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Abstract: Cyanide (CN) is a toxic environmental pollutant generated by various industrial activities,
necessitating the application of bioremediation techniques for its degradation. Biodegradation is a
more cost-effective and environmentally friendly technique with high efficiency in CN removal. This
study isolated cyanide-degrading bacteria from Tutupaca mining site soil from Tacna, Peru. Bacillus
subtilis strain TT10s was selected for its exceptional capacity to rapidly and completely eliminate
cyanide under alkaline conditions (pH 10.5), removing 1000 ppm cyanide within 48 h. A kinetic
analysis revealed that the biodegradation follows second-order rate kinetics (k2 = 0.08649 mg/(mg·h),
R2 = 0.96622), consistent with the literature attribution of the rate-limiting step to the inducible
cyanide dihydratase enzyme, which converts cyanide into ammonia and formate via the Michaelis–
Menten model. Fourier-transform infrared spectroscopy (FTIR) spectral analysis further corroborated
this enzymatic mechanism, showing the disappearance of CN peaks coupled with the emergence
of ammonia (NH) and formate (C=O) peaks. Quantitative kinetic modelling integrated with FTIR
profiles and degradation curves implicates cyanide dihydratase as the key rate-controlling enzyme in
alkaline cyanide biodegradation without the need for an extra carbon source, generating interest for
future bioremediation applications in highly contaminated environments.

Keywords: bioremediation; cyanide; Basillus subtilis

1. Introduction

Cyanide is a highly toxic pollutant generated from industrial activities like electroplat-
ing [1], mining [2], the production of organic chemicals [3], and others.

Cyanide is extensively used in mining, and Peru is not immune to the environmental
impacts of cyanide [4] due to it being extensively used for gold and copper extraction [5].
This has resulted in severe environmental impacts from cyanide spills [4], leaks [6], and the
improper discharge of contaminated wastewater into rivers and lakes, which has been ex-
acerbated by the Peruvian government declaring states of emergency in certain regions [7].
Conflicts have emerged over water quality and supply between mining companies and
local communities throughout Peru, especially in agricultural regions dependent on clean
water [8,9]. Peru has developed regulations on cyanide use and discharge limits [10];
however, the strict enforcement of these regulations is necessary to ensure their efficacy, as
stakeholders may ignore them.

Studies have detected high levels of cyanide contamination in different rivers in
Tumbes [11], Tacna [12,13], Amazonas [14], Piura [15], Arequipa [16,17], and other regions
in Peru, likely originating from legal and illegal mining operations [18].

The Tacna region in Peru faces several environmental liabilities left behind by aban-
doned informal mines where various materials, including cyanide, were used for gold,
copper, and sulfur processing, reaching concentrations of up to 92 mg/kg of free cyanide
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in the Cano community [13]. These sites are located close to rivers, leading to risks of water
contamination that could have negative effects on the environment and health of people
consuming the polluted water [13].

The accumulation of cyanide in the environment poses risks to ecosystems and human
health due to its ability to inhibit essential metalloenzymes [19,20]. Conventional physico-
chemical methods for cyanide removal have limitations like high costs, secondary pollution,
and the inability to completely destroy cyanide [21]. Bioremediation techniques using mi-
crobes provide a promising, eco-friendly solution to decontaminate cyanide-polluted sites
and prevent further environmental damage [22,23]. A range of bacterial species have been
studied for their ability to degrade cyanide, either as the sole source of nitrogen or co-
metabolically with other substrates. Common cyanide-degrading bacteria include species
from the genera Pseudomonas, Bacillus, Klebsiella, Burkholderia, and Rhodococcus. Within the
Pseudomonas genus, P. pseudoalcaligenes [24], P. fluorescens [25], and P. putida [26] display
cyanide removal capabilities. Bacillus megaterium [27], B. subtilis [28], B. pumilus [29], and B.
cereus [30] strains have also been investigated. Other promising cyanide-degrading bacteria
include Klebsiella oxytoca [31], Burkholderia cepacia [32], and Rhodoccocus sp. [33]. These
bacteria possess enzymes like cyanide dioxygenase, cyanidase, nitrilase, and rhodanese
that allow them to transform cyanide into less toxic byproducts [34].

