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Abstract: Human disturbance and climatic factors alter the hydrological state of rivers in many ways
and have a degree of negative impact on the quality of watershed habitats; quantifying the impact of
both human disturbance and climatic factors on hydrological change can help improve the quality of
watershed habitats. Therefore, in this research, an integrated watershed assessment framework is
proposed to analyse the watershed from four perspectives: hydrological situation, environmental
flows, drivers, and habitat quality. A meteorological streamflow model based on the Long Short-
Term Memory (LSTM) model was employed to analyse the hydrological evolution and quantify the
influence of the drivers from the perspective of hydrological and environmental flows. The Integrated
Valuation of Ecosystem Services and Tradeoffs (InVEST) model was then used to evaluate the spatial
and temporal evolution of habitat quality in the basin. And, finally, the grey correlation theory was
used to reveal the response of habitat quality to hydrological changes. Studies have shown that
annual flow and precipitation are increasing in the Xiangjiang River (XJR) basin, while its annual
potential evapotranspiration is decreasing significantly. After 1991, the hydrological conditions of
the XJR were highly variable, with the combined rate of change of the most Ecologically Relevant
Hydrological Indicators, ERHIs-IHA and ERHIs-EFCs, reaching 26.21% and 121.23%, respectively.
Climate change and human disturbance are the main drivers of change for both (with contributions
of 60% and 71%, respectively). Between 1990 and 2020, the habitat quality in the basin declined over
time (from 0.770 to 0.757), with areas of high habitat value located mainly in mountainous areas and
habitat degradation being concentrated in urban areas in the middle and lower reaches, gradually
evolving towards areas of high habitat value in the periphery. There is a strong correlation between
watershed habitat quality and the ERHIs. The results of the study can provide a scientific basis for
maintaining regional ecological security and rational allocation of water resources.

Keywords: ERHIs; LSTM model; InVEST model; habitat quality; comprehensive evaluation

1. Introduction

As the lifeblood of a watershed ecosystem, rivers perform an important ecological
service [1]. Although watershed ecosystems have a degree of self-healing capacity, today’s
climate extremes and frequent human disturbances threaten to break the ceiling of this
capacity. According to the Intergovernmental Panel on Climate Change (IPCC)’s Sixth
Assessment Report, the global average temperature rose by ca. 1.09 ◦C between 2011 and
2020, relative to pre-industrial times [2]. Myhre et al. [3] noted that extreme precipitation
events are expected to increase in frequency with global warming. Frequent human
disturbances are mainly reflected in the changes in land use caused by the construction
of water projects, industry, and agricultural development. It has been shown that only
37% of rivers over 1000 km that maintain free flow exist globally [4]. The above climatic
extremes and human disturbance are the two main causes of changes in natural river flow
patterns. Such unnatural changes can cause significant disruption to essential ecosystem
services throughout the basin, with some weakening of basic ecosystem functions including

Water 2023, 15, 3626. https://doi.org/10.3390/w15203626 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15203626
https://doi.org/10.3390/w15203626
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w15203626
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15203626?type=check_update&version=1


Water 2023, 15, 3626 2 of 27

material cycling and energy transfer, as well as negative impacts on basin habitat quality
(i.e., the ability of ecosystems to provide conditions suitable for the continued development
of individuals and populations) [5]. A prerequisite for ensuring the effective management
of water resources in a changing environment is the scientifically sound dissection of a
river’s hydrological evolution and its drivers, as well as the revealing of the habitat quality’s
response to hydrological change.

The Indicators of Hydrologic Alteration (IHA) were proposed by Richter et al. [6].
They are recognised as the most comprehensive set of indicators currently available for
assessing rivers’ hydrologic conditions, not only for systematically characterising flow
variability but also for establishing the ecosystem impacts associated with each indicator.
Song et al. [7] used the IHA-based Range of Variability Approach (RVA) to analyse data from
32 stations in China, finding that the rivers’ hydrological situation in China was moderately
variable. And, Gao et al. [8] found a significant reduction in the early fry of “four major
domestic fish” species in a study of fish stocks in the Hengyang and Changzhutan river
sections of the XJR. Moreover, Richter et al. [9], who proposed the Environmental Flow
Components (EFCs), suggested that maintaining adequate flows during dry periods is
essential to maintaining suitable river habitats, and that extreme flow events play an
important ecological function. Based on the IHA and the EFCs, Gunawardana et al. [10]
found that hydropower development within the Srepok River Basin primarily affects
decline rates and reversals. The IHA and the EFCs are now widely used globally, but in a
review of 171 hydrological indicators, Olden et al. [11] found that there was a sinkhole of
information between most indicators. Using the IHA, Smakhtin et al. [12] point out that
there is a high autocorrelation between annual minimum multi-day flows with a difference
of less than 6%, and that annual maximum multi-day flows exhibit the same characteristics.
Principal Components Analysis (PCA) is considered to be an effective method for solving
this problem. For the 32 IHA indicators, Cheng et al. [13] used PCA to successfully screen
seven ERHIs for the estimation of environmental flow at the outlet of Dongting Lake and
found that it could retain the valid information of the IHA well.

In addition, “observation–simulation” comparison is considered to be an important
method for quantifying the effects of human disturbance and climatic factors on flow
variability [14]. There are two types of models commonly used in streamflow simulation:
one is the hydrological model, which contains mainly distributed hydrological models,
and the other is the conceptual hydrological model. While the former’s simulations are
somewhat physical in nature, they are also problematic, with the large observational dataset
required and the numerous model parameters raising the threshold for their application.
The uncertainty in the model’s parameters and the spatial and temporal transformation
of the dataset are also problematic; furthermore, some of these models were developed
for specific study areas, thus limiting their applicability [15]. The latter model, while
having fewer model parameters, also limits its simulation time scales, with most conceptual
hydrological simulations stopping at the monthly scale flow level [16]. In response to
these problems, a large number of scholars have turned to methods for studying data
characteristics, and, with the rapid development of computers in recent years, data-driven
models such as artificial neural networks have been sought after by most scholars in the
field of hydrology, with the Long Short-Term Memory (LSTM) model being widely used
in hydrology. The LSTM models solve the problem of vanishing gradients in traditional
machine learning and eliminate long- and short-term dependence in time-series. Therefore,
it is more suitable for dealing with long time-series datasets, including simulating flow-
variation processes under natural conditions [17]. For example, Fan et al. [18] constructed a
meteorological streamflow model of the Poyang Lake basin based on the LSTM model and
realised the process of simulating the daily flow under natural conditions. Cao et al. [19]
also introduced this method and combined it with ecological flow indicators to quantify
the effects of climate change and human activities in terms of ecological water demand.

Human activities and climate change have influenced hydrological evolution and
disturbed watershed habitats’ quality [20]. In the early days, researchers focused on habitat-
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specific and biodiversity-based field surveys; however, this method is time-consuming
and expensive, suitable only for small-scale surveys, and is difficult to implement at the
catchment scale. With the rapid development of geo-information technology, ecological
models based on remote sensing techniques have been widely used to assess watershed
habitat quality [21]. One of the most established and commonly used models is the
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, developed
jointly by Stanford University, the University of Minnesota, the Nature Conservancy, and
the Wildlife Fund Society. Its strength lies in establishing a link between suitability and
threat for different land-use types and then assessing the distribution and degradation
according to the sensitivity of each habitat to the sources of threat. Using this model,
Zhang et al. [22] found that land-use changes in the Yangtze River Delta region between
1975 and 2010 led to a significantly reduced habitat quality.

In recent decades, the XJR basin has experienced rapid demographic, economic, indus-
trial, and agricultural development, as well as rapid urban expansion. These changes have
not only affected the alteration of river flow regimes in the basin but have also been ac-
companied by a degradation of habitat quality [23]. For example, urban expansion implies
the expansion of urban population, industrial development, etc., which will increase the
local water demand and affect the hydrological situation of rivers to some extent. Urban
expansion also leads to the loss of surrounding habitats, habitat fragmentation, and habitat
quality degradation, which seriously threatens biodiversity and human well-being [24].
Zeng et al. [25] conducted a study on the fish community of the Xiangjiang River. They
discovered that human activities have had a significant impact on the fish habitat, resulting
in a decline in fish biodiversity and abundance. In addition, the impact of human activities
and climate change on hydrology is multifaceted; for instance, in a given month, although
the average flow increases, the low flow may lower. Most previous studies have quantified
the amount of change in river runoff due to climate change and human activities based on
an annual scale, for instance, by applying the Budyko model [26]. And, few studies have
quantified the contribution of human activities and climate change to hydrologic change
in terms of hydrologic conditions and environmental flows, and few studies have linked
them to habitat quality. Therefore, this study proposes an integrated watershed assess-
ment framework to analyse watersheds from four perspectives: hydrological situation,
environmental flows, drivers, and habitat quality. This study is divided into four main
steps as follows: (1) The most Ecologically Relevant Indicators (ERHIs) were obtained by
screening for the IHA and the EFCs, respectively, using Principal Components Analysis
(PCA). (2) The reconstruction of flows in their natural state based on LSTM models and
the quantification of the effects of climatic factors and human disturbances on the hydro-
logical situation and environmental flows using a separation framework were carried out.
(3) Land-use data was used to construct the InVEST model in order to evaluate the spatial
and temporal evolutionary characteristics of the watershed habitat’s quality. And (4), the
relationship between hydrological change and watershed habitat quality through grey
correlation theory was revealed. The results of this study may provide a new idea for the
hydrological analysis of river basins and are expected to provide a scientific basis for the
management of water resources in the XJR and promote the ecological protection of the
river basin.

2. Study Area and Data
2.1. Study Area Overview

The XJR (110◦50′–114◦25′ E, 24◦5′–28◦25′ N) is located in the hilly region of southeast
China and is the largest tributary of the Dongting Lake system, as well as a first-class
tributary of the Yangtze River (Figure 1). The watershed has abundant precipitation and
a dense network of rivers, with a total length of 856 km on the main stream and an
asymmetrical feather pattern of tributaries on both sides of the river. The recharge source
of flow is mainly rainfall, which is influenced by its spatial and temporal distribution, and,
in its natural state, the flow in the XJR basin is very unevenly distributed within the year.
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As a result, a large number of reservoirs have been built on its main tributaries. But, this
has also led to significant changes in the natural hydrological situation of the XJR, which
has largely affected the habitat and biological abundance of the wetlands of the XJR basin
and Dongting Lake.
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2.2. Data Source and Processing

In this research, meteorological data from eight national meteorological stations in
the XJR basin and flow data from the XJR basin’s hydrological control station (Xiangtan
Station) were selected (Table 1 records the basic information of the relevant stations). In
particular, weather station data (including wind speed, relative humidity, temperature,
sunshine hours, and precipitation) are provided by the China Meteorological Data Service
Center (http://data.cma.cn/, accessed on 16 March 2022). The flow data from the Xiangtan
station is obtained from the Yangtze River Basin Hydrological Yearbook. The potential
evapotranspiration was calculated for each meteorological station using the Penman–
Monteith formula [27]. The Thiessen polygon principle was also used to calculate the
precipitation and potential evapotranspiration for the whole basin [28]. In addition, most
neural network models require normalized pre-processing of the dataset before simulation.
In this paper, the original dataset is pre-processed using a normalization formula to ensure
fast and stable convergence of the model, while the normalized output is subjected to a
corresponding denormalization operation; the specific steps can be found in [29]. The
land-use data used in the InVEST model (1990, 1995, 2000, 2005, 2010, 2015, and 2020) were
derived from the Data Center for Resources and Environmental Sciences of the Chinese
Academy of Sciences (http://www.resdc.cn, accessed on 16 March 2022).

http://data.cma.cn/
http://www.resdc.cn
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Table 1. Basic information on hydrological and meteorological stations.

