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Abstract: Due to climate change and human activities, seagrass is in crisis as the coverage of seagrass
declines at an accelerated rate globally. In this paper, the severe challenges of seagrass ecosystem were
briefly reviewed, including adverse effects of natural factors and human activities on seagrass beds.
The research status of pollutants and pollution in seagrass bed ecosystem was reviewed, the future
research directions in related fields were proposed as well. The eutrophication in coastal waters and
discharge of pollutants such as sulfide, heavy metals, organic matter and microplastics caused by
human activities are important reasons for seagrass loss. In addition, environmental stressors lead to
reduced immunity and decreased resistance of seagrass to various pathogens, leading to seagrass
wasting diseases. Future studies concerning the influence of novel pollutants, i.e., plastic waste on
non-native algae, microorganisms and seagrasses, as well as their interrelationships, will be of vital
importance. In addition, researches on seagrass wasting diseases and their pathogens should be
much accounted in China, to fill in gaps in related fields and improve the response ability to emergent
seagrass diseases. In conclusion, this review was proposed to arouse the concern about the seagrass
bed pollution, and provide possible enlightening information for the protection and restoration of
this significant ecosystem.

Keywords: seagrass; coastal water; plastic; heavy metal; seagrass diseases; Labyrinthula

1. Introduction

Seagrass is the only species of flowering plant that lives entirely in the marine envi-
ronment, mainly in marine habitats between sub-arctic and tropical latitudes. Sea grass
bed is the most widely distributed coastal ecosystem on the earth, providing a variety of
important ecological service functions, such as biological conservation, coastline protection,
sediment stability, water purification and nutrition cycle. Seagrass meadows are breeding
and feeding places for many fish and invertebrates with important economic value, and
also important habitats for threatened species [1]. The seagrass meadow has high primary
productivity, with aboveground biomass (mainly leaves) accounting for 50% of the total
biomass. In addition, the seagrass bed ecosystem possess abundant microbial diversity
and diverse microbial communities, which play an important role in the offshore nutrient
cycle [2,3]. Besides, seagrass ecosystems filter and remove the bacteria pathogens, thereby
reducing the exposure of humans, fish and invertebrate to pathogens [4]. The seagrass
debris with highly inert organic carbon, makes an important contribution to the global blue
carbon storage and sequestration [5].

Seagrass meadows store a large amount of organic carbon, which is an important com-
ponent of marine blue carbon. The organic matter reservoirs in shallow marine ecosystems
are composed of exogenous organic matter, microalgae and macroplants. and seagrass
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sources in the waters near estuaries contribute 65% of surface sediment lignin [6]. A large
number of macroalgal blooms occur due to organic matter input. The macroalgae can
co-metabolize with the microbial community by providing available energy and resources,
and further promote the remineralization of refractory components in seagrass debris.
And this may contribute to the reduction of blue carbon storage in seagrass meadows [5].
Nutrient loads and reduced light caused by macroalgal blooms are the main reasons for
the seagrass decline worldwide. Though the serious degradation trend worldwide was
observed because of ocean warming and eutrophication, seagrass blue carbon is still able
to effectively eliminate the CO2 emissions and is considered as an effective natural solution
to mitigate global climate change [7]. Thus, reducing coastal eutrophication could increase
the conservation of seagrass meadows and further mitigate global climate deterioration.
In addition, coastal environmental pollutants, such as heavy metals, refractory organic
matter and microplastics, can not only pose a serious threat to the life activities of primary
marine animals and plants, but also accumulate in marine food products, thus damaging
human health.

Seagrass can produce natural biological fungicides such as phenols, to improve water
quality by inhibiting the pathogenic bacteria, thus benefitting for humans and marine
invertebrates. The phenol concentrations in seagrass were affected by seawater turbidity,
temperature, ocean acidification, low salinity and heavy metal pollution. However, the op-
portunistic pathogen Labyrinthula could inhibit phenols production [8], and lead to seagrass
wasting disease. Therefore, the effects of physical, chemical and biological factors should
be adequately considered in environmental pollution monitoring and risk assessment of
seagrass bed ecosystems to assess the ecological health of seagrass more comprehensively.