Bacillus subtilis, a ubiquitous Gram-positive bacterium, has been extensively studied for
its cyanide removal abilities, making it a promising candidate for bioremediation [28,35–37].
Under alkaline conditions (pH 9–10), B. subtilis can efficiently degrade high cyanide con-
centrations (900 ppm) by expressing cyanide dihydratase enzymes [30].

Alkaline conditions favor cyanide biodegradation by reducing the volatilization of
toxic HCN gas, enabling complete cyanide mineralization [34]. The high pH also provides
selective advantages to alkaliphilic B. subtilis to outcompete other microbes. Nutrient sup-
plementation further enhances cyanide transformation by stimulating bacterial growth [38].
Immobilized cells and genetically engineered strains of B. subtilis with increased cyanide
dihydratase expression can be applied for efficient cyanide remediation [39].

The use of bacteria offer advantages for cyanide bioremediation, such as rapid growth,
the ease of genetic modification, and an ability to withstand harsh conditions [40]. They can
degrade high cyanide concentrations, operate over a range of pH levels and temperatures,
and require simple nutritional inputs [30]. Applications as suspended cultures or immo-
bilized cells enhance the stability and cyanide degradation capacity [41]. Additionally,
engineered and alkaliphilic bacterial strains can be designed for optimized biodegradation
under specific conditions [42].

In this study, we isolated and identified a native bacterial consortium from a sulfur
mining environmental liability in Tacna, Peru. The consortium was enriched from tailing
soil samples under alkaline conditions (pH 10.5) to select for bacteria adapted to the high
pH, and relevant higher cyanide concentration parameters for cyanide-containing mining
effluents. Batch biodegradation experiments were conducted to evaluate the cyanide
removal kinetics and the efficiency of the selected bacterial strain at an alkaline pH using
initial cyanide concentrations and conditions representative of real mining wastewaters.

Fourier-transform infrared (FTIR) spectroscopy was used to study the functional
groups of compounds made during the biodegradation of alkaline cyanide to figure out
the specific biochemical mechanisms and pathways involved.

2. Materials and Methods
2.1. Sample Collection

Soil samples were collected in high density polypropylene bags from the Tutupaca
(east 0358602; north 8113940; altitude 4687 m.s.n.m.) mining environmental liabilities
located in the Candarave province of Tacna, Peru. The soil samples were then homogenized
and sieved to obtain 100 g of each soil sample. These were cultured in 500 mL Erlenmeyer
flasks containing 100 mL of sterile distilled water, which was homogenized for 15 min to
obtain the supernatant. To enrich and isolate alkaliphilic bacteria, 10 mL of the supernatant
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was diluted in 90 mL of sterile nutrient broth (Merck Company, Darmstadt, Germany) and
incubated at 30 ◦C for 24 h at 150 rpm. Then, 10 mL of this culture was inoculated into 90 mL
of nutrient broth with the pH adjusted to 10.5 using sterile 0.1 N NaOH, and incubated at
30 ◦C for 24 h at 150 rpm. This alkaline-adapted culture was then streak-plated on nutrient
agar plates (Merck Company, Darmstadt, Germany) to isolate and purify bacterial colonies
capable of growing at pH 10.5 [30]. The obtained samples were labeled as TT1s, TT3s, TT7s,
TT8s, TT9s, TT10s, TT11s, and TT13s, respectively.

2.2. Bacterial Isolation

To detect cyanide-degrading bacteria, 10 mL of the enriched culture was transferred to a
250 mL Erlenmeyer flask containing 100 mL of M9 minimal medium (g/L): Na2HPO4·7H2O
(12.8); KH2PO4 (3); NaCl (0.5); MgSO4·7H2O (0.5); CaCl2 (0.1); 0.2% (w/v) sodium acetate;
0.2% (w/v) yeast extract; and 1% (v/v) mineral salt solution containing (g/L): ZnSO4·7H2O
(0.05); MnCl2·4H2O (0.05); CuCl2·2H2O (0.005); Na2MoO4·2H2O (0.005); Na2B4O7·10H2O
(0.002); and CoCl2·6H2O (0.0003). This was supplemented with NaCN concentrations from
100 to 1000 ppm, with the pH adjusted to 10.5 using sterile NaOH. After incubation, the via-
bility of the isolated bacteria at each NaCN concentration was verified by streak-plating on
nutrient agar plates. An alkaline pH above 10.5 was maintained to minimize the volatiliza-
tion of cyanide as HCN [43–45]. Bacteria viable at cyanide levels above 1000 ppm were
selected for further characterization based on their cyanide degradation potential. Gramme
staining and biochemical testing were performed to verify the microscopic characteristics
and taxonomy of the isolates [44].