Station Station Type Control Area (km2) Altitude (m) Longitude (E) Latitude (N)

Xiangtan Hydrological station 81,600.00 63.80 112.93 27.87
Chenzhou 10,601.17 368.80 112.97 25.73
Shuangfeng 11,905.68 100.00 112.17 27.45
Yongzhou 12,826.50 172.60 111.62 26.23
Daoxian Meteorological station 16,456.87 192.00 111.60 25.53
Zhuzhou 16,444.20 74.60 113.17 27.87
Guidong 6170.81 835.90 113.95 26.00
Hengyang 9593.82 104.90 112.60 26.88
Youxian 10,166.43 115.20 113.35 27.00

Note: The control area of the meteorological stations in the basin is calculated based on the Thiessen principle.

3. Methodology
3.1. Hydrological Variability Determination

The Mann–Kendall trend test determines whether there is a significant trend change
in the time-series data. In this study, the Mann–Kendall trend test was used to calculate
three series of flow, precipitation, and potential evapotranspiration in the Xiangjiang River
basin, and the specific principles can be found in [30]. When the statistic Z < 0 indicates
that the series shows a decreasing trend, Z > 0 indicates that the series shows an increasing
trend, and, when |Z| > 1.96, it indicates that the series trend passes the 95% significance
test. Meanwhile, to analyse the variation of flow series more intuitively, we determined
the mutation years of the flow series using the Sliding t-test and the Cumulative Anomaly
test [31].

3.1.1. Sliding t-Test

Sliding t-test is widely used in the analysis of hydrological time-series mutability. The
method tests for mutation points by examining whether the difference between the means
of the two sample groups is significant. For the time-series (x), there are a total of n sample
sizes, with a certain moment as the reference point. The samples of the sequence x1 and x2
before and after the base point are n1 and n2, respectively, with mean x1 and x2 (in m3/s)
and variance s1

2 and s2
2 (in m6/s2). Then, the statistics are as follows:

t =
x1 − x2

s×
√

1
n1

+ 1
n2

(1)

of which

s =

√
n1s1

2 + n2s22

n1 + n2 − 2
(2)

3.1.2. Cumulative Anomaly Test

The principle of the Cumulative Anomaly test is to accumulate the difference between
each data point and the mean of the series in order to determine the year of mutation. Due
to its simple structure and easy implementation, this method has been widely used in the
field of hydrology. For a flow series Q, the cumulative distance level xt at any moment t is
expressed as follows:

xt =
t

∑
i=1

(Qi −Q) (3)

where Qi is the value of the ith time-period of the flow series, Q is the mean value of the
flow series, and the units of the parameters are m3/s.
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3.2. The Most Ecologically Relevant Hydrological Indicators
3.2.1. The Indicators of Hydrologic Alteration

To better evaluate the hydrological situation of a basin, Richter et al. [32] developed
33 Indicators of Hydrologic Alteration (IHA) in terms of flow, time, frequency, delay, and
rate of change. Based on the IHA indicator, Richter proposed a method to quantify the
extent of change in the IHA indicator following hydrological disturbance, the Range of
Variability Approach (RVA). It is calculated as follows:

Di =

∣∣∣∣∣N0,i − N f

N f

∣∣∣∣∣× 100% (4)

D0= (
1
32

32

∑
i=1

Di
2)0.5 (5)

where Di indicates the degree of change in the ith hydrological indicator (when Di is at
0–33%, it is considered a low degree of change; when Di is at 33–67%, it is considered a
moderate degree of change; and when Di is at 67–100%, it is considered a high degree of
change); N0,i indicates the number of years in which the ith hydrological indicator falls
within the RVA target threshold after hydrological variation; Nf indicates the number of
years that the IHA value is expected to be at the RVA target threshold after hydrological
variation; and D0 is the degree of change in the combined hydrological indicators.

3.2.2. The Environmental Flow Components

Extreme flows, including high-flow events and low-flow events, are considered nec-
essary to maintain the health of river ecosystems. The Environmental Flow Components
(EFCs) are based on this and consist of five flow processes: low flows, extreme low flows,
high-flow pulses, small floods, and large floods, with a total of 34 hydrological indica-
tors [33]. The EFCs indicators were evaluated by conducting calculations before and after
the disturbances and using coefficients of variation (C). The Ci mainly reflects the degree of
variation of the ith indicator from the mean value and is calculated as follows:

Ci =

∣∣∣∣ S
m

∣∣∣∣ (6)

where S is the standard deviation before and after hydrological variation, and m is the
mean value before and after hydrological variation. The overall change in the coefficients
of variation of the EFCs indicator is calculated using the principle of calculating the overall
degree of change using the weighted average of the IHA indicators above (Equation (2)).

3.2.3. Principal Components Analysis

Principal Components Analysis (PCA) is a statistical method for multivariate analysis,
the basic principle of which is to reduce the dimensionality of a large number of relevant
variables into a few uncorrelated variables using orthogonal transformations, and to retain
as much information as possible [34]. The principles for determining the number of princi-
pal components n are the following: (1) a cumulative contribution of 70–90% and (2) an
eigenvalue ≥ 1. The Indicators of Hydrologic Alteration and Environmental Flow Compo-
nents indicators were screened separately using PCA. And, finally, the most Ecologically
Relevant Hydrological Indicators-the Indicators of Hydrologic Alteration (ERHIs-IHA) and
the most Ecologically Relevant Hydrological Indicators-the Environmental Flow Compo-
nents (ERHIs-EFCs) were obtained. They are used to evaluate hydrological situation and
environmental flows separately.
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3.3. The Long Short-Term Memory Model
3.3.1. Model Structure

The LSTM model is a variant of the Artificial Neural Network (ANN) model, whose
special design structure (cell state and “gate” structure) allows it to avoid the problem
of long-term dependency in long-time sequence prediction. Figure 2 reflects a schematic
representation of the operation and structure of the LSTM, the details of which can be
found in [35]. The study refers to the basin meteorological flow model proposed by
Gauch et al. [36]. In this research, natural flows were reconstructed using measured data
(including precipitation, potential evapotranspiration, temperature, sunshine hours, wind
speed, relative humidity, etc.) from meteorological stations in the basin as the input. The
NSE, R2, and RMSE were used as evaluation indicators (Equations (4) and (5)).

NSE = 1−

n
∑

i=1
(Qobs,i −Qsim,i)

2

n
∑

i=1

(
Qobs,i −Qobs

)2
; RMSE =

√√√√√ n
∑

i=1
(Qobs,i −Qsim,i)

2

n
(7)

R2 =


((

Qobs,i −Qobs
) n

∑
i=1

(
Qsim,i −Qsim

))2

n
∑

i=1

(
Qobs,i −Qobs

)2 n
∑

i=1

(
Qsim,i −Qsim

)2

 (8)

Water 2023, 15, x FOR PEER REVIEW 7 of 27 
 

 

an eigenvalue ≥ 1. The Indicators of Hydrologic Alteration and Environmental Flow Com-
ponents indicators were screened separately using PCA. And, finally, the most Ecologi-
cally Relevant Hydrological Indicators-the Indicators of Hydrologic Alteration (ERHIs-
IHA) and the most Ecologically Relevant Hydrological Indicators-the Environmental 
Flow Components (ERHIs-EFCs) were obtained. They are used to evaluate hydrological 
situation and environmental flows separately. 

3.3. The Long Short-Term Memory Model 
3.3.1. Model Structure 

The LSTM model is a variant of the Artificial Neural Network (ANN) model, whose 
special design structure (cell state and “gate” structure) allows it to avoid the problem of 
long-term dependency in long-time sequence prediction. Figure 2 reflects a schematic rep-
resentation of the operation and structure of the LSTM, the details of which can be found 
in [35]. The study refers to the basin meteorological flow model proposed by Gauch et al. 
[36]. In this research, natural flows were reconstructed using measured data (including 
precipitation, potential evapotranspiration, temperature, sunshine hours, wind speed, rel-
ative humidity, etc.) from meteorological stations in the basin as the input. The NSE, R2, 
and RMSE were used as evaluation indicators (Equations (4) and (5)). 

 
Figure 2. Structure of the Long Short-Term Memory model. 

( )

( )

2

, , , ,
1

,

2

2
1

1

( )
1 ;

n

obs sim obs sim
i

obs obs

n

i i i i
i
n

i
i

Q Q Q Q
NSE RMSE

nQ Q

==

=

− −
= − =

−

 


 (7)

( ) ( )
( ) ( )

, ,

2 2

, ,

2

2 1

1 1

obs obs sim sim

obs obs sim sim

n

i i
i

n n

i i
i i

Q Q Q Q
R

Q Q Q Q

=

= =

  − −  
  =  

− − 
  



 
 (8)

3.3.2. Model Parameters 
To better train the LSTM model, the model parameters suitable for the watershed in 

question were determined. This research refers to the study of Yin et al. [37], which took 
the 1961–1969 sequence of the XJR basin as the base period and further divided it into a 
calibration period (1961–1966) and a validation period (1967–1969). The LSTM model con-
tains many important hyperparameters, including hidden size, epoch, dropout rate, batch 
size, etc., that usually need to be optimised before the model can be learned. In this study, 

Figure 2. Structure of the Long Short-Term Memory model.

3.3.2. Model Parameters

To better train the LSTM model, the model parameters suitable for the watershed in
question were determined. This research refers to the study of Yin et al. [37], which took
the 1961–1969 sequence of the XJR basin as the base period and further divided it into
a calibration period (1961–1966) and a validation period (1967–1969). The LSTM model
contains many important hyperparameters, including hidden size, epoch, dropout rate,
batch size, etc., that usually need to be optimised before the model can be learned. In this
study, we first determined the hidden size in the hidden layer, and, through training, we
found that the model worked best with 150 neurons. As for the epoch, this study first set a
longer epoch (200 times), and, after several training sessions, the best fit was found to be
after 150 times, thus setting the epoch to 150 times. And, to prevent overfitting problems
during the simulation, a discard layer was set up in the study, with a discard probability
of 0.4, which meant that there was a 60% probability that the hidden units in this layer
would be retained. In addition, it has been shown that the batch size has an impact on
the prediction accuracy of the model. Therefore, we set up eight groups of batch sizes
(1 d, 5 d, 10 d, 20 d, 40 d, 60 d, 80 d, and 100 d) to train the XJR meteorological streamflow
model 15 times, respectively, and used NSE, R2, and RMSE as the evaluation indicators.
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The model’s results for the calibration and validation periods are shown in Figure 3, and it
can be observed that the simulation works best at a batch size of 10 d.

