Seq2Seq attention networks performed reasonably well, with relative errors mostly under
5%. However, the RNN and BiRNN networks’ learning abilities were relatively weak
compared to other networks, with most of their relative errors exceeding 10%.
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The test set consists of data that has not been trained, and the performance of the
models on test set determined their practical application ability. BiGRU, BiLSTM, GRU,
LSTM, and Seq2Seq attention performed exceptionally well, with relative errors under 5%,
while RNN exhibited relatively poor performance, with many relative errors exceeding
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20%. BiRNN was an improvement over RNN, but its relative errors were still over 10%.
Notably, Seq2Seq attention, GRU, and LSTM exhibited similar performances to BiGRU and
BiLSTM, even though they did not completely learn the training dataset.

Furthermore, the test dataset spanned seven months, indicating that deep learning
models such as BiGRU could estimate hourly river flow based on water level continuously
for a long-term period. However, Figure 6 also revealed that the deep learning models
tended to underestimate the measured flow during the dry season and overestimate it
during the wet season. This suggested that the models might have difficulty accurately
identifying periods of rising and falling water levels, or that some of the discrepancies
might be due to measurement errors.

3.2. Estimated Results in Different Parameters

This study employs BiGRU networks to investigate the effects of hyperparameters
on network performance, due to its satisfactory performance and moderate parameter
count. Table 1 presents the combinations of four hyperparameters, namely batch size, time
step, number of neurons, and number of layers. The nine groups of hyperparameters were
created by varying these parameters across different ranges. The BiGRU network was
trained for 24 h with each of the nine groups of hyperparameters, and then evaluated on
the test dataset using four evaluation metrics: relative mean absolute percentage error
(RMSE), Nash–Sutcliffe efficiency coefficient (NSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE).

Table 1. Nine types of combinations of the four hyperparameters *.

Hyperparameters a b c d e f g h i

Batch size 1 1 1 1 1 1 1 12 24
Time step 72 72 48 72 72 96 72 72 72

Number of neurons 128 64 128 128 128 128 256 128 128
Number of layers 2 2 2 4 6 2 2 2 2

Note: * One bi-directional layer contains both forward and backward hidden states. So, here we consider a
bidirectional layer as two layers.

The results presented in Figure 8 showed that the relative errors of groups a–i on the
test dataset were within ±5%, indicating that BiGRU performed well despite the variations
in hyperparameters. Table 2 suggests that increasing batch size can enhance network
performance, as groups h and i exhibited improvements of 1.86% and 1.39% in RMSE and
MAE compared to group a. Furthermore, group i showed a 3.74% and 3.92% improvement
in RMSE and MAE, respectively, compared to group a. In contrast, variations in time step
had minimal effects on network performance. Group c, a, and f, with 48, 72, and 96 time
steps, respectively, exhibited only slight differences.
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Table 2. Comprehensive performance results of nine types of hyperparameters.

Evaluation Metrics a b c d e f g h i

RMSE 266.008 258.448 268.750 267.236 269.780 266.016 256.950 261.046 256.058
NSE 0.9971 0.9973 0.9971 0.9971 0.9970 0.9971 0.9973 0.9972 0.9973
MAE 216.089 210.169 219.553 210.205 213.596 215.500 207.430 213.075 207.624

MAPE 0.0369 0.0355 0.0355 0.0352 0.0336 0.0369 0.0360 0.0357 0.0355

Regarding the number of neurons, the comparison between groups b, a, and g in-
dicated that all four metrics in groups b and g were better than those in group a, even
with fewer neurons (64 and 256 compared to 128). Group b exhibited a 2.84% and 2.74%
improvement in RMSE and MAE, respectively, compared to group a, while group g showed
a 3.41% and 4.01% improvement in RMSE and MAE, respectively, compared to group a.
Finally, the number of layers did not have a significant impact on network performance.

Table 3 ranks the performance of groups a–i using the evaluation metrics, where the
best group in each metric receives a score of 1, and the worst group receives a score of 9.
The total scores were calculated, and the lower the score, the better the performance. Group
i demonstrated the best overall performance, with a total score of 7, using a batch size of 24,
time step of 72, number of neurons of 128, and 2 layers. Notably, the differences in the four
evaluation metrics between the best-performing group and the worst-performing group
were less than 5%, indicating that the worst-performing group of hyperparameters still had
the ability to generate good performances.

Table 3. Scores of nine types of hyper-parameter *.

Evaluation Metrics a b c d e f g h i

RMSE 5 3 8 7 9 6 2 4 1
NSE 5 1 5 5 9 5 1 4 1
MAE 8 3 9 4 6 7 1 5 2

MAPE 8 3 3 2 1 8 7 6 3
Total scores 26 10 25 18 25 26 11 19 7

Note: * This table ranks the performance of groups a–i using the evaluation metrics, where the best group in each
metric receives a score of 1 and the worst group receives a score of 9.

3.3. Estimated Results in Different Datasets

In this study, we investigate the performance of the BiGRU network in computing
discharge at six different stations on the Yangtze River basin. The stations include Gaochang,
Fushun, Panzhihua, Sanduizi, Wudongde, and Zhutuo. The network parameters used
are the same as described in Section 3.2. The results are presented in Tables 4 and 5,
showing that the BiGRU network performed well at all six stations. However, there are
some variations in the performance between the stations. The network achieved the highest
total score of 4 at Sanduizi and the lowest score of 21 at Panzhihua, as calculated using the
method described in Section 3.2.