2. Challenges Confronted by Seagrass Bed

Due to the global climate change and disturbance of human activities, seagrass mead-
ows are decreasing rapidly [9]. Reasons leading to the seagrass degradation could be
attributed to natural and human factors. Natural factors include typhoons, earthquakes,
volcanic eruptions, etc. In recent years, the frequency and intensity of hurricanes, oceanic
heat waves and other extreme climates have gradually increased, causing serious damage
to the global seagrass meadow [10–12]. When hurricanes and typhoons occurred, the whole
seagrass tissue was buried in the sediment or uprooted, causing serious damage to the
seagrass meadows. In addition, increased seawater turbidity, decreased light intensity and
decreased salinity indirectly led to further degradation of seagrass meadows. In 2019, the
super-strong typhoon “Liqima” reduced the distribution area of Japanese Zostera japonica
by more than half in the Yellow River Delta of China, with the loss of soil organic carbon
exceeding 35% and soil total nitrogen exceeding 65%. Even if the environmental factors
were suitable for the growth, Japanese eel grass species was still unable to recover, owing
to the lack of seagrass seeds and overwintering twigs, as well as the small residual distribu-
tion area [12]. Human activities, such as coastal development, reclamation, trawling and
agricultural runoff affect the coastal marine ecological environment widely and are key
threats to the loss of seagrass [13–15]. Severe meadow loss could reduce the availability
of marine habitats, damage the service functions of seagrass ecosystems, and lead to the
gradual loss of blue carbon storage, which is re-emitted to the atmosphere and thus increase
the carbon concentration [16]. Considering severe damage and degradation risk of the
seagrass meadows, further effective protection and remediation should be executed from
the natural and social perspectives by exploring the critical pressure systematically.



Water 2023, 15, 3754 3 of 12

3. Pollution Status of Seagrass Beds
3.1. Eutrophication

Coastal nutrient input is one of the key factors contributing to the seagrass degradation
worldwide. Nutrient enrichment resulted in the excessive reproduction of epiphytic algae
and macroalgae in the seagrass bed, along with light occlusion by the high density of
algae organisms, which caused decreased photosynthetic rate of seagrass and insufficient
photosynthetic oxygen production. Besides, the oxidation process of high-concentration
sulfide is further limited by oxygen deficiency, which inhibits the growth and metabolism,
or even leads to death of seagrass [5]. Seagrass debris, as well as large amounts of debris
produced by the death of saprophytic and macroalgae, would float on the seawater surface
or be deposited in surface sediments and transported by wind and water to coastlines. Algal
debris is usually composed of unstable organic carbon (LOC) and is more easily ingested
and utilized by microorganisms. Eutrophication could lead to the increase of sediment
organic carbon from algae in seagrass beds, increase the composition of active organic
carbon in sediments, promote the growth and metabolic activity of microorganisms, and
accelerate the utilization and transformation of sediment organic carbon [17]. Therefore,
coastal eutrophication could alter the uptake, conversion, and storage function of coastal
blue carbon in the seagrass bed ecosystem.

3.2. Sulphides

The coastal sediments inhabited by seagrass are characterized by low concentration of
oxygen and high concentration of toxic and reducing substances (such as iron, manganese
and sulfide) [18]. Sulfide even at low concentrations (1 to 10 µmol/L) is toxic to the cells
of eukaryotes such as seagrass, while seagrass could still survive in such high sulfide
ranges [19]. Seagrass can avoid root oxygen hypoxia and sulfide invasion through root
oxygen leakage (radial oxygen loss). In other words, oxygen produced by photosynthesis
spreads through the ventilated tissue to breathe and leaks through the root tip to maintain
oxygen in the rhizosphere [20–22]. Zostera marina has formed two major sulfide detoxifica-
tion strategies with the help of seagrass microbes. Sulfide is oxidized and precipitated to
elemental sulfur in the aerating tissue, or to thiols and sulfate in the plant. Then elemental
sulfur and thiols are stored in the rhizomes and roots, while sulfate is transported from
the tissue underground to that overground. Besides, the underground tissue possess the
highest detoxification capacity (86%), especially the rhizome (61%), as the main buffer for
detoxifying sediment sulfide, could protect the fragile meristem in the leaves [19]. However,
due to climate change and human activity, future increases in surface water temperature,
hypoxia and sediment sulfide levels would further elevate the sulfide pressure in seagrass
bed ecosystem, possibly even exceeding the sulfide tolerance and detoxification [19,23,24].
It is known that microorganisms respond quickly to changes in their living environment.
By detecting the abundance of sulfur cycling genes, such as sulfate reduction genes, in the
sediment microbial communities of seagrass. Thus, the sulfur content could be indirectly
detected by molecular biological methods, which may be used as a potential monitoring
indicator in coastal habitats with sulfur stress in the future [25].