Water 2023, 15, x FOR PEER REVIEW 8 of 27 
 

 

we first determined the hidden size in the hidden layer, and, through training, we found 
that the model worked best with 150 neurons. As for the epoch, this study first set a longer 
epoch (200 times), and, after several training sessions, the best fit was found to be after 
150 times, thus setting the epoch to 150 times. And, to prevent overfitting problems during 
the simulation, a discard layer was set up in the study, with a discard probability of 0.4, 
which meant that there was a 60% probability that the hidden units in this layer would be 
retained. In addition, it has been shown that the batch size has an impact on the prediction 
accuracy of the model. Therefore, we set up eight groups of batch sizes (1 d, 5 d, 10 d, 20 
d, 40 d, 60 d, 80 d, and 100 d) to train the XJR meteorological streamflow model 15 times, 
respectively, and used NSE, R2, and RMSE as the evaluation indicators. The model’s re-
sults for the calibration and validation periods are shown in Figure 3, and it can be ob-
served that the simulation works best at a batch size of 10 d. 

 
Figure 3. Model performance with different batch sizes (1, 5, 10, 20, 40, 60, 80, and 100). 

Ultimately, the main model parameters were set as shown in Table 2. The results of 
the meteorological streamflow model’s reconstructions for the XJR streamflow all follow 
these parameters. Figure 4 shows the overall effect of the streamflow reconstruction by 

1 5 10 20 40 60 80 100
0.75

0.80

0.85

0.90

Batch size (Validation)

N
SE

 25%~75%  Min-Max  Data  Mean 

1 5 10 20 40 60 80 100

0.88

0.90

0.92

0.94

0.96

0.98

Batch size (Calibration)

N
SE

 25%~75%  Min-Max  Data  Mean 

1 5 10 20 40 60 80 100
0.76

0.80

0.84

0.88

0.92

Batch size (Validation)

R2
 25%~75%  Min-Max  Data  Mean 

1 5 10 20 40 60 80 100
0.91

0.92

0.93

0.94

0.95

0.96

Batch size (Calibration)

R2

 25%~75%  Min-Max  Data  Mean 

1 5 10 20 40 60 80 100

800

900

1000

1100

1200

RM
SE

 (m
3 /s)

Batch size (Validation)

 25%~75%  Min-Max  Data  Mean 

1 5 10 20 40 60 80 100
450

500

550

600

650

700

750

800

850

900

Batch size (Calibration)

RM
SE

 (m
3 /s)

 25%~75%  Min-Max  Data  Mean 

Figure 3. Model performance with different batch sizes (1, 5, 10, 20, 40, 60, 80, and 100).

Ultimately, the main model parameters were set as shown in Table 2. The results of
the meteorological streamflow model’s reconstructions for the XJR streamflow all follow
these parameters. Figure 4 shows the overall effect of the streamflow reconstruction by
the model. The observed and simulated streamflow series between 1961 and 2019 reached
an R2 of 0.85 and an NSE of 0.84; in the natural period (1961–1990) and in the variation
period (1991–2019), the R2 was 0.88 and 0.82, respectively, and the NSE was 0.86 and 0.82,
respectively. These results indicate that the LSTM model performs well and can effectively
capture the characteristics of streamflow variability.
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Table 2. Model’s parameter settings.

Type of Parameters Parameter Name Setting

Hyper parameters

Dropout rate 40
Initial learning rate 0.02
Epoch 150
Batch size 10
Layers 5
Dropout period 40
Hidden size 150

Common parameters
Training hardware CPU
Gradient threshold 1
Network solving algorithm adam
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Figure 4. Comparison of observed and simulated flows in the Xiangjiang River basin. The left three
panels (a,c,e) show the fitted plots of the measured and simulated flows. The three plots on the right
(b,d,f) show the variations of the measured and simulated flow rates.

3.3.3. Separation Framework

Based on the streamflow series simulated by the meteorological streamflow model, an
“observation–simulation” comparative analysis was used to quantify the effects of human
disturbances and climatic factors on hydrological changes [38]. First, the degree of change
(D) for the ERHIs-IHA indicator and the change in the coefficients of variation (CV) for the
ERHIs-EFCs indicator were calculated for the measured and simulated series, respectively.
Assuming that human disturbance and climatic effects are independent of each other, the
degrees of change (Dobs) of the observed flow’s hydrological situation and the change in
the coefficients of variation (CVobs) of environmental flows are as follows:

Dobs = Dh + Dc (9)
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CVobs = CVc + CVh (10)

The simulated streamflow is streamflow under the influence of only climate change;
thus, the degree of change (Dsim) of the simulated streamflow’s hydrological situation and
the change in the coefficients of variation (CVsim) of the environmental flow are as follows:

Dsim = Dc (11)

CVsim = CVc (12)

The difference between the D values of the observed and simulated sequences and the
difference between the observed and simulated CV values are as follows:

Dh = Dobs − Dsim (13)

CVh = CVobs − CVsim (14)

The contribution of human disturbances and climatic factors to the hydrological
situation and environmental flows, respectively, are the following:

ηh =
|Dh|

|Dc|+ |Dh|
× 100%; ηc =

|Dc|
|Dc|+ |Dh|

× 100% (15)

ηVh =
|CVh|

|CVc|+ |CVh|
× 100%; ηVc =

|CVc|
|CVc|+ |CVh|

× 100% (16)

In the above equations, Dobs and CVobs indicate the degree of variation in the observed
ERHIs-IHA indicators and the change in the coefficient of variation of the ERHIs-EFCs
indicators, respectively. Dsim and CVsim indicate the degree of variation in the simulated
ERHIs-IHA indicators and the change in the coefficient of variation of the ERHIs-EFCs
indicators, respectively. Dh and Dc indicate changes in ecohydrological situation due
to human disturbance and climatic factors, respectively. CVh and CVc indicate changes
in environmental flows due to human disturbance and climatic factors, respectively. ηh
and ηc indicate the contribution of human disturbances and climatic factors to changes
in hydrological situation, respectively. ηVh and ηVc indicate the contribution of human
disturbances and climatic factors to changes in environmental flows, respectively.

3.4. The Integrated Valuation of Ecosystem Services and Tradeoffs Model

The “Habitat Quality” module of the Integrated Valuation of Ecosystem Services and
Tradeoffs (InVEST) model was used to assess habitat quality in the XJR basin. This module
uses land-use data to reflect the impact of human activity on the environment: the higher
the intensity of human activity, the greater the threat to the habitat and the lower the quality
of the habitat. Therefore, the relevant parameters (Tables 3 and 4) were set with reference
to relevant studies [39].

Table 3. Threat factors and their stress intensity.

Habitat Threat Factors Maximum Impact Distance (km) Weight Recession Correlation

Agricultural land 4 0.6 Linear

Rural land 5 0.6 Exponential

Urban land 10 1.0 Exponential

Industrial mining 12 1.0 Exponential

Reservoir/Pond 6 0.6 Exponential
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Table 4. Sensitivity of land-use type to habitat threat factors.

Land-Use Type Habitat
Suitability

Sensitivity

Agricultural
Land Rural Land Urban Land Industrial

Mining Reservoir/Pond

Agricultural land 0.3 0.0 0.6 0.8 0.8 0.6

Forest land 1.0 0.6 0.4 0.6 0.7 0.5

Grass land 1.0 0.8 0.5 0.4 0.6 0.6

Water body 0.7 0.5 0.3 0.7 0.5 0.7

Built-up land 0.0 0.0 0.0 0.0 0.0 0.4

Unused land 0.4 0.3 0.1 0.1 0.3 0.4

3.5. Grey Correlation Theory

Grey correlation analysis is a method of multi-factor statistical analysis that is mainly
used to study the degree of correlation between series. The basic idea is to determine
whether sequence curves are closely related according to their geometric similarity. The
higher the geometric similarity between the sequence curves, the greater the correlation
between the corresponding data sequences, thus achieving a quantitative description of
the operation process and evolution of the system [40]. The method is based on uncertain
information and can effectively measure the degree of association in order to grasp the
main characteristics of things to use; it is widely used in the field of hydrology. This study
used a grey correlation model to reveal the correlation between the hydrological changes
(hydrological situation and environmental flows) and the habitat quality in the XJR basin.

3.6. Shannon Index

Hydrologic changes often impact aquatic organisms, and the Shannon Index (SI) is
often used to reflect the evaluation of watershed biodiversity. Yang et al. (2008) [41]
established the best-fit relationship between the IHA metrics and the Shannon Index, which
has been widely used for evaluating rivers’ biodiversity. In this paper, due to the lack of
data on the number of riverine biomes and species in the Xiangjiang River Basin, it is not
possible to directly calculate the SI indicators; therefore, by using the relationship equation
constructed by Formula (17) for SI and hydrological indicators, it is then possible to initially,
roughly assess the biodiversity of the river.

SI =
Dmin/Qmin7 + Dmin

Q3 + Q5 + Qmin3 + 2×Qmax3
+ Rrate (17)

where Dmin is the Julian date of the annual minimum daily flow; Q3 and Q5 are the average
monthly flows in March and May, respectively; Qmin3 and Qmin7 are the annual minimum
3-day flow and the annual minimum 7-day flow; Qmax3 is the annual maximum 3-day flow;
and Rrate is the overflow rate.

4. Results
4.1. Trend and Mutation Analysis

The study conducted a Mann–Kendall trend test for annual flow, annual precipitation,
and annual potential evapotranspiration in the XJR basin (Table 5). The statistics (Z) for the
annual flow and precipitation were 1.11 and 1.23, respectively, both of which failed the 95%
significance level test, also indicating that the annual flow and the annual precipitation
in the XJR are on an upward, but not significant, trend. The annual flow’s and annual
precipitation’s rate of rise were 1334 (m3/s)/Year and 1.58 mm/Year, respectively (Figure 5).
In contrast, the annual potential evapotranspiration statistic (Z) was −2.41, which passed
the 95% significance level test, indicating a significant decrease in the annual potential
evapotranspiration in the XJR basin; its rate of decrease was −1.26 mm/Year. Based on the
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Sliding t-test and Cumulative Anomaly test used to analyse the mutation years of the XJR
flow (Figure 6), the mutation point detected by both tests, together, was 1991. This research
thus takes 1991 as the year of sudden hydrological change in the XJR and divides the flow
sequence (1961–2019) into a natural period (1961–1990) and a variation period (1991–2019).