2.3. Sequencing and Molecular Identification

To perform the high-throughput sequencing of bacterial genomes, high molecular
weight genomic DNA was first extracted from pure cultures grown on Luria Bertani agar
for 24 h at 35 ◦C. The InnuPREP Bacteria DNA Kit (Analytik Jena, Jena, Germany) was
used for extraction, which employs enzymatic, mechanical, and chemical lysis for robust
cell disruption followed by selective DNA binding to a silica spin filter for purification.
DNA concentrations were then accurately quantified through fluorometry using a Qubit 4
fluorometer (Life Technologies, Carlsbad, CA, USA). For sequencing library preparation,
100 ng of genomic DNA was fragmented, end-repaired, and ligated with Illumina adapters
using the Illumina DNA Prep workflow (Illumina, Granta Park, UK). Unique dual indexes
from the Nextera DNA CD Indexes kit (Illumina, Granta Park, UK) were added to libraries
during PCR enrichment to enable the multiplexing of samples. Finally, libraries were
sequenced as 2 × 151 bp paired-end reads on the Illumina Miseq platform using a 600-cycle
reagent kit. The 16S rRNA gene sequence obtained from the potential cyanide-degrading
bacterial isolate was analyzed via a comparative identity search using the BLAST (Basic
Local Alignment Search Tool) against the National Center for Biotechnology Information
(NCBI) database.

2.4. Bacterial Growth Kinetics

Bacterial growth kinetics were quantified by optical density measurements and viable
plate counting. Optical density at 600 nm (OD600) was measured using a spectrophotometer
(Epoch 2c, Biotek, Winooski, VT, USA) to generate high-throughput growth curves showing
population expansion over time. This provided an indirect estimate of the overall cell
density in the culture [45]. However, OD600 does not discriminate between viable and
dead cells. Therefore, viable plate counting was also carried out through dilution plating
on agar and colony formation, allowing the direct quantification of colony-forming units
(CFU).

2.5. Cyanide Biodegradation

To study the cyanide degradation capability of the selected alkaliphilic bacterial iso-
lates, 150 mL of the M9 minimal medium was prepared and supplemented with 1000 ppm
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sodium cyanide. This was inoculated with the bacteria at a density of 107–108 cells/mL
and incubated at 35 ◦C for 48 h with aeration at 0.2 VVM. Aliquots were taken at specific
time intervals in triplicate to quantify the remaining cyanide concentration over time. The
concentration of free cyanide in aliquots was determined using a titrimetric method based
on Standard Methods 4500-CN-D [46]. This method relies on the reaction between silver
nitrate (AgNO3) and cyanide ions (CN−) in alkaline solution to form the soluble complex
silver cyanide (Ag(CN)). Specifically, a 10 mL aliquot of the sample was analyzed by adding
3 drops of potassium iodide (KI), which acts as an indicator. The sample was then titrated
with a standardized AgNO3 solution. The Ag+ ions reacted with CN− until all free cyanide
had been consumed, at which point excess Ag+ reacted with the KI− indicator to form a
precipitate, marking the endpoint. The amount of AgNO3 required to reach this endpoint
allows the quantification of the original free cyanide concentration. A ratio proposed by
Copari et al. [12] was used to calculate the concentration, where 1 mL of AgNO3 titrant
corresponds to 20 ppm of free cyanide (CN−) in the sample.

The cyanide degradation efficiency (DE) of the bacterial strain was calculated using
the following formula [47]:

DE =
Ic − Rc

Ic
·100

where Ic is the initial concentration of cyanide (mg/L) and Rc is the residual concentration
of cyanide (mg/L) after treatment.