3.3. Heavy Metals

Seagrass meadows have been seriously polluted by a series of pollutants including
heavy metals and pesticides, and are becoming an important sink of anthropogenic pollu-
tants in coastal areas [26,27]. Simultaneously, as a significant habitat and food source for a
variety of marine animals such as green turtles, seagrass meadows could transfer heave
metals accumulated to consumers with higher nutritional levels as well [28]. Trace metal
pollution in estuarine seagrass meadows has been observed worldwide, with most studies
conducted in the Caribbean [29], Italy [28], India [30], Fiji [31], Australia [32] and Republic
of Korea [33]. Marine angiosperms generally have a high bioaccumulation capacity for
trace metals because of the interactions between waters and sediments in marine environ-
ment directly through leaves and root-rhizomes, where ion uptake occurs [34]. Seagrass is
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confronted with greater anthropogenic pressure than other marine communities. Changes
in seagrass coverage, decreased growth rate and slow development signify environment
variation [29,34]. Therefore, trace element level in seagrass beds can be a useful indicator
of harmful pollutants in seagrass ecosystems.

Trace metals, i.e., copper, iron, manganese and zinc are necessary for plants by pro-
moting their growth and metabolism within a certain concentration range. However, many
artificial activities can increase their accumulation in the natural environment. Once the
concentration of trace elements reaches the threshold level, it would damage the root
cell structure and photosynthesis [35]. Seagrass is the largest reservoir of heavy metals,
the contents of which could be increased through fallen leaves and food chain transmis-
sion. However, in the vegetation-free sediment, heavy metal contents were relatively
constant [28]. In addition, exploring the cumulative characteristics of trace elements in the
whole and each parts (such as root, rhizome, leaves), as well as between the surrounding
seawater and sediment is of great significance for understanding the cycle mechanism of
trace elements in the seagrass ecosystem.

3.4. Refractory Organic Compounds

Coastal environmental pollution, especially persistent organic pollution, led to severe
decline of seagrass meadows, among which polycyclic aromatic hydrocarbons (PAHs)
attract much attention due to their persistence, toxicity, mutagenicity and carcinogenicity.
The lipophilic character of organic pollutants makes it easy to penetrate the cytoplasmic
membrane to accumulate in marine organisms. Human activities such as combustion of
fossil fuels cause terrestrial import of PAH, leading to increased PAH content in coastal
sediments and seagrass. PAHs are transmitted along the food chain and ultimately damage
human health [36]. The abundant microbial communities distributed in seagrass bed
ecosystems play a key role in organic substance degradation, certain consortia of which
could degrade hydrocarbon through nitrogen fixation [37]. The effect of PAHs addition on
bacterial communities in the sediment of Enhalus acoroides seagrass showed that different
strains and bacterial group behaved differently in response to PAH exposure. It is worth
noting that microbial community structure of seagrass sediment was sensitive to PAH-
induced stress and susceptible to PAHs contamination, which can be used as a potential
indicator of PAHs contamination [38]. The fungi in sediments of seagrass Enhalus acoroides,
such as the phylum Ascomycota and Basidiomyces, had the potential to degrade PAHs.
It was found that low concentration (100 mg/kg) PAHs contamination can increase the
fungal diversity in a short time. While the fungal diversity reduced with high concentration
(1000 mg/kg) PAHs contamination in a short time, which however could be utilized in
a long term (7~28 d) by the fungi [39]. Thus, microbial community in seagrass sediment
could be used as an early monitoring indicator to identify PHAs contamination in seagrass
bed ecosystems.