Table 5. Results of the test for trends in flow, precipitation, and potential evapotranspiration in the
XJR basin.

Study Area
Flow Precipitation Potential Evapotranspiration

Z Trend Z Trend Z Trend

Xiangjiang River basin 1.11 Rise 1.23 Rise −2.41 * Decline

Note: * is passing the 95% significance level test.
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Figure 5. Changes in the inter-annual flow, precipitation, and potential evapotranspiration in the
Xiangjiang River basin.
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Figure 6. Mutation test for the Xiangjiang River flow (a) shows the results of the Sliding t-test, and
(b) shows the results of the Cumulative Anomaly test.

4.2. The Most Ecologically Relevant Hydrological Indicators
4.2.1. Correlation Analysis of Indicators and Selection of ERHIs

The correlation between the 32 IHAs and between the 34 EFCs was analysed based on
the Pearson correlation coefficients. And, Figure 7 reflects the high sink residual and
strong correlation between both indicators, like between the annual minimum flows
(1, 3, 7, 30, and 90 day), between the time of occurrence and the number of major floods,
etc. Thus, the ERHIs in this study were selected from the IHAs and the EFCs using PCA.
Figure 8a,b show the eigenvalues and cumulative contributions of the IHA and the EFCs at
Xiangtan Station, respectively. From Figure 8a, it can be observed that the eigenvalues of
the first seven principal components of the IHA indicators for the XJR basin are all greater
than one and have a cumulative contribution of about 80%. From Figure 8b, it can be
found that the eigenvalues of the first nine principal components of the XJR basin’s EFCs
indicators are all greater than one, and the cumulative contribution is about 80%. Based on
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the principle of principal component extraction, the PC1–PC7 in Figure 8a were selected as
the main components of the required IHA indicators. And the PC1–PC9 in Figure 8b were
selected as the main components of the required EFCs indicators in this study. In addition,
a factor loading matrix of the principal components was calculated to further screen the
ERHIs, with the criterion that the indicator with the highest or higher absolute value of the
loading was used as the ERHIs. A month’s flow may be correlated to the previous month’s
flow, but, as the 12-month average and low flows reflect the intra-year course of human
and ecosystem water availability in a given month, we added these indicators to the ERHIs.
The final screening of the ERHIs can be seen in Table 6.

Table 6. Changes before and after mutations in the ERHIs-IHA and ERHIs-EFCs in the Xiangjiang
River basin.

ERHIs-IHA (label)
Measured average values Measured thresholds Degree of

change (%)

1961–1990 1991–2019 Low High Obs Sim

Mean flow in January (1) 829 1298 297 1361 24.4 5.55
Mean flow in February (2) 1357 1559 680 2034 1.25 3.45

Mean flow in March (3) 2048 2527 964 3131 8.37 6.40
Mean flow in April (4) 3855 3247 2261 5449 3.45 5.96
Mean flow in May (5) 4312 3867 2435 6189 23.15 3.45
Mean flow in June (6) 3788 4323 1940 5636 13.3 24.14
Mean flow in July (7) 2128 2866 9401 3710 3.45 2.30

Mean flow in August (8) 1451 2083 759 2143 11.33 34.17
Mean flow in September (9) 1219 1333 231 2207 11.72 3.44
Mean flow in October (10) 984.5 1066 460 1509 18.97 15.36

Mean flow in November (11) 1113 1223 439 1788 3.448 2.29
Mean flow in December (12) 805.2 1099 403 1379 19.78 9.48

Base flow index (13) 0.17 0.22 0.13 0.21 60.59 8.37
Date of maximum (14) 156.30 182.90 121.20 191.40 6.90 13.79
Low pulse count (15) 5.20 5.03 3.25 7.16 45.55 26.72
High pulse count (16) 6.30 8.24 4.30 8.30 58.62 31.03

Rise rate (17) 363.50 409.60 251.00 476.00 3.45 5.55
Overall degree of change (18) —— —— —— —— 26.21 15.71

ERHIs-IHA (label)
Measured average values Coefficient of variation Degree of variation (%)

1961–1990 1991–2019 Pre-1991 Post-1991 Obs Sim

January Low Flow (19) 846 1104 0.47 0.41 11.67 12.58
February Low Flow (20) 1136 1186 0.30 0.33 12.46 21.03

March Low Flow (21) 1416 1641 0.28 0.27 5.15 9.95
April Low Flow (22) 1807 1836 0.20 0.20 0.66 15.76
May Low Flow (23) 1870 1946 0.14 0.14 3.91 0.87
June Low Flow (24) 1675 1942 0.22 0.14 38.03 31.59
July Low Flow (25) 1206 1500 0.31 0.26 14.61 3.968

August Low Flow (26) 1096 1392 0.24 0.34 38.19 48.94
September Low Flow (27) 1054 1152 0.39 0.32 18.45 16.35

October Low Flow (28) 924 926 0.34 0.42 21.48 23.06
November Low Flow (29) 1004 1026 0.45 0.40 10.54 1.70
December Low Flow (30) 808 906 0.43 0.44 3.216 17.91

High-flow peak (31) 4923 4711 0.17 0.24 44.41 13.53
High flow rise rate (32) 760 781 0.29 0.38 31.12 44.88

Small Flood duration (33) 31 39 0.60 0.74 22.63 13.06
Small Flood timing (34) 150 181.6 0.09 0.13 40.15 70.19
Large flood peak (35) 19,230 21,310 0.03 0.15 490.30 90.19

Overall variability (36) —— —— —— —— 121.23 35.07
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Figure 7. Correlation plots: (a) plot represents the correlation between the 32 IHA indicators and
(b) represents the correlation between the 34 EFCs indicators; the specific values can be found in
Appendix A. p represents the significant level.
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Figure 8. Changes in the characteristic values and cumulative contribution of the Xiangjiang
River basin.

4.2.2. Inter-Annual Variation in ERHIs Indicators

The inter-annual variability of the screened ERHIs indicators was studied based on the
observed flow series (Figure 9). In terms of the temporal characteristics of the ERHIs-IHAs,
only April, May, and October saw a decrease in the mean flow (rates of 20.86 (m3/s)/year,
11.30 (m3/s)/year, and 0.20 (m3/s)/year, respectively). The remaining monthly average
flows showed an upward trend, with more pronounced increases in January, March, and
July (rates of 11.07 (m3/s)/year, 12.90 (m3/s)/year, and 17.17 (m3/s)/year, respectively).
The base flow index showed a slight increase (0.0015); the date of maximum had a delay;
and the flow rate’s rise rate was increasing at a rate of 0.69 m3/s/d per year. In addition,
the low pulse count and high pulse count showed an increasing trend. For the ERHIs-
EFCs, the monthly low flows only showed a decreasing trend in October (at a rate of
1.63 (m3/s)/year), while remaining monthly low flows showed an increasing trend. The
high flow’s rise rate was increasing at a rate of 1.41 m3/s/d per year. The small flood
duration was extended and the small flood timing was delayed. In addition, the large
flood peak increased significantly at a rate of 69.20 m3/s per year, but the high-flow peak
decreased at a rate of 7.65 m3/s per year. These two indicator changes indicate that flows
in the XJR basin have increased in many ways.

4.3. Ecohydrological Situation, Environmental Flow Evolution, and Quantitative Attribution

A meteorological streamflow model was used to reconstruct the natural flow of the
XJR under the influence of climatic factors only and was combined with measured flows to
calculate the ERHIs-IHA and the ERHIs-EFCs. Table 6 reflects the changes in the observed
flow before and after hydrological variation while giving the degree of change (ERHIs-
IHA) and the change in the coefficients of variation (ERHIs-EFCs) calculated based on
the observed (obs) and simulated (sim) flow series. From this, it could be seen that the
overall degree of change for the ERHIs-IHA and the overall change in the coefficients
of variation for the ERHIs-EFCs obtained based on the measured flow were 26.21% and
121.23%, respectively. The overall degree of change for the ERHIs-IHA and the overall
change in the coefficients of variation for the ERHIs-EFCs obtained based on the simulated
flow were 15.71% and 35.07%, respectively. We attributed changes in the ERHIs in the XJR
based on an “observation–simulation” comparison (Figure 10). Climatic factors contributed
more to changes in the ecohydrological situation (60%) and human disturbance was the
main driver of changes in the environmental flows (71%).
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Figure 9. Inter-annual variation in the selected ERHIs (the extent of variation in these ERHIs was
greater than 33%).

For the ERHIs-IHA, the base flow index, low pulse count, and high pulse count based
on the measured flow all achieved a moderate change, while the three indicators based
on the simulated flow showed a low change. Most of the simulated flow’s variability
was reduced compared to the measured monthly average flow’s variability. In addition,
the measured changes in the date of maximum and the rise rate were 6.90% and 3.45%,
respectively, while the simulated flow’s changes increased to 13.79% and 5.55%, respectively.
For the ERHIs-EFCs, the variability of monthly dry flows in May–September (except
August) and November was lower in the modelled results than in the measured flow’s
results. The measured variances for the high flow rise rate and the small flood timing were
31.12% and 40.15%, respectively, while the simulated flow’s variances were even higher
(44.88% and 70.19%). From the attribution results, it can also be seen (Figure 10c) that
human disturbances contribute more than 50% to the mean low in January, mean flow in
May, mean flow in September, mean flow in December, and base flow index (77%, 85%,
71%, 52%, and 86%, respectively), and that climate factors have a greater impact on the
remaining ERHIs-IHA (53–81%). For the ERHIs-EFCs (Figure 10d), human disturbance
had a greater impact on the changes in the four indicators of May low flow, July low flow,
November low flow, high-flow peak, and large flood peak than on climatic factors (78–87%),
while, for the other ERHIs-EFCs indicators, the contribution of climate change was more
pronounced (51–94%).
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Figure 10. Impact of human disturbance and climatic factors on the ERHIs: (a,b) represent the degree
of changes in the hydrological parameters (parameters 1–36, can refer to Table 6) driven by human
activities and climate change; and (c,d) represent the contribution rates of human activities and
climate change to changes in the hydrological parameters.