2.6. Kinetic Biodegradation Models

To analyze the kinetics of cyanide biodegradation by the microorganisms, first- and
second-order rate models were fit to the experimental data [48]. The first-order model
assumes the reaction rate is proportional to the cyanide concentration, described mathe-
matically as

dS
dt

= k1S

where S is the cyanide concentration (mg/L), t is time (h), and k1 (1/h) is the first-order
rate constant. The integration of this differential rate law gives

S = S0e−k1t

where S0 is the initial cyanide concentration (mg/L).
The second-order model assumes a more complex kinetic rate law proportional to

both cyanide concentration and biomass concentration:

dS
dt

= −k2SX

where X is biomass concentration (mg/L) and k2 is the second-order rate constant
(mg/(mg·d)). This integrates to

ksln
(

S
S0

)
+ S − S0 = −k2t

where ks is the half-saturation coefficient (mg/L).
These kinetic models were fit to experimental cyanide degradation data to estimate

rate constants. The model providing the best fit, as determined by the highest correlation
coefficient (R2), suggests the order of reaction and rate-limiting steps.

2.7. Analytical Methods

To study the degradation and transformation of cyanide over time, samples were
collected at 0, 24, and 48 h. The samples were centrifuged at 8000 rpm for one minute to
separate the cells from the supernatant. The cell-free supernatant was then analyzed using a
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Fourier-transform infrared spectrometer (FTIR) equipped with an attenuated total reflection
(ATR) accessory (Bruker Optics, Invenio R, Ettlingen, Germany). FTIR-ATR provides a
rapid, non-destructive method to characterize molecular changes in the supernatant, letting
us investigate the metabolic conversion of cyanide and identify intermediates and products
formed during biodegradation. For each sample, spectra were recorded from 4000 to
400 cm−1 at a resolution of 2 cm−1. Twenty scans were co-added to improve the signal-to-
noise ratio, and the average spectrum was used for analysis.

3. Results
3.1. Bacterial Isolation and Selection

Thirteen bacterial strains were isolated from soil samples collected at the Tutupaca
mining site in Perú, which represents an environmental liability due to legacy contami-
nation. Of these isolates, strains TT1s, TT3s, TT7s, TT8s, TT9s, TT10s, TT11s, and TT13s
demonstrated growth viability in the presence of 100 ppm, 50 ppm, 300 ppm, 300 ppm,
600 ppm, 1000 ppm, 1000 ppm, and 600 ppm cyanide, respectively, at an alkaline pH of
10.5 (Figure 1). The isolates included Gram-negative and Gram-positive rods and cocci,
with a predominance of Gram-positive, spore-forming bacilli (Table 1).
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Concentrations at pH 10.5 in 9 M minimal mineral medium.

Table 1. Morphological features of CN−-resilient bacterial strains.

Bacterial Code Gram Reaction Cell
Morphology

Spore
Formation Motility

TTs1 Positive Rod chain + +
TTs3 Negative Rods chain − −
TT7s Negative Rod − +
TT8s Positive Coco − −
TT9s Positive Rods + +

TT10s Positive Rods + +
TT11s Positive Rods chain + +
TT13s Negative Rods − +
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The ability of these native isolates to tolerate high cyanide levels under alkaline condi-
tions reflects adaptations to the selective pressure imposed by legacy mining pollution at
the site [49]. The predominance of Bacillus species is consistent with prior research showing
their competence in alkaline cyanide biodegradation [50–52]. The cyanide tolerance of
these isolates suggests they likely possess enzymatic pathways for cyanide transformation
as a detoxification mechanism [53].

The various biochemical assays were performed for the selection strain TT10s, due to
its capacity for viable survival up to 1000 ppm and its quick growth. The results coincided
with the genus Bacillus (Table 2) [54]. Specifically, TT10s was found to be catalase and
oxidase positive, methyl red negative, Voges–Proskauer positive, urease negative, able to
use citrate, and capable of nitrate reduction. The strain could utilize glucose, mannitol,
lactose, D-xylose, and sucrose as sole carbon sources, but not maltose [55]. No indole
production was detected. Taken together, these biochemical characteristics are consistent
with Bacillus spp. [56], supporting the identification of TT10s as a novel Bacillus strain with
potential industrial applications due to its high tolerance to toxins.