To date, the effects of PAHs addition on seagrass functional microorganisms such
as nitrogen-fixing bacteria and sulfate-reducing bacteria have been less studied. Limited
studies have shown that the addition of PAH can inhibit both nitrogen-fixing bacteria
and sulfate-reducing bacteria communities [40]. The seagrass Posidonia oceanica could
accumulate PAHs in tissue. However, the nitrogen-fixing bacterial combination underwent
a huge transition under the stress induced by PAHs addition [36,41]. Some seagrass
nitrogen-fixed bacteria are known to degrade PAHs with low concentrations, while sulfur-
reducing bacteria exhibit a resistance to high concentrations of PAHs [40]. Moreover,
microorganisms that degrade hydrocarbons by nitrogen fixation can be applied to oil spill
cleaning, especially in areas with limited nitrogen content [37].
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3.5. Microplastics

Marine microplastics is an important pollutant in the global coastal and marine en-
vironment. Plastics floating on the surface or submerged in water have serious negative
effects on marine life and marine ecosystems. Plastic adhered to contaminated organic
matter and sediment particles would be sink to the sediment surface colonized by seagrass
and macroalgae plants. These macrophyte would accumulate in large amounts and create
a new micro-habitat furtherly by changing the nonbiological conditions (such as environ-
mental pH, temperature and oxidation-reduction), microbial community composition and
biogeochemical cycle process [42–45]. This poses a threat to the survival of some marine
organisms, and disrupts balance of the seagrass bed ecosystem through the cascade and
amplification effect.

Of the 70 seagrass species that exist worldwide, only seven species of seagrass were
detected for the microplastics, which include Z. noltei, Z. marina, E. acoroides, C. nodosa,
C. serrulate, C. rotundata and Thalassia hemprichii [46]. The microbial biofilm on the surface
of seagrass leaves can promote the adsorption and trapping of microplastics, and thus
increase the microplastics content in the leaves. In addition, the microplastics content was
related to the seagrass species and characteristics of the leaves and differs in the leaves
and sediments of the same seagrass species among different coastal areas [46]. This can
be attributed to the differentiation of environmental conditions and microplastics types,
as well as the measurement methods which is the key factor in assessing the microplastic
distribution. Therefore, the standardization of microplastics determination methods is of
great significance for revealing the distribution of microplastics in seagrass bed ecosystems
around the world and their impact on coastal ecosystems.

Marine organisms living in seagrass bed ecosystems that feed on seagrass leaves
can accumulate microplastics in the body through feeding, and transmit through the
food chain to higher organisms. This will eventually damage human health seriously by
accumulating high content of microplastics in human body. Existing studies have detected
the adverse effects of microplastics on marine organisms in the physiological, metabolic
and genetic levels [47]. Thus it can be predicted that the biotoxicity and environmental
risks would amplify with the increase of microplastics abundance. Furthermore, coastal
microplastics could be input mainly by terrestrial and marine routes. The former mainly
input microplastics including microplastic debris and chemical fiber products as well as
cosmetic wastes rich in plastic particles into the offshore environment through rivers,
sewage discharge and other ways. While the marine input mainly exists in fishing activities
such as aquaculture and marine transport. Therefore, it is of great significance to figure out
and block the input routes of microplastics in the specific coastal areas as well as develop
new degradable plastic products for the protection of coastal seagrass ecosystems and
human health.

Microplastic types detected in the seagrass bed ecosystem include polypropylene (PP),
polyethylene (PE), polyethylene terephthalate (PET) and polyamide (PA), polystyrene (PS),
and polyvinyl chloride (PVC), with the first four occurring most frequently [46]. In addition,
both high-density polyethylene (HDPE) and biodegradable starch-based plastics can be
present in marine sediments of temperate regions for at least 18 months [48]. Both plastics
could change the structure of seagrass Cymodocea nodosa (such as the biomass and length of
rhizomes), and reduce plant coverage in the meadow. Besides, HDPE had a greater effect
than biodegradable starch-based plastics [48]. The HDPE deposition may not only reduce
the seagrass habitat by promoting the spread of non-native macroalgae in the meadows,
but also affect the interaction intensity between the two algae and promote the spread
of macroalgae in the sea meadow [48]. In addition, degradable starch-based bio-plastic
bags and compostable plastic bags can transform the interaction between species from
neutral to competitive by forming a physical barrier and changing the sediment quality [49].
Therefore, it is critical to evaluate the effects of plastic wastes and their deposition on
non-native algae and seagrass as well as their relationship in the future [48].
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3.6. Pathogenic Bacteria