4.4. Habitat Quality Assessment and Its Response to Hydrological Change

The results of habitat degradation and habitat quality distribution in the XJR basin
were obtained based on the InVEST model. Figure 11 reflects the spatial distribution of
the habitat’s degeneration degree in the XJR basin between 1990 and 2020. The high-
degradation areas were concentrated in the middle and lower reaches of the basin, and
the high-degradation areas spread to the surrounding areas over time, especially in the
cities of Changsha, Xiangtan, and Zhuzhou, during which the average degradation of the
basin increased from 0.0159 to 0.0181 (an increase of 13.84%). The maximum degradation
increased from 0.1137 to 0.1190 (an increase of 4.66%); the low values of degradation
were concentrated in the mountainous areas of the upper part of the basin. The spatial
distribution of habitat quality in the XJR basin from 1990 to 2020 (Figure 12) shows that the
areas with low habitat quality are also located in the urban areas in the middle and lower
reaches of the basin, especially in the axis around Changsha and between Xiangtan and
Zhuzhou, and in the Hengyang area in the middle reaches of the basin, while the habitat
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quality is higher in the Luoxiao Mountains, the Baku Lian Jiu Mountains, the Yangming
Mountains, and the Nanling Mountains. In terms of temporal changes, the habitat quality
in the XJR basin was on a declining trend between 1990 and 2020, with the average level of
habitat quality in the basin decreasing from 0.7698 to 0.7569 (a decrease of 1.68%) during
this period. The habitat quality decreased by 0.0004 (0.05%), 0.0007 (0.09%), 0.0015 (0.20%),
0.0009 (0.12%), 0.0041 (0.54%), and 0.0053 (0.70%) in the six periods between 1990 and
2020, respectively, while the area of low habitat quality in the basin gradually expanded to
the periphery.
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Figure 12. Spatial distribution of habitat quality in the Xiangjiang River basin, 1990–2020.

A grey correlation model was constructed from the time-series of habitat degeneration
degree, habitat quality, and ERHIs in the XJR basin to quantitatively reveal the impact of
hydrological changes on habitat quality (Figure 13). The habitat quality index had a strong
correlation with each of the ERHIs (all the correlations were greater than 0.6). Of these, the
ERHIs-EFCs were more highly correlated with the habitat’s quality (habitat degeneration
degree) than the ERHIs-IHA, overall. For both the habitat quality and habitat degeneration
degree, the ERHIs with correlations greater than 0.90 were mean flow in August, March
low flow, May low flow, August low flow, and large flood peak. It is also clear from this
that habitat quality (habitat degeneration degree) responds more strongly to changes in
environmental flows.
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Figure 13. Grey correlation between ERHIs and habitat quality (habitat degeneration degree) in the
Xiangjiang River.

4.5. Riverine Biological Conditions

The study adopted widely used SI indicators to evaluate the river biodiversity of
the XJR (Figure 14a) and collected the number of XJR’s four major domestic fish after
hydrological variability (Figure 14b) [42,43]. It can be found that, before the hydrological
mutation, the decline rate of the SI index in Xiangjiang River was −1.05/year; however,
after the mutation, the decline rate of the SI index reached −1.45/year. At the same time,
we found that the number of the four major domestic fish in the XJR basin also showed a
decreasing trend after the hydrological variability, with a decreasing rate of 2703 fish/year.
In addition, from the correlation between the catch of tetras and the ERHIs, we found that
several ERHIs metrics showed a strong correlation (greater than 0.65) with them. These
indicators were large flood peak, small flood duration, October low flow, June low flow,
low pulse count, and mean flow in October.
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Figure 14. (a) Changes in the Shannon Index and (b) Situation of four major domestic fish in the
Xiangjiang River.

5. Discussion

Rivers are among the most complex natural ecosystems, and fluctuations in flow in
their natural state are considered critical for maintaining the health of watershed ecosys-
tems [44]. However, research found that global environmental change (including climate
and land-use change) has profoundly altered the flow patterns of most rivers worldwide.
River ecosystems are sensitive to changes in flow [45]. Palmer and Ruhi [46] found that,
when flow changes occur, they not only reduce primary productivity but also affect ma-
terial cycling, ultimately leading to ecological degradation. The XJR, as the mother river
of the Hunan Province as well as the largest river in the Dongting Lake system, not only
feeds 60% of the provincial population but is also the habitat of many rare plants and
animals [47]. This study found that the annual potential evapotranspiration in the XJR
basin declined significantly, the precipitation and the flow were on an upward trend in
terms of inter-annual variability, and the annual flow changed abruptly in 1991. Based on
the measured daily flow of the XJR, the study used PCA to screen Indicators of Hydrologic
Alteration and Environmental Flow Components, effectively avoiding information sink
between indicators, and finally obtained 34 ERHIs.

It was found that the vast majority of the ERHIs-IHA showed an increasing trend after
hydrological variation. After 1991, the average monthly flow increased more markedly in
winter and decreased most markedly in spring (except March), which is inextricably linked
to the human regulation of river water allocation. The XJR flows significantly less during
the flood season, which represents the onset of flow homogenisation, with a reduced
flow during the high-flow months and increased in flow during the low-flow months.
Tonkin et al. [48] found that this phenomenon can lead to a reduction in organic matter
in downstream floodplains, while potentially altering the adaptive range of vegetation
habitats and reducing habitat quality. The degree of change in the base flow index, the
low pulse count, and the high pulse count were 60.59%, 45.55%, and 58.62, respectively, all
reaching a moderate change. And, the increase in the base flow index (from 0.17 to 0.22)
had a negative impact on drifting eggs [49]. High and low pulses play an important role in
maintaining the compatibility of organisms’ life cycles, and their variation can directly or
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indirectly affect the population dynamics and structure of aquatic communities in river
and floodplain systems [50]. Khatun and Pal [51] found that dam construction in the
Tangon River basin resulted in reduced flow velocities in the lower river and a significant
reduction in suitable fish habitats. Only two of the ERHIs-EFCs showed a decreasing
trend (October low flow and high flow peak), with the high flow peak variation reaching
44.41%, the main reason for this phenomenon being the storage of water in the middle
and upper reaches of the reservoir complex during the flood season. After the mutation,
most of the monthly low flows were replenished, which effectively restored a certain level
of dissolved oxygen and water temperature in the river, which could then provide basic
living conditions for organisms [52]. After 1991, the small flood duration was extended
from 30.54 d to 38.76 d. The small flood timing was also delayed from late spring to early
summer. And, in a study of flooding by Bailly et al. [53], they found that prolonged small
flood events may be beneficial in preventing encroachment of riparian vegetation on the
river and that their duration is important for the reproduction and survival of fish. These
findings were corroborated by our results, where the decline in the SI indicator intensified
after hydrological variability, with the rate of decline decreasing from −1.05/year to a rate
that would be −1.45/year. Four major domestic fish also showed a downward trend in
their abundance (2703 fish/year). In conclusion, the operation of the upper and middle
reaches of the XJR reservoir complex changed the hydrological situation and environmental
flow composition in the basin, and the spatial and temporal evolution of hydrological
processes in their natural state was disrupted. These changes negatively impacted the XJR’s
four major domestic fish. Therefore, this study developed a quantitative attribution study
for both.

In the study, the human contribution to the change in mean flow in January was found
to be 77%, but, for the change in January low flow, the human contribution was only 7%.
This reasonably reflects the role of human activities aimed at recharging the dry season,
as well as the fact that climatic elements are the primary cause of January low flow. This
conclusion is supported by the findings of Guo et al. [54] that the role of human activities
in the XJR flow is mainly reflected in the recharge of the downstream flow during the dry
season and the release of water during the flood season. For changes in the other ERHIs, it
is mostly climatic factors that contribute more. Most annual maximum floods in the XJR
occur in April–July, when floods are primarily formed by cyclonic frontal storms, and their
spatial and temporal variation characteristics are similar to those of heavy rainfall. Flood
regulation efforts in the middle and upper reservoirs have led to a reduction in high flows.
Best [55] also found that dam operation reduces high flows and affects fish diversity and
floodplain area. The attribution results for the high-flow peak explain this phenomenon
well (human interference contributing 81%). However, an increasing trend was observed
for the large flood peak, which increased from 19,230 m3/s before hydrological variation to
21,310 m3/s after hydrological variation, with a variation of 490.30%. The increase in the
frequency of extreme weather occurrences following the sudden change is the main reason
for the dramatic increase in the magnitude of major floods in the XJR. Especially in July
2019, when a mega-flood exceeding the 1-in-50-year event occurred in the lower reaches of
the XJR, from Hengshan to Xiangtan, including the 1-in-200-year event at Xiangtan station,
with a peak flood flow of 26,060 m3/s, far exceeding the historical measured maximum
flow (20,600 m3/s on 18 June 1994).

Human activities affect not only the hydrological changes in rivers, but also the quality
of watershed habitats. The habitat quality in the XJR basin was on a declining trend
between 1990 and 2020, but was overall at a high level (above 0.75). This is because the
XJR basin is mainly composed of forest land (62.55–63.29% of the whole basin), with only
(2.89–5.23%) of both building land and water bodies. As a result, areas of high value for
habitat quality in the catchment dominate. However, the area of water bodies in the basin
has increased from 1312 km2 to 1528 km2 (an expansion of 16.46%), and built-up land has
expanded from 1411 km2 to 3400 km2 (an expansion of 140.96%), both of which have had
a negative impact on the quality of habitats in the basin, where the expansion of water
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bodies also reflects the increased construction and operation of reservoirs in the basin.
The construction and operation of reservoirs in the middle and upper reaches not only
influences changes in river hydrology, but also continuously erodes habitats and causes
the continuous fragmentation of habitats. In a study of Amazonian forests, Benchimol
and Peres [56] found that man-made dams can reduce local habitat quality and adversely
affect biodiversity. The expansion of construction land highlights the rapid urbanisation
of the middle and lower reaches of the XJR, leading to the gradual expansion of the areas
of lower habitat quality around the built-up areas of the city to the periphery, swallowing
up the surrounding areas of higher habitat quality. Berta et al. [57], in their study of the
Winike Watershed, found that urbanization poses a threat to and continues to degrade
habitat quality. Urbanisation has been accompanied by population build-up, industrial
and agricultural development, and a dramatic increase in water consumption in all sectors,
putting enormous pressure on the local water-transfer sector, as well as compressing
ecological water use and having a greater impact on local habitat quality. The correlation
between habitat quality (habitat degeneration degree) and the ERHIs corroborates this
finding, and the effect of extreme flow events on habitat quality is greater.

There are also some limitations and potential uncertainties in this study. The LSTM
model on which the separation framework in the research is based is a black-box model,
and its simulation results are a mapping of independent variables to dependent variables,
which has some mechanistic resolution but is weak compared to traditional hydrological
models [58]. Despite this, its excellent simulation performance and lightweight computation
are still loved by many hydrological researchers. The results of Fan et al. (2020) [59] also
demonstrate the reliability of the LSTM model in river flow simulations. Meanwhile,
in the past two years, researchers have used LSTM models to construct meteorological
flow models to reconstruct natural daily flows, and quantitative attribution studies have
been conducted with relevant ecohydrological indicators [60]. This all indicates that the
output of the model can be applied to hydrological analysis. In addition, LSTM models
are subject to uncertainties, e.g., the model structure, parameter values, and input data
can lead to model uncertainty and can affect the simulated flow; model uncertainties are
inevitable and we have tried our best to optimize our model. For example, the XJR flow
mainly originates from precipitation, so a wider range of influencing factors (including
precipitation, temperature, wind speed, sunshine hours, etc.) are adopted in the paper to
simulate the XJR flow in order to reduce the impact of model uncertainties on the output
results. Also, we introduced relevant evaluation metrics (NSE, RMSE, and R2) to evaluate
the simulation effectiveness of the model, and the results also indicate that the constructed
meteorological flow model is useful in this basin and can be used for the analysis of river
ecohydrology. In addition, the final results are basically consistent with the results of
previous studies based on hydrological models [61], which indicates that, although there
are some uncertainties and limitations in the models, they have little influence on the results
of this article, and the conclusions of this article are scientific and reliable [62].