Table 2. Biochemical analysis of CN−-resilient bacterial strain TT10s.
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3.2. Molecular Identification

The 16S rRNA gene sequence of the isolated strain TT10s was elucidated using the
BLAST alignment tool and compared to nucleotide sequences in the NCBI GenBank
database. The nearly complete 1538 bp sequence exhibited 100% similarity with three
Bacillus species: Bacillus rugosus (sequence IDs: MT554518.1, NR_181236.1, CP096590.1),
Bacillus subtilis (sequence IDs: CP 025941.1, CP 018172.1, KR967391.1, OL636042.1), and
Bacillus stercoris (sequence IDs: CP126678.1, CP124601.1). A phylogenetic analysis using the
maximum likelihood algorithm positioned TT10s within the B. subtilis clade with strong
bootstrap support. Taken together, this molecular identification aligned with the observed
morphological properties of TT10s, including Gram-positive rods that form endospores
and biochemical characteristics such as catalase and urease activity and the ability to uti-
lize D-xylose and citrate (Tables 1 and 2). Based on an integrative taxonomic analysis of
phenotypic, microscopic, and 16S rRNA sequence data, the isolated bacterial strain TT10s
can be definitively classified as belonging to Bacillus subtilis because this species is urease
positive and D-xylose negative, in contrast to Bacillus stercoris and Bacillus rugosus, which
are negative and positive, respectively [57–59]. The gene sequence was deposited in the
GenBank nucleotide archive under accession number OR505001 for reference.

3.3. Growth Kinetics

The relation between the OD optical density and the natural logarithm of the bacterial
growth in CFU/mL of the TT10s bacterium was determined by means of a linear adjustment
of its growth curve (Figure 2), determining an R2 of 0.94 for the TT10s bacterium. Although
this method may interfere with the results, due to the detection of non-cellular solids in
the samples, it is advantageous due to its speed and automation [60]. For this reason, this
calibration curve was made with replicas to estimate the bacterial growth of live cells in the
biodegradation process of the TT10s bacterium.
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Figure 2. Linear fitting of bacterial growth for bacterial strain TT10s in OD600 (Abs) and Ln plate
count (CFU/mL).

3.4. Cyanide Biodegradation

The biodegradation study of free cyanide was carried out via sampling every 6 h
for the bacterial strain TT10s, as it was the strain with the greatest viability capacity at
concentrations up to 1000 ppm in the M9 mineral medium at a pH of 10.5, temperature
of 35 ◦C, and 0.2 vvm. This TT10s bacterial strain presented a degradation of 1000 ppm
cyanide in less than 48 h (Table 3), with a degradation efficiency of up to 100% at 48 h and a
maximum bacterial growth of up to 1.583 × 101 (ln CFU/mL) at 18 h (Figure 3).

Table 3. Cyanide degradation efficiency (%) and Ln bacterial growth (CFU/mL) for TT10s bacteria.

Time
(h)

CN− Degradation
Efficiency

(%)
SD Plate Count Ln

(CFU/mL) SD

0 0.00 0.00 15.70 0.00
6 20.67 1.53 15.55 0.04
12 41.07 1.10 15.64 0.09
18 63.60 0.40 15.83 0.06
24 86.87 2.58 15.58 0.03
30 90.80 2.23 15.51 0.05
36 94.53 0.46 15.38 0.05
42 99.63 0.06 15.26 0.01
48 100.00 0.00 15.18 0.01

Bacterial growth was measured with ln CFU/mL, and peaked at 1.583 × 101 at 18 h
before decreasing. This growth curve is typical for batch culture, with exponential growth
followed by stationary and death phases [30].

The rapid and complete cyanide biodegradation by TT10s demonstrates its potential
for industrial applications in treating cyanide waste streams compared to other bacterial
strains, according to Table 4. The alkaline conditions prevented volatile HCN formation,
enhancing process safety [61].



Water 2023, 15, 3645 8 of 15

Water 2023, 15, x FOR PEER REVIEW 8 of 16 
 

 

Pseudomonas, Klebsiella, and other Bacillus species strains, which required longer times 
or achieved only 60–90% removal at lower cyanide loadings and pH. The kinetic analysis 
indicates the specialized enzymatic pathways of TT10s enabled uniquely efficient cyanide 
metabolism rates even at elevated pH where volatile toxic HCN production is minimized. 
The rapid total degradation by TT10s shows great promise for the industrial bioremedia-
tion of alkaline cyanide effluents compared to currently studied bacteria. 