Due to human impacts and global climate change, emerging infectious marine dis-
eases are becoming more widespread and serious. At present, four known eukaryotic
genera that can cause seagrass diseases are Labyrinthula, Phytophthora, Halophytophthora and
Physoyxea [50]. Among them, the genus Labyrinthula is a heterotrophic and halophytic pro-
tist causing seagrass wasting diseases (SWD). It is also the most studied seagrass pathogen
to date (Table 1). Labyrinthula strains isolated from seagrass leaves showed varying degrees
of virulence using laboratory infection tests and related phylogenetic analysis. Isolates with
high virulence were able to invade leaf cells of living plants and cause black leaf lesions, a
diagnostic feature of SWD [49–51]. However, Labyrinthula is also a ubiquitous symbiont that
decomposes marine plants and algal wastes, one of which hosts the lawn grass [51]. Since
the 1930s, the North American and European Atlantic coastal Zostera has been severely
affected by consumptive disease, when it killed 90% of the North Atlantic Zostera popula-
tion [52]. Muehlstein et al. [53] (1991) first identified L. zosterae (Labyrinthulomycetes) as
the pathogen causing wasting diseases of Zostera, and later found that in many countries
such as Australia, Mexico, and Republic of Korea (Table 1). However, the research on
seagrass consumptive disease and its pathogenic bacteria in China is still blank.
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Table 1. Studies on Labyrinthula causing meadow wasting diseases.

Host Labyrinthula Sampling Site Sampling Time Main Content References

Halophila australis Labyrinthula SR_Ha_C Victoria, Australia March 2016 (early autumn,
Australia)

The genomic sketch and predicted protein group of
the pathogenic isolate Labyrinth SR_HA_C were
proposed. Phylogeny and cross-phylum
comparisons reveal the evolutionary history of
stramenopiles

[54]

Zostera marina Labyrinthula zosterae Republic of Korea April–September 2013
The first report on L. zosterae, a causative agent of
consumptive disease of seagrass Z. marina, in
Republic of Korea

[55]

Thalassia testudinum Labyrinthula sp. Florida May 2015

A sensitive qPCR method was established with
universal applicability to the seagrass pathogen
Labyrinthula worldwide. A host immunization
panel was developed that could evaluate factors
that may affect host, Labyrinthula and environment.

[56]

Eelgrass Labyrinthula zosterae Southern bog in
Charleston, Oregon, USA 2017 and 2019

Abnormally large amounts of DHA was observed
in marine parasite L. zosterae which may be an
unknown source of long-chain polyunsaturated
fatty acids in the eel grass ecosystem

[57]

Amphibolis antarctica,
Halophila australis,
Heterozostera nigricaulis,
Posidonia australis, Zostera
muelleri

Labyrinthula Southeast Australia March 2016 (early autumn,
Australia)

The Labyrinthula isolate was first cultured,
genotyped and pathogenicity identified in
Australia, and thus provide a preliminary ecological
understanding of consumptive diseases in Australia

[58]

Zostera muelleri, Halophila
ovalis, Heterozostera
nigricaulis, Posidonia
australis

Labyrinthula sp. Southeast Australia March 2014–October 2015 Isolation and characterization of Labyrinthula in
southeastern Australia for the first time in Australia [59]

Turfgrass Labyrinthula spp. New Mexico and Arizona 2011 and 2012

Genetic diversity, pathogenicity and morphological
differences of Labyrinthula were determined for
rapid blight in lawn grass from new Mexico and
Arizona

[60]
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Table 1. Cont.