In summary, the XJR basin is undergoing major ecohydrological changes and the
habitat’s quality is deteriorating, which poses a huge challenge to local water resources
regulation and ecological conservation. The core of the problem is how to restore the
natural flow regime of the river as far as possible while ensuring normal water use for
human production and living. This study has analysed the hydrological situation and
environmental flows, and the quantitative attribution results, habitat quality, and response
to ERHIs can provide a scientific basis for managerial decisions. In addition, the LSTM
model is more applicable because of its excellent simulation performance, smaller compu-
tational effort, and less data required; meanwhile, the data of the InVEST model are easily
available. So, the comprehensive evaluation framework constructed in this study can be
easily used to evaluate other watersheds, comprehensively analyse changes in watershed
hydrology and habitat quality, and provide a scientific basis for the rational allocation of
water resources and ecological restoration in the watershed.



Water 2023, 15, 3626 24 of 27

6. Conclusions

This study presents a comprehensive assessment of the XJR basin in terms of four
aspects: hydrological situation, environmental flows, drivers, and habitat quality. The
annual precipitation and annual flow in the XJR basin showed a non-significant upward
trend, but the annual potential evapotranspiration showed a significant downward trend.
It was found that human disturbances and frequent climate extremes are inevitably altering
the natural flow. Most of the ERHIs showed varying degrees of upward trend after hydro-
logical variation (1991). The overall degree of change of the ERHIs-IHA and the overall
change in the coefficients of variation of the ERHIs-EFCs obtained from the measured data
reached 26.21% and 121.23%, respectively. And, it was found that the ecohydrological
situation of the XJR basin is deteriorating, which has had adverse effects on river organ-
isms. Quantitative attribution results indicated that climatic factors are the main factor
influencing the ecohydrological evolution of the XJR, but the role of human disturbance
cannot be ignored. The habitat quality in the basin decreased over the period 1990–2020,
with high values mainly in mountainous areas and low values mostly in urban areas in
the middle and lower reaches, gradually expanding to the periphery. The habitat quality
(habitat degeneration degree) in the XJR basin has a strong correlation with each ERHIs
and responds more strongly to changes in environmental flows.

The impact of human disturbance and climatic factors on watersheds is a complex
issue, and the integrated evaluation framework in this paper may provide new insights
for other researchers on watershed analysis. The results of the study show that the ecohy-
drological situation of the XJR has been significantly disturbed and that the quality of the
watershed habitat has been damaged. In order to better maintain the natural hydrological
evolution of the XJR and improve the quality of the river basin habitats, we propose the
following recommendations. Policy makers need to enhance the basin water allocation
capacity, which can be improved by constructing a basin-wide scientific water resource
regulation and control system, at the same time accelerating the construction of a water-
saving society and improving the efficiency of water resources’ utilization. The relevant
water-related departments can also strengthen their joint efforts and properly simulate
natural flow events through artificial regulation, especially for environmental flow events.

Author Contributions: Conceptualization, F.H.; data curation, F.H.; formal analysis, F.H.; method-
ology, F.H.; supervision, W.G., F.H. and H.W.; validation, F.H.; writing original draft, F.H.; writing,
review, and editing, F.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Nature Science Foundation of China (Grant No.
51779094); the Wisdom Introduction Project of Henan Province (GH2019032); the 2023 Special Funda-
mental Research Project Plan for Higher Education Institutions in the Henan Province (23ZX012);
and the North China University of Water Resources and Electric Power for the Master’s Innovation
Capacity Enhancement Project (NCWUYC-2023025).

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2023, 15, 3626 25 of 27

Appendix A. Correlation of Hydrological Parameters

Water 2023, 15, x FOR PEER REVIEW 25 of 27 
 

 

Appendix A. Correlation of Hydrological Parameters 

 

 

References 
1. Karr, J.R. Defining and measuring river health. Freshw. Biol. 1999, 41, 221–234. 
2. Zhou, T. New physical science behind climate change: What does IPCC AR6 tell us? The Innovation 2021, 2, 100173. 
3. Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, 

M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 
16063. 

4. Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. 
Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. 

5. Zhao, H.; He, J.; Liu, D.; Han, Y.; Zhou, Z.; Niu, J. Incorporating ecological connectivity into ecological functional zoning: A case 
study in the middle reaches of Yangtze River urban agglomeration. Ecol. Inform. 2023, 75, 102098. 

6. Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. 
Biol. 1996, 10, 1163–1174. 

7. Song, X.; Zhuang, Y.; Wang, X.; Li, E.; Zhang, Y.; Lu, X.; Yang, J.; Liu, X. Analysis of hydrologic regime changes caused by dams 
in China. J. Hydrol. Eng. 2020, 25, 05020003. 

8. Gao, W.; Hu, K.; Gu, Q.; Ling, X.; Ruan, M.; Ren, R. Survey of Fish Resources in Hengyang and Changzhutan Sections of the 
Main Stream of Xiangjiang River and Measures for Conservation. Low Carbon World 2019, 9, 14–16. 

9. Richter, B.D.; Warner, A.T.; Meyer, J.L.; Lutz, K. A collaborative and adaptive process for developing environmental flow rec-
ommendations. River Res. Appl. 2006, 22, 297–318. 

10. Gunawardana, S.K.; Shrestha, S.; Mohanasundaram, S.; Salin, K.S.; Piman, T. Multiple drivers of hydrological alteration in the 
transboundary Srepok River Basin of the Lower Mekong Region. J. Environ. Manag. 2021, 278, 111524. 

11. Olden, J.D.; Poff, N.L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res. Appl. 
2003, 19, 101–121. 

12. Smakhtin, V.U.; Shilpakar, R.L.; Hughes, D.A. Hydrology-based assessment of environmental flows: An example from Nepal. 
Hydrol. Sci. J. 2006, 51, 207–222. 

13. Cheng, J.; Xu, L.; Jiang, J. Optimal selection of the most ecologically relevant hydrologic indicators and its application for envi-
ronmental flow calculation in Lake Dongting. J. Lake Sci. 2018, 30, 1235–1245. 

14. Jiang, S.; Zhou, L.; Ren, L.; Wang, M.; Xu, C.; Yuan, F.; Liu, Y.; Yang, X.; Ding, Y. Development of a comprehensive framework 
for quantifying the impacts of climate change and human activities on river hydrological health variation. J. Hydrol. 2021, 600, 
126566. 

15. Arsenault, R.; Martel, J.L.; Brunet, F.; Brissette, F.; Mai, J. Continuous streamflow prediction in ungauged basins: Long Short-
Term Memory Neural Networks clearly outperform hydrological models. Hydrol. Earth Syst. Sci. Discuss. 2022, 2022, 1–29. 

16. Hu, C.; Wu, Q.; Li, H.; Jiang, S.; Li, N.; Lou, Z. Deep learning with a long short-term memory networks approach for rainfall-
runoff simulation. Water 2018, 10, 1543. 