 
Figure 3. Cyanide degradation efficiency% in relation to time and Bacillus subtilis bacterial growth 
within 48 hours. 

Table 3. Cyanide degradation efficiency (%) and Ln bacterial growth (CFU/mL) for TT10s bacteria. 

Time 
(h) 

CN− Degradation 
Efficiency 

(%) 
SD Plate Count Ln 

(CFU/mL) 
SD 

0 0.00 0.00 15.70 0.00 
6 20.67 1.53 15.55 0.04 

12 41.07 1.10 15.64 0.09 
18 63.60 0.40 15.83 0.06 
24 86.87 2.58 15.58 0.03 
30 90.80 2.23 15.51 0.05 
36 94.53 0.46 15.38 0.05 
42 99.63 0.06 15.26 0.01 
48 100.00 0.00 15.18 0.01 

Table 4. Cyanide biodegradation performances of various bacteria. 

Bacterium Experimental Conditions Cyanide 
Degradation 

Reference 

Bacillus subtilis 48 h, pH 10.5, 30 °C, 1000 mg/L initial cya-
nide 

100% Present work 

Pseudomonas putida 24 h, pH 9, 30 °C, 100 mg/L initial cyanide 90% [26] 
Pseudomonas fluorescens 48 h, pH 7, 30 °C, 50 mg/L initial cyanide 80% [62] 

Bacillus sp. 
96 h, pH 9.88, 33.6 °C, 500 mg/L initial cya-
nide 99% [51] 

Klebsiella pneumoniae 72 h, pH 7, 25 °C, 25 mg/L initial cyanide 87% [63] 
Bacillus cereus 48 h, pH 7, 37 °C, 100 mg/L initial cyanide 95.87% [64] 

Figure 3. Cyanide degradation efficiency% in relation to time and Bacillus subtilis bacterial growth
within 48 h.

Table 4. Cyanide biodegradation performances of various bacteria.

Bacterium Experimental Conditions Cyanide
Degradation Reference

Bacillus subtilis 48 h, pH 10.5, 30 ◦C, 1000 mg/L initial cyanide 100% Present work
Pseudomonas putida 24 h, pH 9, 30 ◦C, 100 mg/L initial cyanide 90% [26]
Pseudomonas fluorescens 48 h, pH 7, 30 ◦C, 50 mg/L initial cyanide 80% [62]
Bacillus sp. 96 h, pH 9.88, 33.6 ◦C, 500 mg/L initial cyanide 99% [51]
Klebsiella pneumoniae 72 h, pH 7, 25 ◦C, 25 mg/L initial cyanide 87% [63]
Bacillus cereus 48 h, pH 7, 37 ◦C, 100 mg/L initial cyanide 95.87% [64]

The isolated Bacillus subtilis strain TT10s demonstrated exceptionally rapid and com-
plete cyanide degradation under alkaline conditions compared to the other bacteria studied.
As shown in Table 4, TT10s achieved a 100% removal of a high initial cyanide concentration
of 1000 mg/L within 48 h at pH 10.5, significantly outperforming various Pseudomonas,
Klebsiella, and other Bacillus species strains, which required longer times or achieved only
60–90% removal at lower cyanide loadings and pH. The kinetic analysis indicates the spe-
cialized enzymatic pathways of TT10s enabled uniquely efficient cyanide metabolism rates
even at elevated pH where volatile toxic HCN production is minimized. The rapid total
degradation by TT10s shows great promise for the industrial bioremediation of alkaline
cyanide effluents compared to currently studied bacteria.

