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Abstract: Significant amounts of nitrogen and phosphorus in sediments will be released into the
overlying water during the flood season in the water level fluctuation zone (WLFZ) of reservoirs
that undergo periodic drying and flooding. This will result in water quality deterioration of the
reservoir. In order to clarify the distribution characteristics and release behavior of nitrogen (N)
and phosphorus (P) from sediments in the WLFZ of a reservoir, this study analyzed the sediment
distribution characteristics and potential exchange flux sediment–water interface(SWI) through field
investigations and sediment core incubation experiments. And the main factors affecting the release
of N and P through the incubation experiments in sediments of the WLFZ in the reservoir were
determined. Our findings indicated that the sediment in the WLFZ serves as the primary source
of NH4

+-N and acts as a sink for NO2-N in the overlying water of sediment. The concentration of
NH4

+-N in the interstitial water of sediments is the key factor that affects the water quality of Biliuhe
Reservoir. Total nitrogen content of surface sediments in the WLFZ of Biliuhe Reservoir ranges from
1052.52 ± 49.39 to 3520.54 ± 30.31 mg/kg. High concentrations of N pollution are the primary in-
creased risk of eutrophication in Biliuhe Reservoir during summer. The sediment N and P release flux
of BLH1 located in the main stream is 1.67 ± 1.06 and 12.32 ± 2.42 mg·(m2·d)−1, respectively, which is
smaller than that of BLH2 (3.27 ± 2.15 and 15.19 ± 2.36 mg·(m2·d)−1, respectively), BLH3 (4.24 ± 1.74
and 17.02 ± 2.47 mg·(m2·d)−1, respectively) and BLH4 (7.78 ± 2.03 and 20.56 ± 2.38 mg·(m2·d)−1,
respectively) located in the tributary. It indicates that the water conveyance project located in BLH1
has an impact on nutrient scouring of sediments in the WLFZ at this site. The main water environment
factor affecting the release of N and P in the sediment of the WLFZ is dissolved oxygen (DO). And the
Pearson correlation coefficients between TN and TP with DO were −0.838 and −0.777, respectively
(p < 0.05). At the same time, the diffusion of nutrients in the sediments can be effectively inhibited by
maintaining a certain DO concentration in the overlying water.

Keywords: nitrogen; phosphorus; release; sediment; water level fluctuation zone; Biliuhe Reservoir

1. Introduction

The water level fluctuation zone in a reservoir refers to an area where the submerged
region undergoes periodic drying and flooding due to operational management, also
known as the fluctuation zone. When the WLFZ is dried and then covered with water, a
large amount of nutrients that have accumulated during the drying period of the sediment
is released into the overlying water. These nutrients mainly include phosphorus and
nitrogen. In terms of P, its forms are relatively stable and easily released from the sediment
into the overlying water. As for N, under aerobic conditions, ammonium is transformed
into nitrate by nitrifying bacteria. When the dissolved oxygen (DO) concentration is low
in the aquatic system, the denitrification process becomes dominant. At this time, nitrite
is reduced to N2 and removed from the sediment–water system [1]. This portion of the
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water area constitutes a significant proportion of the reservoir’s total area and persists
for an extended period [2]. Simultaneously, the water is susceptible to wind and wave
disturbances, which result in the resuspension of sediment and release of nutrients into the
overlying water, thereby compromising its quality [3]. Additionally, this region is inferior
to deeper waters due to the high risk for nutrient release from sediments and subsequent
algal blooms. The WLFZ of the reservoir experiences strong light exposure, leading to
higher temperatures and oxidation that reduces DO concentration in the overlying water
within this area. Therefore, the WLFZ of the reservoir, affected by alternating flooding
and drying, is primarily influenced by specific factors such as light, temperature, DO and
wind–wave disturbances. These factors enhance the likelihood of nutrient release from
the sediment to the overlying water, which can cause a change in the environment and
deteriorate reservoir water quality due to runoff input. Previous studies have demonstrated
that a substantial proportion of lakes and reservoirs worldwide, ranging from 30% to 55%,
exhibit severe eutrophication, with freshwater eutrophication in the United States alone
resulting in potential economic losses exceeding USD 200 million [4]. Therefore, protecting
and treating this zone is crucial for maintaining overall reservoir water quality.

Under the influence of periodic fluctuations in reservoir water level, the WLFZ has ex-
perienced different degrees of the drying–flooding cycle process. During the drying phase,
aerobic conditions facilitate rapid microbial proliferation, resulting in P enrichment within
the burgeoning biological community. As moisture levels decrease and microorganisms
die off, organic matter decomposition and mineralization are stimulated by the drying [5],
resulting in active P accumulation at the surface layer. When the soil is flooded, a significant
amount of ammonia nitrogen (NH4

+-N), nitrate nitrogen (NO3-N) and total nitrogen (TN)
are released into the overlying water. This release increases by five times, resulting in the
discharge of accumulated N and P during sediment exposure and drying periods. High
phosphorus concentration in old sediment may contribute to dense phytoplankton blooms
by supplying phosphorus to the water [6]. Consequently, this elevates eutrophication
risks within the reservoir area. Previous studies have demonstrated that the sediments in
the WLFZ are influenced by the drying–flooding cycle, which in turn affects geochemical
processes such as element circulation and transformation, material release and interception,
pollutant purification, and sediment transport in the aquatic ecosystem [7,8]. When ex-
ogenous pollution is gradually, effectively controlled, the key to the treatment of lake and
reservoir water becomes how to effectively control the endogenous N and P load from the
sediment of the WLFZ [9]. The risk of N and P release is most closely related to the form of
N and P, the characteristics of the overlying water environment, the characteristics of the N
and P profiles in sediment interstitial water, porosity and the organic matter concentration.
Therefore, it is of great significance to investigate the vertical distribution of N and P
in sediment, interstitial water, and overlying water as well as to identify the migration
flux and factors associated with sediment release. This will contribute to studying the
eutrophication status and analyzing pollution sources in reservoirs.

Currently, the research on the deposition release behavior of nutrients focused on
the coastal, tidal flat areas, as well as the WLFZs of lakes and reservoirs [10–13]. Brödlin
et al. [14] have demonstrated that alternating periods of flooding and drying can enhance
the release of endogenous nutrients in sediments with continuous water cover. Under aero-
bic conditions during the initial exposure stage, rapid microbial growth led to P enrichment
in the developing biological community. When further drying, microorganisms died as
the water content decreased. Garcia thinks that drying could promote the decomposition
and mineralization of organic matter [5]. When the soil is flooded again, a large amount of
NH4

+-N, NO3-N and TN are released into the overlying water, which increases the risk of
eutrophication in the reservoir area. The release of N and P from sediments to the overlying
water is not only influenced by the physical and chemical properties of the flooded soil,
but it is also impacted by internal factors (such as the forms of N and P in overlying water
and sediments) and external factors (such as water environment factors) [15]. Specific ex-
ternal factors include overlying water nutrient concentration, dissolved oxygen (DO), pH,
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oxidation-reduction potential (ORP), biomass of algae in overlying water, microbial activity,
interference from water, intensity of external inputs, interface temperature, etc. [16,17]. In-
ternal factors include sediment interstitial water nutrient concentration, content and forms
of N and P in sediment, sediment grain size, content and forms of metal ions, pH and ORP.
Other scholars argue that sediment activity and organic matter content are the primary
influencing factors of N diffusion flux. The content and form of P in sediments, on the other
hand, significantly affects the P diffusion flux of the sediment [18]. The concentration of
DO is also the main factor affecting the release of N and P. The laboratory static simulations
showed that anaerobic conditions with DO less than 0.5 mg/L accelerated the release of
P from the sediment, while aerobic conditions with DO greater than 5.0 mg/L inhibited
the release of P from the sediment [19]. In general, at high DO levels, the water exhibits an
aerobic state, which inhibits denitrification in sediments and reduces NO3-N consumption.
Simultaneously, aerobic conditions can inhibit the dissimilatory reduction of NO3-N to
NH4

+-N, promote nitrification, help prevent sediment release, and limit the diffusion of
PO4

3− in interstitial water into overlying water. Conversely, anaerobic conditions will
accelerate the release of pollutants in sediments. In the environment where algae grow
vigorously, the explosive growth of algae consumes a large amount of available N and P
in water, and P supply capacity of sediments tends to be passively exerted to a higher or
highest level, prompting P to migrate to the sediment [20]. Among these environmental
factors, temperature is a key determinant that controls the release of endogenous N and P
in aquatic ecosystems [21]. Studies have shown that an increase in water temperature will
lead to an increase in the release rate of N and P and the release amount of P [22].