Label Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. 1d-Min 3d-Min 7d-Min 30d-Min 90d-Min 1d-Max 3d-Max 7d-Max 30d-Max 90d-Max Base indexDate min Date max Low-C Low-D High-C High-D Rise rate Fall rate Reversals
Jan. 1.00 0.63 0.52 0.14 0.11 0.30 0.01 -0.12 -0.17 -0.10 -0.29 -0.23 0.10 0.10 0.12 0.16 -0.03 0.22 0.19 0.15 0.11 0.22 -0.08 0.39 0.02 -0.11 0.26 0.24 0.14 0.16 -0.23 0.19
Feb. 0.63 1.00 0.64 0.15 0.05 0.24 0.00 -0.10 -0.06 -0.09 -0.28 -0.15 0.05 0.06 0.04 0.07 0.02 0.22 0.18 0.14 0.15 0.21 -0.18 0.26 -0.09 -0.13 0.24 0.31 0.15 0.21 -0.23 0.04
Mar. 0.52 0.64 1.00 0.25 0.04 0.24 0.08 -0.04 0.04 -0.10 -0.23 -0.16 0.10 0.11 0.12 0.15 0.03 0.32 0.31 0.30 0.23 0.30 -0.14 0.19 -0.10 -0.12 0.14 0.35 0.12 0.27 -0.32 0.09
Apr. 0.14 0.15 0.25 1.00 0.30 0.30 0.12 0.09 0.25 0.28 -0.04 0.02 0.21 0.25 0.23 0.31 0.36 0.34 0.33 0.40 0.55 0.67 -0.27 -0.09 -0.09 -0.26 -0.14 0.29 0.57 0.49 -0.44 -0.16
May. 0.11 0.05 0.04 0.30 1.00 0.15 0.00 0.12 0.07 0.18 0.08 0.17 0.09 0.19 0.18 0.17 0.27 0.32 0.32 0.33 0.54 0.62 -0.22 -0.17 -0.10 -0.19 -0.07 0.26 0.46 0.38 -0.34 -0.06
Jun. 0.30 0.24 0.24 0.30 0.15 1.00 0.32 0.20 0.22 0.09 -0.04 0.08 0.41 0.40 0.39 0.36 0.34 0.68 0.68 0.68 0.62 0.70 -0.11 0.00 0.16 -0.10 -0.10 0.41 0.42 0.59 -0.62 -0.01
Jul. 0.01 0.00 0.08 0.12 0.00 0.32 1.00 0.32 0.04 0.19 0.04 0.14 0.08 0.16 0.22 0.24 0.15 0.52 0.52 0.52 0.47 0.45 -0.16 -0.07 0.32 0.06 -0.18 0.42 0.19 0.56 -0.60 0.21
Aug. -0.12 -0.10 -0.04 0.09 0.12 0.20 0.32 1.00 0.44 0.53 0.20 0.38 0.36 0.43 0.48 0.44 0.51 0.28 0.27 0.21 0.21 0.32 0.08 -0.33 0.27 -0.32 -0.32 0.42 0.13 0.61 -0.54 -0.04
Sep. -0.17 -0.06 0.04 0.25 0.07 0.22 0.04 0.44 1.00 0.42 0.18 0.31 0.24 0.27 0.26 0.29 0.46 0.15 0.16 0.15 0.15 0.27 -0.05 -0.46 0.07 -0.37 -0.35 0.35 0.19 0.40 -0.33 -0.14
Oct. -0.10 -0.09 -0.10 0.28 0.18 0.09 0.19 0.53 0.42 1.00 0.47 0.57 0.36 0.45 0.50 0.53 0.74 0.10 0.10 0.07 0.14 0.28 0.12 -0.56 0.31 -0.44 -0.50 0.42 0.12 0.58 -0.45 -0.12
Nov. -0.29 -0.28 -0.23 -0.04 0.08 -0.04 0.04 0.20 0.18 0.47 1.00 0.80 0.19 0.23 0.26 0.28 0.48 -0.02 -0.01 0.01 0.06 0.02 0.07 -0.44 0.28 -0.14 -0.42 0.15 -0.03 0.25 -0.24 -0.02
Dec. -0.23 -0.15 -0.16 0.02 0.17 0.08 0.14 0.38 0.31 0.57 0.80 1.00 0.22 0.32 0.35 0.38 0.61 0.14 0.14 0.13 0.14 0.17 0.02 -0.56 0.33 -0.23 -0.49 0.39 -0.05 0.43 -0.47 -0.02
1d-Min 0.10 0.05 0.10 0.21 0.09 0.41 0.08 0.36 0.24 0.36 0.19 0.22 1.00 0.97 0.92 0.86 0.66 0.23 0.20 0.18 0.14 0.28 0.67 -0.17 0.41 -0.29 -0.47 0.30 0.06 0.33 -0.35 0.13
3d-Min 0.10 0.06 0.11 0.25 0.19 0.40 0.16 0.43 0.27 0.45 0.23 0.32 0.97 1.00 0.98 0.91 0.74 0.27 0.24 0.22 0.22 0.36 0.66 -0.23 0.40 -0.31 -0.54 0.35 0.11 0.45 -0.46 0.15
7d-Min 0.12 0.04 0.12 0.23 0.18 0.39 0.22 0.48 0.26 0.50 0.26 0.35 0.92 0.98 1.00 0.96 0.76 0.29 0.26 0.23 0.23 0.39 0.66 -0.26 0.44 -0.28 -0.59 0.38 0.10 0.51 -0.52 0.22
30d-Min 0.16 0.07 0.15 0.31 0.17 0.36 0.24 0.44 0.29 0.53 0.28 0.38 0.86 0.91 0.96 1.00 0.79 0.27 0.23 0.21 0.24 0.39 0.59 -0.27 0.46 -0.30 -0.61 0.43 0.10 0.52 -0.53 0.22
90d-Min -0.03 0.02 0.03 0.36 0.27 0.34 0.15 0.51 0.46 0.74 0.48 0.61 0.66 0.74 0.76 0.79 1.00 0.26 0.26 0.25 0.29 0.43 0.30 -0.49 0.32 -0.41 -0.58 0.41 0.21 0.61 -0.53 -0.07
1d-Max 0.22 0.22 0.32 0.34 0.32 0.68 0.52 0.28 0.15 0.10 -0.02 0.14 0.23 0.27 0.29 0.27 0.26 1.00 0.99 0.95 0.76 0.74 -0.23 -0.09 0.11 0.10 -0.15 0.44 0.39 0.66 -0.70 0.09
3d-Max 0.19 0.18 0.31 0.33 0.32 0.68 0.52 0.27 0.16 0.10 -0.01 0.14 0.20 0.24 0.26 0.23 0.26 0.99 1.00 0.97 0.78 0.74 -0.27 -0.11 0.09 0.10 -0.14 0.42 0.40 0.65 -0.68 0.05
7d-Max 0.15 0.14 0.30 0.40 0.33 0.68 0.52 0.21 0.15 0.07 0.01 0.13 0.18 0.22 0.23 0.21 0.25 0.95 0.97 1.00 0.83 0.76 -0.29 -0.14 0.05 0.13 -0.15 0.35 0.47 0.61 -0.64 0.05
30d-Max 0.11 0.15 0.23 0.55 0.54 0.62 0.47 0.21 0.15 0.14 0.06 0.14 0.14 0.22 0.23 0.24 0.29 0.76 0.78 0.83 1.00 0.89 -0.36 -0.12 0.03 -0.02 -0.12 0.33 0.72 0.66 -0.64 -0.06
90d-Max 0.22 0.21 0.30 0.67 0.62 0.70 0.45 0.32 0.27 0.28 0.02 0.17 0.28 0.36 0.39 0.39 0.43 0.74 0.74 0.76 0.89 1.00 -0.32 -0.16 0.06 -0.18 -0.20 0.52 0.69 0.81 -0.79 -0.03
Base index -0.08 -0.18 -0.14 -0.27 -0.22 -0.11 -0.16 0.08 -0.05 0.12 0.07 0.02 0.67 0.66 0.66 0.59 0.30 -0.23 -0.27 -0.29 -0.36 -0.32 1.00 -0.05 0.29 0.05 -0.39 -0.18 -0.36 -0.19 0.15 0.30
Date min 0.39 0.26 0.19 -0.09 -0.17 0.00 -0.07 -0.33 -0.46 -0.56 -0.44 -0.56 -0.17 -0.23 -0.26 -0.27 -0.49 -0.09 -0.11 -0.14 -0.12 -0.16 -0.05 1.00 -0.07 0.19 0.48 -0.28 0.03 -0.31 0.23 0.15
Date max 0.02 -0.09 -0.10 -0.09 -0.10 0.16 0.32 0.27 0.07 0.31 0.28 0.33 0.41 0.40 0.44 0.46 0.32 0.11 0.09 0.05 0.03 0.06 0.29 -0.07 1.00 -0.08 -0.24 0.27 0.05 0.30 -0.31 0.08
Low-C -0.11 -0.13 -0.12 -0.26 -0.19 -0.10 0.06 -0.32 -0.37 -0.44 -0.14 -0.23 -0.29 -0.31 -0.28 -0.30 -0.41 0.10 0.10 0.13 -0.02 -0.18 0.05 0.19 -0.08 1.00 -0.12 -0.29 -0.16 -0.23 0.14 0.40
Low-D 0.26 0.24 0.14 -0.14 -0.07 -0.10 -0.18 -0.32 -0.35 -0.50 -0.42 -0.49 -0.47 -0.54 -0.59 -0.61 -0.58 -0.15 -0.14 -0.15 -0.12 -0.20 -0.39 0.48 -0.24 -0.12 1.00 -0.22 0.02 -0.36 0.38 -0.22
High-C 0.24 0.31 0.35 0.29 0.26 0.41 0.42 0.42 0.35 0.42 0.15 0.39 0.30 0.35 0.38 0.43 0.41 0.44 0.42 0.35 0.33 0.52 -0.18 -0.28 0.27 -0.29 -0.22 1.00 -0.06 0.70 -0.73 0.12
High-D 0.14 0.15 0.12 0.57 0.46 0.42 0.19 0.13 0.19 0.12 -0.03 -0.05 0.06 0.11 0.10 0.10 0.21 0.39 0.40 0.47 0.72 0.69 -0.36 0.03 0.05 -0.16 0.02 -0.06 1.00 0.42 -0.33 -0.29
Rise rate 0.16 0.21 0.27 0.49 0.38 0.59 0.56 0.61 0.40 0.58 0.25 0.43 0.33 0.45 0.51 0.52 0.61 0.66 0.65 0.61 0.66 0.81 -0.19 -0.31 0.30 -0.23 -0.36 0.70 0.42 1.00 -0.94 0.03
Fall rate -0.23 -0.23 -0.32 -0.44 -0.34 -0.62 -0.60 -0.54 -0.33 -0.45 -0.24 -0.47 -0.35 -0.46 -0.52 -0.53 -0.53 -0.70 -0.68 -0.64 -0.64 -0.79 0.15 0.23 -0.31 0.14 0.38 -0.73 -0.33 -0.94 1.00 -0.24
Reversals 0.19 0.04 0.09 -0.16 -0.06 -0.01 0.21 -0.04 -0.14 -0.12 -0.02 -0.02 0.13 0.15 0.22 0.22 -0.07 0.09 0.05 0.05 -0.06 -0.03 0.30 0.15 0.08 0.40 -0.22 0.12 -0.29 0.03 -0.24 1.00
Label Jan. l Feb. l Mar.  l Apr.  l May. l June. l July. l Aug. l Sept. l Oct. l Nov. l Dec. l Xlow1 p Xlow1 d Xlow1 t Xlow1 f High1 p High1 d High1 t High1 f High1 r High1 f Sfld1 p Sfld1 d Sfld1 t Sfld1 f Sfld1 r Sfld1 f Lfld1 p Lfld1 d Lfld1 t Lfld1 f Lfld1 r Lfld1 f
Jan. l 1.00 0.76 0.25 -0.38 -0.41 -0.02 -0.37 -0.05 -0.29 -0.29 -0.44 -0.05 0.22 0.37 0.53 0.13 -0.02 0.22 -0.38 -0.29 -0.52 0.13 -0.12 0.20 -0.25 -0.20 -0.28 -0.02 0.53 0.50 0.51 0.55 0.42 -0.52