3.5. Kinetic Models

Kinetic modeling was performed to elucidate the rate law and mechanisms governing
cyanide biodegradation by Bacillus subtilis. Determining the most appropriate model that
accurately depicts the kinetics is crucial for mechanistic insight. The experimental data
strongly fit a second-order rate model (k2 = 0.08649 mg/(mg·h), R2 = 0.96622) better than
a first-order model (k1 = 0.11394 1/h, R2 = 0.8514), as shown in Figure 4. Several factors
justify selecting the second-order kinetics, but principally they exhibited a statistically
stronger empirical fit with a higher coefficient of determination (R2), agreeing with the
literature in showing second-order dependence on the rate-limiting cyanide dihydratase
enzyme [26,34,65]. Cyanide dihydratase catalyzes the conversion of cyanide to ammonia
and formate via Michaelis–Menten kinetics as an inducible enzyme requiring cyanide as a
substrate [65–68]. The higher coefficient of determination (R2) and lower second-order rate
constant (k2) compared to the first-order rate constant (k1) indicate that the second-order
model more accurately reflects the enzymatic rate-limiting mechanism. Additional evidence
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comes from the observed lag phase, of up to 12 h, attributed to enzyme induction [69],
an exponential phase from 12 to 30 h as enzyme levels increase, and a plateau after 30 h,
indicating saturation kinetics.
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3.6. FTIR Spectroscopy Analysis

The FTIR spectra shown in Figure 5 indicate several key changes occurring during
the 48 h period that align with cyanide being degraded into ammonia and formate by the
Bacillus subtilis strain via the cyanide dihydratase enzymatic pathway.
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Figure 5. FTIR spectra of supernatant samples taken at initial time, 24, and 48 h.

Specifically, the peaks at 2120–2260 cm−1 corresponding to C≡N stretching vibra-
tions [70] decreased over time. This directly reflects cyanide levels being metabolized
by the bacteria. Concurrently, a broad peak around 3300 cm−1 is associated with OH
and NH vibrations and this increased as the end product ammonia built up [71]. A third
notable change is the growth of the peak at 1550–1750 cm−1 related to C=O vibrations from
generated formate [72].
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Taken together, the kinetic disappearance of cyanide bands and the emergence of
ammonia and formate features provide strong spectroscopic evidence corroborating the
proposed cyanide dihydratase mechanism. The second-order rate behavior reflects how
this inducible enzymatic process controls the biodegradation pace.

4. Discussion

Cyanide is a highly toxic compound to living organisms that is used in various
economic activities, mainly related to mining [73,74]. These mineral extraction activities
generate wastes contaminated with heavy metals or toxic substances like CN that disperse
into the environment [13,75]. This study isolated eight bacterial strains from a soil sample
with sulfur mining residues that could tolerate 50–1000 ppm CN under alkaline conditions
(Figure 1). Strain TT10s was identified as Bacillus subtilis and chosen for further study
due to its exceptional ability to withstand and degrade high cyanide concentrations under
alkaline conditions compared to prior B. subtilis strains and its rapid growth rate.

The identification of this species within a very diverse genus was accomplished
through its phenotypic characteristics in relation to nutritional requirements, growth condi-
tions (Tables 1 and 2), and DNA composition [76]. The 16S rRNA gene sequence confirms
TT10s as a B. subtilis strain, sharing 100% nucleotide similarity. However, TT10s possesses
unique functional capabilities, enabling rapid and thorough cyanide mineralization under
alkaline conditions relevant for mining effluents.

Previous studies reported a 92–500 ppm cyanide tolerance of B. subtilis isolates [28,77],
and TT10s survived up to 1000 ppm cyanide at pH 10.5. Additionally, TT10s achieved a
complete degradation of 1000 ppm cyanide in just 48 h (Figure 3), far exceeding the 60–72 h
timeframes for 500 ppm removal reported for other strains [28]. Other Bacillus species
degraded lower CN concentrations, like B. pumilus up to 500 ppm [73]. Many bacterial
genera like Pseudomonas, Rhodococcus, Klebsiella, and Bacillus can biodegrade CN, with
specific strains listed in Table 4. These bacteria likely use metabolic pathways to completely
degrade or transform CN into less harmful products [78,79], utilizing CN as nitrogen and
carbon sources [34,80].

Degradation kinetics revealed a second order rate (k2 = 0.08649 mg/(mg·h),
R2 = 0.96622) (Figure 4). The second-order rate law integrates both reactant (cyanide)
and biocatalyst (bacterial cells) concentrations, consistent with the reaction being mediated
by inducible bacterial enzymes that increase in amount with microbial growth [81]. Specifi-
cally, the cyanide dihydratase enzyme was synthesized by Bacillus subtilis in response to
cyanide, which served as both inducer and substrate. Thus, the reaction rate depended on
the concentrations of both cyanide and induced cyanide dihydratase, aligning with the
second-order model [28].