This study creatively employed a combination of field investigation and indoor in-
cubation experiments to reveal the underlying regularity and mechanism governing the
release of N and P nutrients into the overlying water when dry sediments in the WLFZ
of the reservoir are submerged. The drinking water reservoir is an essential source for
urban drinking water supply [23], which has a higher requirement for water quality and
is closely related to the safety of citizens’ drinking water [24]. Biliuhe Reservoir, located
in Liaoning Province, China, serves as the main urban water supply source of Dalian
City. A total of 80% of Dalian’s water supply comes from Biliuhe Reservoir, with a daily
water supply reaching 1.2 million m3. Therefore, the sediment and overlying water at
the flooding and drying alternation zone of the WLFZ were selected for investigation in
Biliuhe Reservoir as it is an important and special area in the water environment. The
objective of this study is to investigate the characteristics of N and P sources and sinks in
the sediment of the WLFZ, as well as the regularity and mechanisms governing N and
P deposition. The temporal variation characteristics of water environmental factors in
each water column were analyzed during the migration of N and P in sediment within
the WLFZ of the reservoir, along with the corresponding response relationship between
overlying water environmental factors and N/P release from the sediment to identify the
water environmental factors that affect the migration flux of N and P in the sediment of the
WLFZ. The results of this study are expected to elucidate the deposition release mechanism
of N and P in the WLFZ, providing a reference for controlling endogenous nutrient release
independent of other environmental factors.

2. Materials and Methods
2.1. Site Description

In this study, the WLFZ of Biliuhe Reservoir was selected as the research area. Biliuhe
Reservoir is located at Liaoning Province, China (as shown in Figure 1). The reservoir has a
total storage capacity of 934 million m3, with a normal high water level of 69 m, a flood
limit water level of 68.1 m, and a minimum water level of 47.0 m. Additionally, the control
area above the dam site covers an area of 2085 square kilometers. Biliuhe Reservoir supplies
80% of Dalian’s water, and the daily water supply reaches 1.2 million m3. In addition to
the main stream of Biliu River, there are three main tributaries, namely Geli River, Bajia
River and Yaba ditch. There are also several small tributaries that serve as important water
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sources for domestic drinking water and industrial and agricultural use in Dalian City.
Furthermore, a water diversion project has been implemented to introduce Dahuofang
Reservoir’s water into Biliuhe Reservoir.
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Figure 1. Location of Biliuhe Reservoir and distribution of sampling sites.

The annual average area of the three tributaries was 28.709 km2 during the dry pe-
riod in the WLFZ. The temporal behavior of the precipitation and temperature of Biliuhe
Reservoir were analyzed. The average annual precipitation in the basin is 746 mm, and
the average annual temperature is 10.6 ◦C (Figure 2). It belongs to the temperate oceanic
monsoon climate and is a typical river-type reservoir. The annual variation in precipitation
is significant. The interannual temperature exhibited an overall declining trend (p < 0.05).
The observed temperature range in July 2022 ranged from 22.5 ◦C to 27.4 ◦C. The average
daily temperature in July was 25.11 ± 1.26 ◦C. The accumulative amount of precipitation
in July was 92.1 mm. After the sample collection, a cumulative precipitation of 54.7 mm
was recorded in the following two days, which is likely to result in an elevation of the
reservoir water level. Consequently, the previously exposed dry sediment will be sub-
merged under water, thereby triggering the release of nutrients from the sediment into the
overlying water.

The reservoir has been in operation for over 30 years, and the water quality is good
except for N [25]. However, during periods of low water levels, a wide range of the WLFZ is
exposed for agricultural planting and plant growth according to the reservoir’s operational



Water 2023, 15, 3659 5 of 23

mode. Despite controlling most point source pollution in recent years, P levels continue
to increase.
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Figure 2. Temporal behavior of temperature and precipitation patterns in the study area. (a) The
annual average temperature and annual average precipitation of Biliuhe Reservoir over the past
30 years. (b) Average daily temperature and daily precipitation for July 2020.

From 1985 to 2022, the water level of Biliuhe Reservoir fluctuates greatly due to the
uneven inflow of water from the WLFZ. Under the condition of periodic fluctuations in
reservoir water level, the WLFZ is wide, and the drying period is long. The water level of
sediment samples collected in the WLFZ of the reservoir measures 66.45 m. Throughout
the entire operational period of the reservoir (from 1985 to 2022), there has been a 16.23%
probability of submergence frequency at this level (Figure 3), and this area experiences
frequent flooding and drying alternations throughout the year.
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Figure 3. Water level submerged distribution curve.

2.2. Field Sampling

Throughout the entire operational period of the reservoir, there has been a 16.23%
probability of submergence frequency at this level. The sediment at this elevation is exposed
for an extended duration. As the water level increases, previously exposed sediment
nutrients will be released into the overlying water, leading to a deterioration in reservoir
water quality.

In order to analyze the regularity of nutrient release in sediments of the WLFZ, the
original columnar sediments and overlying water samples were collected in July 2022. The
distribution of sampling sites is shown in Figure 1. The latitude and longitude of sampling
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points are positioned by GPS. Four typical sampling sites (BLH1, BLH2, BLH3 and BLH4)
were set up in the main tributaries from upstream to downstream (Figure 1). BLH1 is located
in the main stream of the reservoir, where a water diversion project has been implemented
to introduce water from Dahuofang Reservoir into Biliuhe Reservoir, resulting in erosion
of BLH1 sediment. Meanwhile, BLH2, BLH3 and BLH4 are located in the tributaries of
the reservoir. Through field investigation, it was found that BLH2 is located in Geli River,
which is located in the agricultural planting area. Both BLH3 and BLH4 are located in
residential areas and agricultural planting areas. BLH4, a submerged dam project, was
established. It can be seen from Table S1 that the porosity of the sediment core of Biliuhe
Reservoir varies from 18.62% to 50.52%. From the upstream to the downstream of the
reservoir, the porosity of the sediment core gradually increases.