Feb. l 0.76 1.00 0.35 -0.22 -0.14 0.01 -0.17 -0.12 -0.02 -0.11 -0.11 0.11 0.09 0.13 0.24 -0.02 -0.20 -0.02 -0.09 0.10 -0.54 0.43 0.12 0.20 0.02 0.07 -0.03 -0.24 0.34 0.27 0.29 0.37 0.30 -0.30
Mar.  l 0.25 0.35 1.00 -0.15 0.47 -0.33 0.18 0.22 0.07 -0.07 -0.09 -0.04 -0.10 -0.19 0.09 -0.07 0.00 0.23 0.14 0.07 -0.25 0.33 0.26 -0.08 0.26 0.42 0.38 -0.30 0.34 0.18 0.28 0.30 0.44 -0.25
Apr.  l -0.38 -0.22 -0.15 1.00 0.18 0.27 -0.19 0.07 0.20 -0.25 -0.04 0.03 -0.05 0.25 -0.09 -0.14 0.39 0.06 0.13 0.27 0.27 -0.02 -0.30 -0.50 -0.19 -0.18 0.03 0.28 -0.26 -0.06 -0.22 -0.16 -0.48 0.16
May. l -0.41 -0.14 0.47 0.18 1.00 -0.03 0.58 0.21 -0.05 -0.05 0.18 -0.14 0.13 0.05 0.07 0.09 -0.09 0.00 0.36 0.39 -0.08 0.38 -0.04 -0.46 0.07 0.22 0.22 0.13 0.32 0.28 0.31 0.31 0.30 -0.30
June. l -0.02 0.01 -0.33 0.27 -0.03 1.00 -0.21 -0.21 0.05 0.02 0.01 -0.36 0.12 0.27 0.07 -0.04 0.20 -0.11 0.08 0.30 0.05 -0.06 -0.45 -0.36 -0.25 -0.30 0.06 0.33 -0.15 0.01 -0.11 -0.07 -0.34 0.07
July. l -0.37 -0.17 0.18 -0.19 0.58 -0.21 1.00 0.26 0.15 0.28 0.47 0.03 -0.15 -0.24 -0.22 -0.12 -0.12 0.14 0.24 0.14 -0.13 0.53 0.46 0.19 0.47 0.55 0.11 -0.27 0.22 0.11 0.21 0.15 0.36 -0.17
Aug. l -0.05 -0.12 0.22 0.07 0.21 -0.21 0.26 1.00 -0.16 -0.57 -0.08 -0.43 -0.35 -0.29 -0.27 -0.43 0.16 0.28 -0.07 0.03 0.07 0.27 0.14 0.16 0.12 -0.23 -0.15 0.02 0.05 0.01 0.05 0.02 0.11 -0.03
Sept. l -0.29 -0.02 0.07 0.20 -0.05 0.05 0.15 -0.16 1.00 0.60 0.64 0.37 -0.31 -0.29 -0.50 -0.30 0.06 -0.03 0.52 0.20 -0.06 0.34 0.47 0.21 0.63 0.61 0.60 -0.43 -0.52 -0.49 -0.51 -0.52 -0.43 0.51
Oct. l -0.29 -0.11 -0.07 -0.25 -0.05 0.02 0.28 -0.57 0.60 1.00 0.70 0.33 -0.14 -0.28 -0.29 -0.01 -0.16 -0.32 0.36 0.09 0.11 0.06 0.38 0.29 0.55 0.57 0.38 -0.29 -0.33 -0.33 -0.33 -0.34 -0.25 0.34
Nov. l -0.44 -0.11 -0.09 -0.04 0.18 0.01 0.47 -0.08 0.64 0.70 1.00 0.35 -0.23 -0.31 -0.42 -0.04 -0.04 -0.12 0.70 0.40 0.05 0.22 0.35 0.21 0.56 0.38 0.24 -0.19 -0.48 -0.47 -0.47 -0.49 -0.36 0.48
Dec. l -0.05 0.11 -0.04 0.03 -0.14 -0.36 0.03 -0.43 0.37 0.33 0.35 1.00 -0.06 -0.02 -0.15 0.19 -0.14 -0.08 0.43 0.08 0.00 -0.07 0.20 0.11 0.05 0.40 -0.05 -0.31 -0.26 -0.23 -0.25 -0.26 -0.23 0.24
Xlow1 p 0.22 0.09 -0.10 -0.05 0.13 0.12 -0.15 -0.35 -0.31 -0.14 -0.23 -0.06 1.00 0.78 0.81 0.70 0.31 0.33 -0.06 -0.16 -0.16 -0.30 -0.70 -0.57 -0.71 -0.36 -0.44 0.60 0.38 0.31 0.35 0.37 0.37 -0.34
Xlow1 d 0.37 0.13 -0.19 0.25 0.05 0.27 -0.24 -0.29 -0.29 -0.28 -0.31 -0.02 0.78 1.00 0.78 0.65 0.19 0.25 -0.10 -0.01 -0.30 -0.15 -0.74 -0.57 -0.71 -0.45 -0.44 0.62 0.51 0.60 0.53 0.57 0.25 -0.57
Xlow1 t 0.53 0.24 0.09 -0.09 0.07 0.07 -0.22 -0.27 -0.50 -0.29 -0.42 -0.15 0.81 0.78 1.00 0.62 0.30 0.47 -0.21 -0.36 -0.35 -0.21 -0.63 -0.49 -0.67 -0.40 -0.44 0.56 0.65 0.62 0.64 0.66 0.53 -0.64
Xlow1 f 0.13 -0.02 -0.07 -0.14 0.09 -0.04 -0.12 -0.43 -0.30 -0.01 -0.04 0.19 0.70 0.65 0.62 1.00 -0.04 0.12 0.10 0.07 -0.09 -0.44 -0.49 -0.41 -0.50 -0.24 -0.31 0.42 0.29 0.20 0.26 0.28 0.31 -0.24
High1 p -0.02 -0.20 0.00 0.39 -0.09 0.20 -0.12 0.16 0.06 -0.16 -0.04 -0.14 0.31 0.19 0.30 -0.04 1.00 0.76 0.01 -0.33 0.28 -0.32 -0.39 -0.34 -0.33 -0.24 -0.31 0.38 -0.23 -0.23 -0.23 -0.23 -0.18 0.23
High1 d 0.22 -0.02 0.23 0.06 0.00 -0.11 0.14 0.28 -0.03 -0.32 -0.12 -0.08 0.33 0.25 0.47 0.12 0.76 1.00 0.04 -0.43 -0.23 -0.08 -0.17 -0.23 -0.22 -0.03 -0.24 0.18 0.21 0.08 0.19 0.14 0.36 -0.14
High1 t -0.38 -0.09 0.14 0.13 0.36 0.08 0.24 -0.07 0.52 0.36 0.70 0.43 -0.06 -0.10 -0.21 0.10 0.01 0.04 1.00 0.57 -0.08 0.00 -0.01 -0.28 0.18 0.25 0.26 0.06 -0.30 -0.32 -0.30 -0.32 -0.19 0.31
High1 f -0.29 0.10 0.07 0.27 0.39 0.30 0.14 0.03 0.20 0.09 0.40 0.08 -0.16 -0.01 -0.36 0.07 -0.33 -0.43 0.57 1.00 -0.05 0.12 -0.09 -0.25 0.10 0.03 0.25 0.04 -0.17 -0.13 -0.18 -0.12 -0.22 0.16
High1 r -0.52 -0.54 -0.25 0.27 -0.08 0.05 -0.13 0.07 -0.06 0.11 0.05 0.00 -0.16 -0.30 -0.35 -0.09 0.28 -0.23 -0.08 -0.05 1.00 -0.49 -0.13 0.02 -0.11 -0.23 -0.27 0.25 -0.58 -0.52 -0.58 -0.55 -0.55 0.56
High1 f 0.13 0.43 0.33 -0.02 0.38 -0.06 0.53 0.27 0.34 0.06 0.22 -0.07 -0.30 -0.15 -0.21 -0.44 -0.32 -0.08 0.00 0.12 -0.49 1.00 0.58 0.35 0.58 0.48 0.37 -0.47 0.31 0.32 0.32 0.32 0.23 -0.32
Sfld1 p -0.12 0.12 0.26 -0.30 -0.04 -0.45 0.46 0.14 0.47 0.38 0.35 0.20 -0.70 -0.74 -0.63 -0.49 -0.39 -0.17 -0.01 -0.09 -0.13 0.58 1.00 0.76 0.92 0.76 0.54 -0.86 -0.16 -0.27 -0.19 -0.22 0.03 0.22
Sfld1 d 0.20 0.20 -0.08 -0.50 -0.46 -0.36 0.19 0.16 0.21 0.29 0.21 0.11 -0.57 -0.57 -0.49 -0.41 -0.34 -0.23 -0.28 -0.25 0.02 0.35 0.76 1.00 0.64 0.30 0.05 -0.56 -0.16 -0.22 -0.18 -0.20 -0.04 0.20
Sfld1 t -0.25 0.02 0.26 -0.19 0.07 -0.25 0.47 0.12 0.63 0.55 0.56 0.05 -0.71 -0.71 -0.67 -0.50 -0.33 -0.22 0.18 0.10 -0.11 0.58 0.92 0.64 1.00 0.72 0.68 -0.72 -0.25 -0.31 -0.27 -0.29 -0.10 0.29
Sfld1 f -0.20 0.07 0.42 -0.18 0.22 -0.30 0.55 -0.23 0.61 0.57 0.38 0.40 -0.36 -0.45 -0.40 -0.24 -0.24 -0.03 0.25 0.03 -0.23 0.48 0.76 0.30 0.72 1.00 0.66 -0.78 -0.03 -0.15 -0.06 -0.09 0.14 0.10
Sfld1 r -0.28 -0.03 0.38 0.03 0.22 0.06 0.11 -0.15 0.60 0.38 0.24 -0.05 -0.44 -0.44 -0.44 -0.31 -0.31 -0.24 0.26 0.25 -0.27 0.37 0.54 0.05 0.68 0.66 1.00 -0.59 -0.18 -0.22 -0.19 -0.20 -0.09 0.20
Sfld1 f -0.02 -0.24 -0.30 0.28 0.13 0.33 -0.27 0.02 -0.43 -0.29 -0.19 -0.31 0.60 0.62 0.56 0.42 0.38 0.18 0.06 0.04 0.25 -0.47 -0.86 -0.56 -0.72 -0.78 -0.59 1.00 0.17 0.25 0.19 0.22 0.02 -0.22
Lfld1 p 0.53 0.34 0.34 -0.26 0.32 -0.15 0.22 0.05 -0.52 -0.33 -0.48 -0.26 0.38 0.51 0.65 0.29 -0.23 0.21 -0.30 -0.17 -0.58 0.31 -0.16 -0.16 -0.25 -0.03 -0.18 0.17 1.00 0.92 0.99 0.99 0.87 -0.98
Lfld1 d 0.50 0.27 0.18 -0.06 0.28 0.01 0.11 0.01 -0.49 -0.33 -0.47 -0.23 0.31 0.60 0.62 0.20 -0.23 0.08 -0.32 -0.13 -0.52 0.32 -0.27 -0.22 -0.31 -0.15 -0.22 0.25 0.92 1.00 0.96 0.96 0.63 -0.99
Lfld1 t 0.51 0.29 0.28 -0.22 0.31 -0.11 0.21 0.05 -0.51 -0.33 -0.47 -0.25 0.35 0.53 0.64 0.26 -0.23 0.19 -0.30 -0.18 -0.58 0.32 -0.19 -0.18 -0.27 -0.06 -0.19 0.19 0.99 0.96 1.00 0.99 0.81 -0.99
Lfld1 f 0.55 0.37 0.30 -0.16 0.31 -0.07 0.15 0.02 -0.52 -0.34 -0.49 -0.26 0.37 0.57 0.66 0.28 -0.23 0.14 -0.32 -0.12 -0.55 0.32 -0.22 -0.20 -0.29 -0.09 -0.20 0.22 0.99 0.96 0.99 1.00 0.79 -0.99
Lfld1 r 0.42 0.30 0.44 -0.48 0.30 -0.34 0.36 0.11 -0.43 -0.25 -0.36 -0.23 0.37 0.25 0.53 0.31 -0.18 0.36 -0.19 -0.22 -0.55 0.23 0.03 -0.04 -0.10 0.14 -0.09 0.02 0.87 0.63 0.81 0.79 1.00 -0.75
Lfld1 f -0.52 -0.30 -0.25 0.16 -0.30 0.07 -0.17 -0.03 0.51 0.34 0.48 0.24 -0.34 -0.57 -0.64 -0.24 0.23 -0.14 0.31 0.16 0.56 -0.32 0.22 0.20 0.29 0.10 0.20 -0.22 -0.98 -0.99 -0.99 -0.99 -0.75 1.00
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