Based on FTIR analysis (Figure 5), the hydrolytic pathway in B. subtilis produced am-
monia and formate, characteristic of enzymatic CN triple bond cleavage mediated by water
molecules [34,82]. B. subtilis convered this pollutant into less toxic substances [83]. Similar
traits occurred in B. safensis, B. cereus, and B. pumilus, degrading CN enzymatically via
cyanide dihydratase into ammonia and formate, with active enzymes up to pH 9 [22,84–86].
Some Bacillus species do not require cofactors for CN degradation [85,86]. The ability of B.
subtilis to degrade CN without extra carbon sources at pH up to 10.5 shows its degradation
enzyme functions under high pH levels, CN concentration, and without other nutrients.

Unlike other bacteria, that require additional nutrients to be more efficient in the
biodegradation process [87,88], this bacterium performed the biodegradation process at a
pH adjusted to 10.5 so that the CN remained dissolved in the medium rather than trans-
forming into HCN [89]. This parameter provides an advantage and is one of the most
important factors during biodegradation treatment [30,90]. Because Bacillus species are key
producers of extracellular proteases, with potential applications to function and maintain
stability under extreme alkaline conditions between pH 9–12 through sophisticated intra-
cellular proton transport mechanisms for their growth [80], these proteases are induced
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for production by medium conditions like pH, temperature, and aeration, and strongly
influenced by the available carbon and nitrogen components [81].

Using bacteria like B. subtilis for biodegradation with advantageous traits can enable
applications in contaminated environments in an eco-friendly manner with minimal toxic
byproducts [83]. Optimal conditions like temperature, pH, aeration, and nutrient avail-
ability should be ensured for efficient CN removal [74,91]. Bacterial biodegradation, with
85–98% efficiency, is more economical and eco-friendly than physical/chemical methods,
generating minimal waste [73]. The highly efficient cyanide degradation capacity of the
Bacillus subtilis strain under alkaline conditions holds significance for mitigating cyanide
pollution from diverse industries like mining, textiles, metal finishing, and other industries
that generate alkaline effluents [26]. Due to this, conventional remediation methods are
hampered by variations in conditions, high costs, and hazardous byproducts [3].

At present, research efforts are crucial to fine-tune the biodegradation process of
B. subtilis and elucidate its genetic underpinnings concerning cyanide degradation. The
harnessing of B. subtilis holds immense potential for effective cyanide remediation in both
aquatic and terrestrial ecosystems affected by contamination. This versatile bacterium
presents an opportunity for the low-cost, environmentally friendly cleanup of cyanide-
contaminated waters and soils, particularly at lower pH ranges. The progress made in this
research sets a pivotal foundation for the development of a sustainable and eco-friendly
biotechnological solution, addressing the pressing challenges posed by cyanide pollution.

5. Conclusions

This study isolated a novel Bacillus subtilis strain designated TT10s from mining
environmental liabilities that demonstrated efficient cyanide biodegradation capacity.

The analysis of the 16S rRNA gene sequence established the phylogenetic classification
of TT10s as Bacillus subtilis. This novel isolate displayed rapid adaptation and cyanide
degradation under alkaline conditions with no need for extra carbon source conditions.

The biodegradation experiments showed that Bacillus subtilis demonstrated excep-
tional cyanide degradation capacity under alkaline conditions of pH 10.5, achieving the
100% removal of an initial cyanide concentration of 1000 ppm in less than 48 h.

Kinetic experiments revealed that the cyanide degradation followed second-order rate
kinetics (k2 = 0.08649 mg/(mg·h) and R2 = 0.96622), with dependence on both cyanide
concentration and bacterial density.

The quantitative kinetics aligned with an enzymatic mechanism governed by cyanide
dihydratase, which converts cyanide into ammonia and formate. FTIR analysis provided
additional spectroscopic evidence supporting this enzymatic reaction. The kinetic and
FTIR data implicate cyanide dihydratase as the rate-controlling enzyme in alkaline cyanide
biodegradation by TT10s.
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