Columnar sediments were collected vertically with PVC tubes (diameter of 100 mm)
in BLH1, BLH2, BLH3 and BLH4. The sampling frequency was five times a month, which
implies that a total of five sample collections were conducted in the month of July. Four
sampling sites were collected in each sampling, and three parallel experiments were
conducted for each sampling site to ensure experimental accuracy. Consequently, a total of
12 columnar sediment experiments were performed to minimize potential errors at each
sampling. Finally, the average value of July sampling was taken as the final result. The
vertical sampling depth was about 25 cm. This depth was chosen as it falls within the range
of water level fluctuations observed in Biliuhe Reservoir over a 20-year period and aligns
with global change projections for the 21st century. After taking the columnar sediment
sample with a PVC pipe at the site, we quickly used a stopper to block the other end of
the pipe to prevent any potential leakage from the columnar sediment. Subsequently, the
columnar sediments were sectioned and divided into 5 cm intervals. Finally, the separated
5 cm columnar sediment samples were promptly loaded into a clean polyethylene bag. On
the same day, the sediment interstitial water was taken back to the laboratory and extracted
by the centrifuge. The columnar samples were collected in a vertical position, without any
shaking and with swift sampling, to eliminate the influence of other interlayers of the water.
This approach effectively minimizes the impact caused by other interlayers of the water.

After sampling, the collected original column samples were sealed with rubber plugs
to prevent the disturbance during transportation from affecting the experimental results.
At the same time, the sediments were collected in situ by layers, and a sample was collected
every 5 cm depth and placed in a clean polyethylene bag for sealing and low temperature
preservation. The samples were transported back to the laboratory and centrifuged to
obtain the interstitial water required for the experiment. A YSI EXO2 multiparameter probe
(XYLEM, Washington, DC, USA) was used to measure water environmental parameters:
pH, water temperature (WT), dissolved oxygen (DO), electrical conductivity (EC), turbidity
and chlorophyll-a on the vertical profile of each sampling site. At the same time, 10 L in situ
bottom water samples were collected for static release incubation nitrogen and phosphorus
experiments. And a Niskin water sampler produced by HYDRO-BIOS, Kiel, Germany was
used to collect the overlying water. All water samples collected were transported to the
refrigerator within the same day at 4 ◦C for testing.

2.3. Incubation of Sediment Cores

To study the potential exchange of nutrients at the SWI, three replicates of sediment
cores from each site were incubated. The collected sediment samples were transported back
to the laboratory, and the overlying water was drained using a siphon method for release
experiments. The filtered in situ bottom water sample was slowly and undisturbedly
injected into the in situ sediment column in the WLFZ along the wall with a medical
infusion tube. When the liquid level was 15 cm away from the surface of the sediment
(the volume of the water column was 1178 mL), injection was stopped, and the scale was
marked. All columnar samples were incubated at a constant temperature according to the
in situ temperature of the reservoir, and the light and dark cycles were set to 12 h each. The
specific experimental device is shown in Figure S8. Afterwards, at the specified times (0, 6,
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12, 18, 24, 30, 36, 42, 48, 54, 60, 72, 84, 96, 108 and 120 h), a syringe with a volume of 50 mL
was used to connect the infusion hose to collect 50 mL of overlying water from 5 cm above
the sediment–water surface. The water samples were collected in 50 mL polyethylene
bottles and stored in a refrigerator at 4 ◦C. Simultaneously, the initial filtered water sample
from the original sample point was immediately added to maintain the water balance. All
experiments were completed within 120 h (5 days). The reason for setting this duration is
that the sediment will reach a state of adsorption or release equilibrium at approximately
120 h.

Since the inflow runoff can cause changes in the physical and chemical properties
of sediment, the concentration difference between the overlying water and interstitial
water promotes the exchange of N and P. Therefore, the diffusion flux can be estimated
by measuring the concentration gradient between the sediment interstitial water and the
overlying water. The positive value represents the release process, while the negative
value represents the adsorption process. Theoretically, the molecular diffusion flux (F) is
calculated according to Fick’s first law, and its expression is as follows:

F =

[
V(cn − c0) +

n

∑
j=1

Vj−1
(
cj−1 − ca

)]
/(S × t) (1)

where F is the average exchange flux[mg·(m2·d)−1]; V is the volume of overlying water in
the column (L); cn, c0 and cj−1 are the mass concentration of a substance (mg·L−1) at the nth,
0th (initial) and j − 1 th sampling; ca is the mass concentration of the substance in the added
water sample (mg·L−1); Vj−1 is the j − 1 sampling volume (L); S is the contact area of water
and sediment in columnar samples (m2); t is the release time (d); and the calculated nutrient
release rate is 5 d average exchange flux. This formula was utilized for the investigation of
total phosphorus (TP), orthophosphate (PO4

3−), total nitrogen (TN), ammonia nitrogen
(NH4

+-N), nitrate nitrogen (NO3-N) and nitrite nitrogen (NO2-N) determination in the
sediment release flux of Biliuhe Reservoir.

2.4. Sample Analysis

The static release water samples and interstitial water samples were filtered using
a 0.45 µm filter membrane to determine orthophosphate (PO4

3−), ammonia nitrogen
(NH4

+-N), nitrate nitrogen (NO3-N) and nitrite nitrogen (NO2-N). The remaining unfiltered
samples were used to determine total phosphorus (TP) and total nitrogen (TN) in the
water. TP, PO4

3−, TN, NO3-N, NO2-N and NH4
+-N in the water were obtained using a

continuous flow analytical system with the Auto Analyzer III (BRAN+LUEBBE, Hamburg,
Germany. From Shanghai Baozhongying Instrument Co., Ltd., Shanghai, China). TP,
organic phosphorus (OP), inorganic phosphorus (IP), NaOH-extractable P (NaOH-P) and
HCl-extractable P (HCI-P) in the sediments of the WLFZ were extracted and analyzed by
the SMT method recommended by the European Development Framework Committee [26].
TN in the sediments of the WLFZ was determined by the soil quality-determination of total
nitrogen-modified Kjeldahl method (HJ 717-2014) [27].

2.5. Data Analysis

The data consist of field monitoring data and simulation experiment data from July
2022. The data were processed using Excel 2016. Correlation analysis and principal
component analysis (PCA) were performed using SPSS 22.0 (IBMSPSS Statistics, Armonk,
NY, USA). Pearson correlation analysis was used to analyze the relationship between the
sediment P and N release rates and the other driving factors. The principal component
analysis method was employed to identify the major factors influencing P and N release
rates. Principal component analysis is a statistical method to convert high-dimensional data
into lower dimensional space [28]. Data were visualized using OriginPro 9.1.0 (Origin-Lab
Co., Northampton, UK). ArcGIS 10.2 software was utilized for drawing related graphics.
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3. Results
3.1. Nutrients in the Surface Sediments

The results indicate that TN content of surface sediments in the WLFZ of Biliuhe
Reservoir ranges from 1052.52 ± 49.39 to 3520.54 ± 30.31 mg/kg, with an average value of
2600.63 mg/kg, as shown in Table 1. This trend shows a gradual increase from upstream to
downstream. TP content ranged from 735.59 ± 47.92 to 2490.64 ± 28.29 mg/kg, with an
average of 1380.31 ± 67.59 mg/kg, which was lower than that of N. Spatially, the content
of N and P in the sediments of BLH1, located in the main stream, is low. TN and TP content
gradually increases downstream from upstream. However, there is distinct heterogeneity
in the spatial distribution of IP, OP, NaOH-P and HCI-P contents. Among them, OP
contributes to the highest proportion of TP, followed by NaOH-P and IP. Therefore, as
depicted in Table 1, it is evident that during the summer N content in the sediments of
Biliuhe Reservoir is higher than that of P. Although the content of P is lower than that of N,
the content of TP and other forms of P in the sediments is also high. Consequently, it can
be inferred that the eutrophication primarily stems from substantial N and P contents in
Biliuhe Reservoir in the summer.

Table 1. Distribution characteristics of N and P in sediments of the WLFZ.