Table 4. Comprehensive performance results of six stations.

Evaluation
Metrics Gaochang Fushun Panzhihua Sanduizi Wudongde Zhutuo

RMSE 154.084 77.161 214.67 16.257 98.836 266.009
NSE 0.9898 0.9800 0.9678 0.9999 0.9984 0.9971
MAE 70.546 47.760 94.089 12.443 80.534 216.089

MAPE 0.0536 0.1272 0.0548 0.004 0.0276 0.0370
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Table 5. Scores of the performances on six stations *.

Evaluation
Metrics Gaochang Fushun Panzhihua Sanduizi Wudongde Zhutuo

RMSE 4 2 5 1 3 6
NSE 4 5 6 1 2 3
MAE 3 2 5 1 4 6

MAPE 4 6 5 1 2 3
Total scores 15 15 21 4 11 18

Note: * The calculation method of the scores in this table is the same as in Table 3.

To further evaluate the network’s performance, we plotted the correlations between
estimated discharges and observed discharges for all six stations in Figure 9. The results
show that the BiGRU network performed best at Sanzuizi, Wudongde, and Zhutuo, with
NSE values of 0.9999, 0.9984, and 0.9971, respectively. Although the network also performed
well in Gaochang, Fushun, and Panzhihua, the computation accuracy at these stations was
lower than at the other sites. The differences in the network’s performance between stations
may be due to variations in hydraulic properties and the impact of hydraulic engineering
structures. For instance, the construction or operation of dams can significantly affect local
water levels and disrupt the relationship between discharge and water level. It can be
observed in Panzhihua station that the water level nearly stays the same when downstream
dam regulation of water resources occurs. This stability of water level serves as a key
factor contributing to the close proximity of estimated river discharge values within specific
timeframes (refer to Figure 9c).
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Overall, these results demonstrate the potential of deep learning in discharge compu-
tation, but also highlight the importance of considering variations in hydraulic properties
and engineering structures when applying deep learning methods to different stations.

4. Discussion

Based on the experimental results presented earlier, it is evident that the data-driven
based method can effectively compute river flow directly from water level data. This
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approach demonstrates remarkable accuracy and stability across long-term hourly time
series. However, it remains paramount to ascertain the depth of understanding that
deep learning networks have acquired concerning the underlying river flow computation
process derived from water level data. To this end, this chapter conducts a white noise
examination on the absolute errors. The identification of white noise within these errors
would signify that deep learning networks have successfully assimilated the maximum
pertinent information from the river flow and water level data. The results of this white
noise analysis are visually represented in Figure 10. This figure shows that the absolute
errors in all six stations exhibit a characteristic pattern of white noise, which cannot be
predicted or modeled. This pattern is commonly referred to as a random walk, which
indicates that the errors are purely random and based on the data preceding them. This
conclusion is supported by the fact that the ACF (auto correlation function) of all the
absolute error series decrease slowly, while the PACF (partial autocorrelation function)
drops sharply from the third point, which is a well-known phenomenon of random walk.
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In light of these phenomena, it can be concluded that the deep learning network has
successfully gleaned valuable insights from both river flow and water level data. This
proficiency equips it with the capacity to accurately compute river flow solely based on
water level data.

The outcomes of this examination are robust, affirming the data-driven based method’s
competence in the computation of river flow from water level data. Notably, the BiGRU
network, classified as a variant of RNN, generates each data point contingent upon its
predecessor. This dynamic may contribute to the discerned random walk pattern observed
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in the absolute errors. Furthermore, it is a well-established fact that measured data often
harbors systematic errors, akin to a form of white noise. Nonetheless, despite these
complexities, deep learning networks consistently deliver commendable performance,
providing precise estimates. This underscores their efficacy in addressing the challenge
of direct river flow computation from water level data. Unlike previous usage of deep
learning to compute short-term river discharge that need other input parameters besides
water level, such as rainfall [26], the approach used in this paper proved that deep learning
has the potential to accurately calculate long-term river discharge purely based on water
level. However, it remains imperative to acknowledge the presence of errors and advocate
for ongoing refinement of the models and methodologies employed to further enhance
accuracy and mitigate potential biases.

5. Conclusions

In summary, we applied deep learning networks to compute long-term river flow from
water level measurements. Our findings strongly indicate that deep learning networks
are capable of accurately computing river discharge with only water surface elevation
data. This approach not only enhances convenience but also offers the potential for cost
reduction in river flow measurement. We compared the performance of eight different deep
learning networks, and it shows that most of them perform well. Our exploration of the
effects of different hyperparameters on the BiGRU model showed that the relative errors
of different hyperparameters on the test dataset were within ±5%, indicating that BiGRU
performed well despite the variations in hyperparameters. Applying the BiGRU model to
six gauging stations along the Yangtze River showed that it can be effectively applied to all
six stations with high accuracy in computing river flow, but the network’s performances
may be affected by the impact of hydraulic engineering structures and various hydraulic
properties, which is valuable for furthering research. Overall, with this data-driven based
approach, river discharge can be accurately, objectively, and quickly computed directly
from water surface elevation, which is of practical value for flood protection and water
resources management.
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