Host Labyrinthula Sampling Site Sampling Time Main Content References

Thalassia testudinum Labyrinthula sp. Florida June 2010

Phenols and potential novel, unspecified
non-phenolic metabolites from seagrass Thalassia
testudinum Banks ex Konig were demonstrated to
have anti-Labyrinthula activity by in vitro bioassay

[61]

Zostera marina Labyrinthula zosterae

Northern Europe
(Portugal, Germany,
Denmark, southern
Norway and western
Sweden)

2010–2012

The quantitative PCR (QPCR) technology was used
to quantitatively analyze the abundance and
prevalence of the pathogen causing the wasting
disease in 19 phyllostachys species in the coastal
area of northern Europe using the species-specific
primers designed for the internal transcribed spacer
(ITS1) of L. zosterae

[62]

Zostera marina Labyrinthula zosterae Northern Europe August–October 2010

The 18S rDNA (1400 bp) of L. zosterae isolates
(N = 41) from 6 sites in northern Europe and 1 site
in the south (Adriatic) were identified to assess the
identity and potential diversity of their endogenous
protists

[63]

Turfgrass Labyrinthula terrestris United States of America 2003–2007

The most commonly used Labyrinthula growth
medium serum seawater agar (SSA) was modified,
and the modified SSA (MSSA) and grass extract
SSA (GESSA) media were designed

[64]

Poa annua Labyrinthula terrestris Adams county, Colorado,
USA April 2009

The first report of rapid wasting disease by L.
terrestris on Poa annua, Colorado, as well as the
pathological features of plants and the pathogenic
characteristics

[65]

Poa trivialis L., Lolium
perenne L. Labyrinthula terrestris Arizona, USA February 2003

The isolation, morphological characteristics and
growth curve of the new Labyrinthula species which
were named L. terrestris

[66]
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The genus Labyrinthula, belonging to the phylum Labyrinthulomycetes, is genetically
related to thraustochytrids, a protist famous for their DHA production potential. And
both of them widely distribute in marine environment and play significant role in marine
ecosystems [67,68]. Unlike Labyrinthula, thraustochytrids is not pathogenic to plants such
as seagrass, but it can be pathogenic to some marine mollusks [69]. In our previous study,
several Labyrinthula strains were isolated from the coastal mangrove habitats in southern
China. The colonies of Labyrinthula sp. was white and round, and uniform spindle-shaped
cells were observed under the microscope. Simultaneously, we found that Labyrinthula
sp. could synthesize polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid
(DHA), with potential for industrial application [70]. However, the pathogenicity of these
Labyrinthula strains was not investigated in our previous work. Therefore, it would be
interesting to clarify the relationship between the lipid metabolism and their pathogenicity
from the perspective of molecular biology and omics in the future.

4. Conclusions and Future Prospects

In summary, the challenges confronted by the seagrass bed ecosystem are becoming
increasingly serious under the impact of global climate change and human activities. The
impacts of human activities on seagrass ecosystems are particularly prominent. Coastal nu-
trient enrichment alters the organic carbon storage of sediments by changing the activities of
algae and microorganisms. Though sulfide, heavy metals and refractory organic substances
have toxic effects on seagrass organisms, seagrass and the epiphytic microorganisms have
certain tolerance and degradation ability to resist them in a certain concentration range.
However, the terrestrial input from microplastics will carry large amounts of pollutants
and sediment particles, greatly changing the biological and non-biological conditions of
the seagrass ecosystem, and the resulting cascade effect needs to be further studied.

The seagrass beds are comprehensively affected by various factors, and their complex
coupling effects could not be ignored. In the future, comprehensive analysis of various
factors using mathematical models will be of great significance for revealing the environ-
mental pressure faced by the seagrass beds more accurately and formulating the scientific
protection and restoration strategies for seagrass beds.

In addition, many marine eukaryotes can cause seagrass diseases. At present, Labyrinthula,
the most widely studied pathogen causing seagrass consumptive diseases worldwide, has
not attracted much attention in some regions such as China, and relevant research pro-
cesses need to be accelerated in the future. Current urgent studies on the seagrass pathogen
Labyrinthula include: (1) isolation of Labyrinthula strains from decayed and diseased sea-
grass by pure culture techniques, analyzing their pathogenicity and ecological functions
from the perspective of genome and transcriptomics, to reveal the potential of Labyrinthula
causing seagrass wasting diseases in some unstudied coastal waters; (2) elucidating the di-
versity and distribution characteristics of Labyrinthula using molecular biology methods to
explore the pathogenic potential of pathogenic Labyrinthula on different species of seagrass
and their ecological function as well as adaptive evolution mechanisms in various habitats
of seagrass beds. These could provide basic information for the protection and restoration
for seagrass bed ecosystem.
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