Sampling Sites TP
(mg/kg)

TN
(mg/kg)

IP
(mg/kg)

OP
(mg/kg)

HCI-P
(mg/kg)

NaOH-P
(mg/kg)

BLH 1 735.59 ± 47.92 1052.52 ± 49.39 561.89 ± 29.18 173.11 ± 13.29 98.77 ± 8.21 55.66 ± 6.35
BLH 2 1071.25 ± 23.39 2012.51 ± 21.43 193.40 ± 12.91 877.85 ± 42.36 128.75 ± 11.27 749.10 ± 35.21
BLH 3 1225.39 ± 31.47 1817.58 ± 29.35 241.25 ± 18.34 983.75 ± 53.14 133.82 ± 16.31 849.93 ± 42.64
BLH 4 2490.64 ± 28.29 3520.84 ± 30.31 585.82 ± 20.18 1904.18 ± 72.16 812.45 ± 40.24 235.43 ± 26.37

3.2. N and P at the Sediment–Water Interface

The overlying water and interstitial water within the sediment were analyzed to
investigate the vertical distribution characteristics of nitrogen and phosphorus (TP, PO4

3−,
TN, NO3-N and NH4

+-N). Figures 4 and 5 present N and P values of BLH1 at the sediment–
water interface. Figures S1–S3 display N and P values of BLH2, BLH3 and BLH4 at the
sediment–water interface.
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Figure 4. TP and PO4
3− concentrations in overlying water and the interstitial water at the

sediment−water interface (SWI) of BLH1.

It can be seen that the vertical distribution of nutrient concentrations including TP,
PO4

3−, TN, NO3-N and NH4
+-N, increases at the sediment–water interface (0 cm). As depth

increases, there is a decreasing trend in nutrient concentrations with higher concentration
in the interstitial water compared to the overlying water. This indicates migration and
diffusion of interstitial water into the overlying water. The high concentrations of P and
N in the interstitial water indicate a high release potential in the sediments. The average
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concentration of NO2-N in the overlying water was higher than that in the interstitial water,
indicating that NO2-N in the sediment of the WLFZ was in the adsorption state. There
are significant differences in nutrient concentration among sampling sites based on spatial
distribution analysis. Further analysis of fluxes is required to determine whether sediments
act as sources or sinks for nutrients.
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Figure 5. TN, NO3-N, NO2-N and NH4
+-N concentrations in overlying water and the pore water at

the sediment−water interface (SWI) of BLH1.

The vertical distribution characteristics of TP and PO4
3− showed a high degree of

consistency at each sampling site, with concentrations in SWI ranging from 0.03 to 10.76
mg/L and 0.06 to 9.99 mg/L, respectively. Both increased initially at the interface of
5~−5 cm and increased rapidly reached their maximum at about 0~−5 cm. The maximum
TP and PO4

3− of BLH3 reached 10.76 and 9.99 mg/L, respectively, and showed a decreasing
trend around −10~−25 cm, rapidly decreasing to 0.23 and 0.09 mg/L. Compared to the
sediment interstitial water, the average concentrations of TP and PO4

3− in the overlying
level were lower, measuring 1.43 ± 1.15 mg/L and 1.39 ± 1.14 mg/L, respectively. Spatially,
BLH4 located in the tributary had the highest average concentration with TP and PO4

3−

levels at 4.54 ± 3.22 mg/L and 4.06 ± 3.19 mg/L, respectively. The P concentration of
BLH1 located in the main stream is small but different from that of BLH3 and BLH4, and
it experiences a rapid increase in TP concentration at −5~−12 cm followed by a gradual
decrease until reaching stability.

From Figure 5, the vertical distribution characteristics of TN and NO3-N are highly
consistent, and their correlation coefficient ranges from 0.73 to 0.99, with an average value
of 0.89 (p < 0.01), indicating a significant correlation between them. From Figure 4, it
can be seen that the overlying water concentration of TN and NO3-N is lower than that
of the sediment interstitial water. TN concentrations of BLH1, BLH2, BLH3 and BLH4
were 3.71 ± 3.21, 2.92 ± 1.93, 14.09 ± 5.34 and 6.78 ± 3.83 mg/L, respectively. In terms
of vertical variation, the concentrations of TN and NO3-N in BLH1, BLH2 and BLH4
increased by about 0~5 cm. The concentrations of TN and NO3-N in BLH3 increased
in the range of −10~−15 cm. The maximum concentrations of TN and NO3-N reached
24.10 mg/L and 19.56 mg/L, respectively. The interstitial water is significantly higher than
the overlying water, suggesting a high release potential in the sediments of TN and NO3-N.
The concentrations of TN and NO3-N in the sediment were the main factors affecting the
water quality of Biliuhe Reservoir.

From Figure 5, the vertical distribution characteristics of NO2-N increased rapidly at
the interface (0~5 cm), then decreased slowly at 0~−12 cm, and finally stabilized. Com-
pared with the sediment interstitial water, the concentrations of BLH1, BLH2 and BLH4 in
overlying water were lower than that in sediment interstitial water, which were 0.56 ± 0.47,
0.77 ± 0.64 and 0.87 ± 0.54 mg/L, respectively. BLH1, BLH2 and BLH4 showed that the
sediment released NO2-N to the overlying water. The concentrations of the overlying
water and the sediment interstitial water in BLH3 were 3.51 ± 1.43 and 1.95 ± 1.90 mg/L,
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respectively, indicating that BLH3 was opposite to the other sampling sites. The aver-
age concentration of the overlying water was significantly higher than that in sediment
interstitial water, indicating that NO2-N was mainly in the adsorption state.

From Figure 5, NH4
+-N concentration exhibited a consistent upward trend throughout

the vertical profile. BLH2 displayed a mutation point at 0~5 cm, followed by a rapid increase
and subsequent decline, and then continuing to grow slowly. The mass concentration of
NH4

+-N in the overlying water was low, and the average concentration of each sampling
site was 1.53 ± 0.96 mg/L. The interstitial water was significantly higher than the overlying
water, which indicates a high release potential in the sediments of NH4

+-N in the overlying
water, and the concentration of NH4

+-N in the sediment is the main factor affecting the
water quality of Biliuhe Reservoir.

3.3. The Variability of Environmental Parameters and Nutrient Concentrations in the Overlying Water

The variability of environmental parameters in the overlying water is given in Figure 6.
It can be observed that the WT of the water column fluctuates initially, possibly due to the
difference between day and night temperatures. After 60 h, the WT gradually decreases
and eventually stabilizes. The average temperatures of BLH1, BLH2, BLH3 and BLH4
are 25.41 ± 1.10, 25.44 ± 1.15, 25.52 ± 1.22 and 25.47 ± 1.19 ◦C. There is no significant
difference in WT change between sampling sites. The change in DO can be divided into
two stages: Initially, DO changed smoothly between 7.09 and 8.80 mg/L and then showed
a steady downward trend at around 60 h, indicating gradual consumption of DO in the
water column. During the first stage (before 60 h), average DO concentrations for BLH1,
BLH2, BLH3 and BLH4 were 8.31 ± 0.86, 8.30 ± 0.38, 8.10 ± 0.64 and 7.36 ± 0.14 mg/L,
respectively. In the second stage (after 60 h, including 60 h), the average DO concentrations
were 4.40 ± 0.37, 6.62 ± 0.30, 6.54 ± 0.72 and 5.09 ± 1.02 mg/L, respectively. The change
trend in chlorophyll-a and DO was consistent. Chlorophyll-a is an important index to
reflect the number of algae. The life activity of algae is related to DO. When algae reach a
certain magnitude, their abundance and activity control the change in DO in water [29]. As
shown in Figure 6, chlorophyll initially remained stable over time, decreased at 60 h, and
then steadily declined. The average chlorophyll-a concentrations of BLH1, BLH2, BLH3
and BLH4 were 20.31 ± 6.41, 23.01 ± 2.73, 22.54 ± 3.04 and 18.40 ± 4.59 µg/L, respectively.
Turbidity gradually decreased over time due to the settling of particulate matter in the
water column into the sediment. Among them, the average concentration of turbidity in
each sampling site of water column was BLH4 > BLH3 > BLH2 > BLH1 (82.29 mg/L >
78.96 mg/L > 28.18 mg/L > 24.85 mg/L). Ec showed a fluctuating increase from 0 to 40 h,
followed by a steady increase from 40 to 120 h. The average Ec for each sampling site of the
water column is ranked as BLH3 > BLH1 > BLH2 > BLH4 (419.50 µs/cm > 419.38 µs/cm
> 413.31 µs/cm > 408.63 µs/cm). The pH average values of all sampling points were
ranked as BLH3 > BLH1 > BLH4 > BLH2 (7.78 > 7.77 > 7.74 > 7.73). The pH values of the
water column fluctuated irregularly before 60 h. After 60 h, it decreased rapidly and then
showed a steady downward trend. The pH values fluctuated from 7.52 to 7.96, with a small
variation range.

The concentrations of TP, PO4
3−, TN, NO3-N and NO2-N in the overlying water

exhibited a rapid release pattern during the initial stage, reaching their maximum release
at 84 h as shown in Figure 7 and Figures S4–S6. Subsequently, the flux of release gradually
decreased and eventually stabilized. The release of PO4

3− from BLH1 showed a rapid
increase within the first 24 h, reaching its peak at 24 h, followed by a steady decrease.
Sediment nutrients were primarily released into the overlying water. However, as time
increased, the release rate of NH4

+-N decreased and showed a negative flux, and the whole
water column was dominated by sediment adsorption of the overlying water nutrient.
Among them, the concentrations of TP and PO4

3− in the overlying water of columnar
sediments at each sampling site exhibited a temporal increase, while TN, NO3-N and NO2-
N displayed fluctuating upward trends over time. The NO2-N concentration in BLH3 and
BLH4 gradually decreased over time, indicating nutrient diffusion from the overlying water
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to the sediment primarily through adsorption (Figures S5 and S6). NH4
+-N concentration

exhibited a fluctuating downward trend over time and was predominantly adsorbed at the
sediment–overlying water interface throughout the sediment release process.
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Figure 7. The temporal variation characteristics of N and P in the overlying water during the sediment
incubation process of BLH1.
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3.4. Deposition Release Regularity of N and P in the WLFZ

TP, PO4
3−, TN, NO3-N and NO2-N showed positive fluxes at each site in the WLFZ,

indicating nutrient release from sediments to the overlying water. Conversely, NH4
+-

N exhibited negative fluxes at each site, suggesting nutrients from the overlying water
migrated towards the sediment.

The total release rates of TP and PO4
3− during the static incubation experiment ranged

from 0.05 to 10.21 mg·(m2·d)−1 and 0.03 to 6.92 mg·(m2·d)−1, as shown in Figure 8. Spa-
tially, P transport regularity varied among different sampling sites, with a gradual increase
in release rate from upstream to downstream. Notably, BLH4 located in a tributary of the
Bajia River exhibited the largest concentration change and release rate. The release rate
of TP was 7.58 ± 2.03 mg·(m2·d)−1, and PO4

3− was 3.38 ± 2.49 mg·(m2·d)−1. Combined
with the vertical distribution characteristics, the concentrations of N and P in BLH4 in-
terstitial water are higher and are located downstream of the reservoir entrance. BLH4
was sampled during a field investigation with low water transparency and black, smelly
sediment. It may be that domestic and agricultural sewage entered the river, resulting
in a high release potential at the sampling site. Combined with the vertical distribution
of nutrients in the water column, TP had a significant concentration difference (release
potential) between the interstitial water and the overlying water. However, regarding
its spatial distribution characteristics, the mass concentration of TP in the interstitial wa-
ter (BLH4 > BLH3 > BLH1 > BLH2) was not completely consistent with the P release of
sediment (BLH4 > BLH3 > BLH2 > BLH1). This indicates that the flux of P release is not
completely determined by the concentration difference (release potential) between the
sediment and the overlying water. Perhaps under aerobic conditions, the millimeter-level
aerobic layer on the sediment surface and a diffusion boundary layer at the sediment–water
surface will prevent the migration of P from the interstitial water to the overlying water.
When DO decreases in the overlying water, these layers become thinner or disappear,
allowing for easier diffusion of dissolved phosphorus from the interstitial water to the
overlying water due to the increased concentration gradient.

As shown in Figure 9, the release rates of TN, NO3-N and NO2-N were 10.95~
24.19 mg·(m2·d)−1, 0.06~13.47 mg·(m2·d)−1 and −2.18~10.89 mg·(m2·d)−1, respectively,
indicating positive fluxes where nutrients of sediments were released to the overlying
water. NH4

+-N release rate ranged from −3.76 mg·(m2·d)−1 to 5.48 mg·(m2·d)−1, with an
average value showing a negative flux at each site, suggesting transportation of nutrients
from the overlying water into the sediment. The tributaries (BLH2, BLH3 and BLH4) were
significantly higher than the main stream (BLH1), which was consistent with the trend of
NH4

+-N content in surface sediments. Notably, BLH4 displayed the highest flux. Similar to
TP, NH4

+-N had a strong concentration difference (release potential) between the interstitial
water and the overlying water. The spatial distribution characteristics of NH4

+-N mass
concentration in the interstitial water (BLH3 > BLH4 > BLH2 > BLH1) and NH4

+-N release
in SWI (BLH3 > BLH4 > BLH1 > BLH2) were also different. This is because NH4

+-N in the
interstitial water can not only enter the overlying water through molecular diffusion but
can also reduce its concentration in the facultative anaerobic layer of the sediment surface
through the process of nitrification or ammoxidation, thus reducing the release potential of
NH4

+-N in the interstitial water.
In conclusion, the sediments in the WLFZ of Biliuhe Reservoir primarily act as a

‘source’ by releasing N and P into the overlying water. Considering this geographical
setting, it is evident that endogenous release plays a crucial role in eutrophication within
Biliuhe Reservoir. Moreover, the release flux of N and P from each tributary exceeds that
of the main stream significantly. BLH4, situated at the entrance of Bajia River, exhibits
substantial potential for nutrient release. Moreover, it has been observed during sampling
that the water is turbid in the summer. BLH2 is located in the Geli River, where the water
depth is deep and nutrients easily accumulate due to summer rainfall runoff and strong
release of endogenous N and P. Additionally, BLH1 in the reservoir also has a large nutrient
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release potential. These areas should be focused on for controlling eutrophication in the
reservoir water.
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4. Discussion
4.1. The Migration Behavior and Mechanisms of N and P in Sediments

The concentrations of N and P nutrients (TP, PO4
3−, TN, NO3-N, NO2-N and NH4

+-N)
in the overlying water of the WLFZ of the reservoir have a high potential for diffusion with
the interstitial water. Kojima et al. [30] believe that certain nutrients and trace elements
present in the interstitial water of the sediment can facilitate the release of nutrients into the
overlying water through the interstitial water. This is consistent with the view of our study,
which also indicates that the concentration difference of nutrients in overlying water was
similar to that in sediments (Figures 4 and 5). This reflects how nutrient diffusion within
sediments affects the overall water quality of the reservoir area. The concentrations of TN
and NO3-N in water were higher than those in other source water reservoirs or lakes, such
as Luoma Lake [31], Hengshan Reservoir [32], Fuxian Lake [33], Nansi Lake [34], Daheiting
Reservoir [35] and Deer Lake [36]. The concentrations of TP and PO4

3− were lower than
those of N. Although the concentration of nitrogen is higher than that of phosphorus, the
concentration of phosphorus cannot be ignored. Consequently, it can be inferred that the
eutrophication of the Biliuhe Reservoir basin during summer primarily stems from the
optimal concentration and ratio of nitrogen and phosphorus.

Microorganisms mediate the transformation of TN, NH4
+-N, NO3-N and NO2-N in

inorganic nitrogen components, which undergo nitrification, denitrification and ammoni-
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fication under specific physical and chemical conditions. These processes are complex
and changeable. Previous studies have demonstrated that molecular diffusion alone is
not the dominant process controlling nutrient fluxes [37]. Cornwell et al. [38] think that
microorganisms, nitrification, denitrification and ammonification conditions can also pro-
mote the diffusion of N from the sediment to the overlying water [39]. Compared with
P, the effect of microbial action on its migration is more obvious. And Cheng et al. [40]
think that ammonium was released from the sediment into the overlying tidal water to
microbial action, with an annual mean flux of 2.74 mmol m−2 day−1. Compared with
ammonium, nitrate was mainly influxed from the overlying water into the sediment, with
an annual mean flux of −2.06 mmol m−2 day−1 with microbial action. Biliuhe Reservoir is
situated in a zone of flooding and drying alternation. Since mid-April, the strong light in
the WLFZ caused a gradual increase in water temperature at the bottom of the stagnant
layer, leading to enhanced microbial activity and a gradual decrease in DO levels. This
phenomenon marks the initial stage of the summer algae outbreak [41]. The NH4

+-N profile
from sediment interstitial water (Figure 5) shows an intuitive concentration gradient be-
tween overlying water and interstitial water. In the whole 25 cm sediment profile, NH4

+-N
increased with the increase in sediment depth [42]. This aspect indicates that interstitial
water can migrate and diffuse along the concentration gradient during nutrient migration
in the sediment overlying water. Daniel et al. [43] also think that interstitial water can
migrate and diffuse along the concentration gradient, and sediments were a net sink of
−16.28 mmol N yr–1 for oxidized inorganic nitrogen (NO3

– + NO2
–). When the sediment of

the WLFZ is covered with water, high concentrations of N will migrate through the intersti-
tial water to the reservoir’s overlying water, leading to a decline in reservoir water quality.
On the other hand, the increase in NH4

+-N concentration in the sediment with depth is
due to the deepening of anaerobic conditions, which inhibits aerobic bacteria and anaerobic
conditions. This weakens nitrification in the deep sediment while enhancing denitrification
and ammoniation processes. The anaerobic environment facilitates the accumulation of
NH4

+-N, resulting in a gradual increase [44]. And Nedwell and Trimmer [45] believe
that denitrification in estuarine sediments often removes a significant proportion of the
dissolved inorganic nitrogen (DIN) load fluxing through an estuary and thereby plays an
important role in ameliorating coastal eutrophication. In terms of spatial distribution, the
migration flux of NH4

+-N exhibited a unique distribution pattern. During the deposition
release process in the WLFZ, BLH3 released the highest amount of NH4

+-N followed by
BLH4, BLH1 and then BLH2. Despite being located downstream, BLH4 did not exhibit the
highest migration flux among all sampling sites. This observation contradicts with that of
TN and TP migration fluxes. The reason was that BLH3 was located in the WLFZ of the
agricultural planting area, where a significant quantity of loose and malodorous floating
mud was discovered in the collected sedimentary column. The characteristics of loose and
porous surface and high pollution promoted the conversion of organic matter to NH4

+-N.
Compared to N, the migration and transformation of P in the flooding and drying

alternation zone of the reservoir are more influenced by both the physical and chemical
characteristics of the sediment and the overlying water. According to Yang et al. [46],
the troph and development of the lake are influenced by the concentration of P in lake
sediments. This aligns with our study’s perspective. The WLFZ soil is capable of supporting
a plethora of plant growth during the drying phase, with PO4

3− serving as a vital nutrient
source for their development and proliferation [47]. However, exposure of sediment
reduces its phosphorus adsorption capacity due to drying and oxidation conditions, thereby
providing phosphate for plant growth. Zhang et al. [48] indicated that the decomposition
of aquatic plant debris is a key factor in the release of P from sediment even when external
P is excluded. It is therefore necessary to remove plant debris from freshwater ecosystems
to control the release of P from plant debris and sediment. Conversely, submerging plants
during the water-covering period leads to decomposition and release of higher levels of
P into the water. This suggests that plant growth in the WLFZ may indirectly promote P
release from sediment into the water. Additionally, Larsen et al. [49] believe that submerged
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plants will consume oxygen in the sediment–water interface. The decrease in oxygen across
the sediment–water interface after inundation could be another significant factor for the
increase in P fluxes. The average PO4

3− accounted for 82.67% of TP in the overlying
water of the WLFZ of the Biliuhe Reservoir, which significantly differed from the relatively
balanced TP distribution in the reservoir as a whole. Therefore, analyzing PO4

3− flux of
the sediments in the WLFZ is crucial to understanding this issue. A P diffusion boundary
layer exists on the sediment surface, and its structure is closely related to the concentration
of DO in the surface layer. Combined with the temporal changes in DO in the water
column environment (Figure 6), it is evident that high DO concentration, along with an
intact aerobic layer, effectively prevents the release of high concentrations of PO4

3− from
sediment into the water. However, under anaerobic conditions, this barrier is disrupted
and a significant amount of PO4

3− is released into the water column, leading to an increase
in its concentration [50,51]. This is the reason why the concentration of PO4

3− is higher
at the sediment–water interface in the vertical direction of the water column (Figure 4).
With the increase in temperature at the end of spring, the mineralization of organic matter
in sediments was strengthened, so that more PO4

3− was generated and released into
interstitial water [52]. This also explains that PO4

3− in the interstitial water profile reaches
a peak only around −2 cm, and then the change tends to be stable (Figure 4). The TP
concentration of the overlying water in the WLFZ of the reservoir was not significantly
different, while the interstitial water of the sediment showed obvious spatial differences.
The interstitial water of BLH4 has higher P concentration and is located at the entrance of
Bajia River, which is a tributary of the reservoir. Field investigation of BLH4 sampling found
that the water transparency was low, and the sediment appeared black and odorous. In the
column release experiment, even the surface 2~3 cm of sediment completely floated in the
overlying water, indicating poor sediment quality. The analysis suggests that pollutants
may have entered the river, leading to increased release potential at the sampling site.

4.2. Influencing Factors of Nitrogen and Phosphorus Migrating in Deposition Release Process

The static release experiment revealed a deeper mechanism of N and P nutrient
transformation, and the migration process of N and P in the flooding and drying alternation
area of the WLFZ was also affected by the physical and chemical properties of the overlying
water, sediment and sediment–water interface, such as WT, DO, pH, turbidity, chlorophyll-
a and EC [53]. Previous research has demonstrated that DO, turbidity and chlorophyll
are significant factors influencing the deposition and release of N and P [40,46,49,50].
Rippey et al. [54] think that through changes in physicochemical indicators, like water
fluctuation, pH and DO levels, the formerly stockpiled P in the sediment can be released
again as an endogenous source from the sediment, so as to further promote P to enter
the overlying water body through the sediment–water interface. Our study also found
a similar trend (Section 3.3). Therefore, based on the above discussion on the deposition
release mechanism of N and P, the influencing factors of the change in N and P migration
rate were analyzed.

Pearson correlation analysis and principal component analysis were conducted to
examine the relationship between the release rate of N and P and water environmental
factors (Table 2). The positive value indicates a positive correlation between the two
variables, while the negative value suggests a negative correlation. A correlation coefficient
exceeding 0.7 indicates a strong association. A correlation coefficient ranging from 0.4
to 0.7 suggests a close relationship, while a correlation coefficient ranging from 0.2 to
0.4 indicates a weak connection between two variables. The findings indicated that P of
the sediment release rate in the WLFZ was significantly, negatively correlated with DO,
turbidity and chlorophyll-a (p < 0.05) (r = −0.777, 0.870 and −0.791, respectively). The TN of
the sediment release rate in the WLFZ was significantly, negatively correlated with turbidity,
chlorophyll-a and DO (p < 0.05) (r = −0.883, −0.863 and −0.838, respectively). Furthermore,
principal component analysis (Figure 10) revealed a strong correlation between PC1 and
DO, turbidity and chlorophyll-a, as evidenced by their high load coefficients on PC1. PC2
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was strongly associated with WT and pH, as evidenced by the large loading coefficients of
these variables on PC2. Combined with Table S2, the component score coefficient matrix
was utilized to identify the driving factors in each principal component. During this
analysis, DO, turbidity and chlorophyll-a were found to contribute significantly to the first
principal component with eigenvectors of 0.972, 0.965 and 0.942, respectively. In general,
DO, turbidity and chlorophyll-a were more important factors affecting the release of N and
P in the sediments of the WLFZ. This result can be explained from the following aspects:

Table 2. Pearson correlation coefficients between TN/TP and water environmental factors.

WT DO pH Turbidity Chlorophyll-a Ec

TN −0.537 −0.838 ** −0.715 −0.883 ** −0.863 ** 0.555 *
TP −0.693 −0.777 ** −0.704 −0.870 ** −0.791 ** 0.605 *

Notes: * Correlation is significant at the 0.05 level (two-tailed). ** Correlation is significant at the 0.01 level
(two-tailed).
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Firstly, DO concentration in the overlying water was closely related to N and P release
fluxes of the sediments in the WLFZ (p < 0.001) (Figure S7a,d). When the drying sediment
in the WLFZ becomes submerged, the organic matter and microorganisms are released
into the overlying water. The high organic matter becomes submerged, resulting in a
gradual decrease in DO concentration in the overlying water within the WLFZ [55,56].
Then, the reduction in DO further facilitates the dissolution of N and P, leading to an
increase in their release from sediments [57]. Jin et al. [58] also think that phosphorus
can be adsorbed from overlying water to sediments with high nutrient loading under low
dissolved oxygen conditions. Therefore, when the exposed sediments within the WLFZ
are inundated with water, there is an elevation in N and P loading within the sediment.
This increase is particularly significant in northern China during July. Furthermore, the
DO concentration in water indirectly regulates microbial activity, affecting nitrification and
denitrification processes. Hardison et al. [59] propose that DO is a pivotal factor influencing
both nitrification and denitrification processes. Consequently, DO plays a crucial role
in modulating sediment nitrogen release. Under aerobic conditions, nitrifying bacteria
converts ammonia to nitrate. When the DO concentration of the overlying water is low,
denitrification becomes dominant. Hou et al. [60] demonstrated significant alterations in
the nitrogen cycle, particularly nitrification, denitrification and mineralization: furthermore,
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the presence of oxygen also affects nitrogen diffusion. When the WLFZ is dry, the nitrate
removal rate is more than 90%. At this time, nitrite is reduced to nitrogen (N2) and
removed from the sediment–water system. Many scholars have discovered that DO plays
a crucial role in controlling the diffusion and adsorption of NH4

+-N [61]. As depicted in
Section 3.3, NH4

+-N release from sediments is low when the DO concentration is high
but increases under low DO conditions [62]. This observation provides evidence for the
negative correlation between the DO concentration of the overlying water and the N release
from sediments (Figure S7d). At the 120th hour, the average DO concentration in the
overlying water at all four sampling sites reached its lowest value (4.67 mg/L), while the
diffusion flux of NH4

+-N peaked at 5.48 mg·(m2·d)−1. When the average value of DO in
the overlying water reached its highest point (8.38 mg/L) at 18 h, the diffusion flux of
NH4

+-N significantly decreased. Therefore, by maintaining a certain DO concentration in
the overlying water of the WLFZ, effectively inhibits ammonium diffusion [63].

Turbidity is characterized by the suspended matter concentration and particle size in
the water. Although TN concentration gradually decreases over time (Section 3.3), turbidity
does not affect the release of TN from sediment (Figure S7e). Unlike N, P in water is easily
adsorbed by sediment particles. The turbidity and suspended solids concentration of water
significantly influence the distribution of P forms in water (Figure S7b). In the WLFZ
of the reservoir, wave disturbance enhances suspended solids transport in the overlying
water, resulting in higher concentrations of TP and total particulate phosphorus (TPP)
as suspended solids increase. Gao et al. [64] showed that heavy rainfall increased the
turbidity of the water and had a significant effect on P-forms at the entrance of Taihu
Lake. Bengtsson et al. [65] proposed that hydrodynamic disturbance is a recognized factor
influencing the release of endogenous P, facilitating sediment resuspension and promoting
P release. Under conditions of hydrodynamic disturbance, there may be an increase in
both the overlying water and the amount of P released from sediments. These views are
consistent with the results of our study. The response of TPP concentration was the fastest,
and the peak appeared on the day of heavy rainfall. It is evident that the turbidity and
suspended matter concentration of water in each basin were increased, with a pronounced
adsorption effect on P. This view can prove that the content of turbidity in the overlying
water will directly affect the migration and release of P in sediments in the WLFZ.

The chlorophyll-a concentration in the overlying water is an important indicator of
the release of N and P from the sediment in the WLFZ of Biliuhe Reservoir. The decline of
algae in the overlying water with incubation time leads to a change in DO concentration,
indirectly promoting P release from sediment. Our research also highlights that DO con-
centration is a key factor affecting P release from sediments. It controls the adsorption and
release of various forms of P in sediments by controlling the oxidation-reduction potential
(ORP) of water, the species and activity of aquatic organisms and the mineralization process
of organic matter [66]. On the other hand, the decline in cyanobacteria exacerbates the
release of bio-available P in sediments, which has a significant impact on endogenous P
release in overlying water. The decline in algae makes the sediments in an extremely anoxic
environment, resulting in the decrease in iron-bound phosphorus (Fe-P), calcium-bound
phosphorus (Ca-P) and aluminum-bound phosphorus (Al-P) contents in the sediments.
This shows that the death deposition of algae has a great influence on the release of bio-
available P [67]. Qian et al. [68] also believe that microbial populations and water quantities
can influence the dissolution, transformation, migration, aggregation and deposition of P.
By fitting the chlorophyll content of the overlying water with the release of N and P from
sediments, a significant relationship between these two variables was established (p < 0.001)
(Figure S7c,f). At its peak value of 25.13 µg/L at 18 h, the chlorophyll concentration in
the overlying water corresponded to relatively low TN and TP fluxes of only 1.23 and
0.15 mg·(m2·d)−1.

Therefore, in the process of ecological maintenance and construction in the WLFZ of
the reservoir, maintaining a certain DO concentration in the overlying water effectively
inhibits NH4

+-N diffusion by controlling nitrification and denitrification. Simultaneously,
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turbidity and chlorophyll-a are the main environmental factors affecting the transformation
and migration of N and P in the sediments of the WLFZ. The control of turbidity and
chlorophyll-a in the water should be strengthened. In addition, the release of sediments in
the WLFZ is also affected by soil type, pH, ORP and organic matter concentration. At the
same time, the import of exogenous P in the sediments of the estuary should be avoided,
and effective measures should be taken to control exogenous pollution and dredging in
the WLFZ. Effective control measures are still crucial for preventing further long-term
adsorption in the water from the sediments in the WLFZ of Biliuhe Reservoir, as well as
controlling the accumulation of endogenous N and P and input of exogenous pollutants.

4.3. Countermeasures and Suggestions for Sediment Eutrophication in the WLFZ of the Reservoir

Comparing NH4
+-N and PO4

3− migration rates of sediment in the WLFZ of Biliuhe
Reservoir with those in previously published studies (Figure 11, Table S3), it is evident that
the internal load in the WLFZ of Biliuhe Reservoir is relatively high. Specifically, PO4

3−

has a higher migration rate than the typical lakes and reservoirs studied before. Although
the release of NH4

+-N in the WLFZ of Biliuhe Reservoir is higher than other reservoirs, it
falls within a similar range. The water quality of Biliuhe Reservoir was compared with
WHO drinking water quality standards [69] and standards for drinking water quality in
China [70]. As indicated in Table 3, among these crucial water quality indicators, the water
quality of Biliuhe Reservoir is essentially compliant with both WHO standards and China’s
drinking water quality standards. The coliform bacteria slightly exceeded the standard,
but it remained within the manageable range and did not affect the drinking water quality
of Biliuhe Reservoir. With summer approaching, the increased bottom water temperature
and lower bottom DO in the WLFZ also means a greater release risk. Therefore, it can be
concluded from the results that the SWI nutrient release flux in the WLFZ of the reservoir
has a greater release risk than the SWI in the reservoir. In summer, the inflow runoff easily
carries nutrients, resulting in an increase in internal load.

For this reason, the Management Bureau Biliuhe Reservoir in Dalian City established
a multi-stage impermeable submerged dam perpendicular to the flow direction at the
appropriate location of the inflow of the WLFZ in 2019. It is utilized to intercept surface
runoff and underground seepage, elevate the water level of the main channel, mitigate flow
velocity in the main channel, enhance hydraulic retention time and purification capacity
of the inflow of the WLFZ for suspended solids and pollutants carried by inflow runoff,
prevent continuous erosion of the main channel by runoff, and provide more favorable
flow conditions for aquatic plant growth. The findings of our study, however, indicate
that the release of N and P from the sediment in the reservoir within the WLFZ cannot be
disregarded. Therefore, for the pollution of the WLFZ of the reservoir, common restoration
methods such as algae salvage, ecological restoration and sediment dredging can be used
to control the eutrophication of the reservoir. For areas with high internal release fluxes,
such as BLH3 and BLH4 of the tributary (Figures 8 and 9), dredging can be used to remove
internal contaminants. Ecological restoration can be implemented in areas with low fluxes,
such as BLH1 situated in the main stream. However, considering the persistent impact
of residential areas on water quality in the three tributaries of the reservoir, it is crucial
to enhance external pollution control measures and implement integrated management
strategies for both internal and external sources in order to effectively restore the water
quality of this eutrophic reservoir.

Table 3. The water quality of Biliuhe Reservoir was compared with WHO drinking water quality
standards and standards for drinking water quality in China.

Indicators WHO [69]
Standards for

Drinking Water
Quality in China [70]

Biliuhe Reservoir

pH 6.5–8.5 6.5–8.5 8.3
NO3

− (measured by N) 10 mg/L -- 2.14 mg/L
NH4

+ (measured by N) 1.5 mg/L 0.5 mg/L 0.08 mg/L



Water 2023, 15, 3659 19 of 23

Table 3. Cont.

Indicators WHO [69]
Standards for

Drinking Water
Quality in China [70]

Biliuhe Reservoir

Cu 1.0 mg/L 1.0 mg/L 0.01 mg/L
Zn 5.0 mg/L 1.0 mg/L 0.02 mg/L
F 1.5 mg/L 1 mg/L 0.03 mg/L

Cd 0.005 mg/L 0.005 mg/L 0.0005 mg/L
Cr 0.05 mg/L 0.05 mg/L 0.004 mg/L
Pb 0.05 mg/L 0.01 mg/L 0.0025 mg/L

(CN)2 0.1 mg/L 0.05 mg/L 0.004 mg/L
SO4

2− 400 mg/L 250 mg/L 26.38 mg/L
Fe 0.3 mg/L 0.3 mg/L 0.003 mg/L
Mn 0.1 mg/L 0.1 mg/L 0.001 mg/L

Turbidity 5 NTU 1 NTU 1.13 NTU

Coliform bacteria
It cannot be detected

in any 100 mL
water sample.

It cannot be detected
in any 100 mL
water sample.

23 MPN/100 mL

Total hardness
(measured by CaCO3) 500 mg/L 450 mg/L 89.6 mg/L

Chromaticity 15 TCU 15 TCU 5 TCU
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5. Conclusions

Through the analysis of N and P distribution characteristics and release behavior of N
and P in the sediment of the WLFZ in Biliuhe Reservoir, the following can be concluded:

(1) The sediment in NH4
+-N acts as the primary source of nutrients for the overlying water,

with the concentration of NH4
+-N in sediments playing a crucial role in determining

the water quality of Biliuhe Reservoir. The average concentration of NO2-N in the
overlying water was significantly higher than that in the interstitial water, indicating
predominant adsorption of NO2-N in the sediments of the WLFZ. Conversely, TP
and PO4

3− demonstrate limited migration and diffusion potential, indicating that
elevated concentrations of N pollution are the primary driver of eutrophication in
Biliuhe Reservoir during summer.

(2) The sedimentary flux of nitrogen and phosphorus released by the main stream is lower
than that of the tributary. The findings demonstrate that the water diversion project
situated in the main stream has a scouring effect on the sediments of the WLFZ at this
specific location, resulting in lower nutrient content within the sediments of the main
stream compared to its tributaries. We hypothesize that the implementation of the
water diversion project may impact the release of sediment nutrients in the WLFZ,
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leading to a need for reassessment of N and P release fluxes from drinking water
reservoirs worldwide in order to fully comprehend endogenous pollutant releases.

(3) DO, turbidity and chlorophyll-a are the primary factors driving N and P release in
sediments within the WLFZ. The submergence of exposed sediments, particularly
within the WLFZ, will lead to an increase in N and P loading within the sediment due
to microbial respiration and organic matter decomposition. Maintaining a specific
dissolved oxygen concentration in the overlying water of the WLFZ suppresses the
diffusion of sediment nutrients.

(4) Ecological restoration can be implemented in areas with low fluxes. The high release
fluxes from the three tributaries can be managed through sediment dredging and algae
harvesting in affected areas. This study highlights the influence of environmental
factors on the transformation and diffusion of source N and P in the WLFZ of a
drinking water reservoir, providing a robust theoretical foundation for effectively
managing N and P pollution in aquatic systems within this region.
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