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Abstract: Accurate groundwater level (GWL) forecasts are crucial for the efficient utilization, strategic
long-term planning, and sustainable management of finite groundwater resources. These resources
have a substantial impact on decisions related to irrigation planning, crop selection, and water supply.
This study evaluates data-driven models using different machine learning algorithms to forecast
GWL fluctuations for one, two, and three weeks ahead in Bangladesh’s Godagari upazila. To address
the accuracy limitations inherent in individual forecasting models, a Bayesian model averaging
(BMA)-based heterogeneous ensemble of forecasting models was proposed. The dataset encompasses
1807 weekly GWL readings (February 1984 to September 2018) from four wells, divided into training
(70%), validation (15%), and testing (15%) subsets. Both standalone models and ensembles employed
a Minimum Redundancy Maximum Relevance (MRMR) algorithm to select the most influential
lag times among candidate GWL lags up to 15 weeks. Statistical metrics and visual aids were
used to evaluate the standalone and ensemble GWL forecasts. The results consistently favor the
heterogeneous BMA ensemble, excelling over standalone models for multi-step ahead forecasts across
time horizons. For instance, at GT8134017, the BMA approach yielded values like R (0.93), NRMSE
(0.09), MAE (0.50 m), IOA (0.96), NS (0.87), and a-20 index (0.94) for one-week-ahead forecasts.
Despite a slight decline in performance with an increasing forecast horizon, evaluation indices
confirmed the superior BMA ensemble performance. This ensemble also outperformed standalone
models for other observation wells. Thus, the BMA-based heterogeneous ensemble emerges as a
promising strategy to bolster multi-step ahead GWL forecasts within this area and beyond.

Keywords: groundwater level; multi-step ahead forecasting; machine learning; heterogeneous
ensemble; Bayesian model averaging

1. Introduction

Groundwater is a crucial resource of water for fulfilling the requirements of different
sectors, such as domestic, industrial, and agricultural sectors. Unfortunately, the unsus-
tainable extraction of groundwater resources has caused a reduction in the availability of
this resource, leading to a notable disparity between the amount of groundwater avail-
able and the amount that is required to fulfill the needs. The unsustainable withdrawal
of groundwater for irrigation practices is causing the annual extraction of groundwater
beyond its natural replenishment capacity. This highlights the urgent requirement for the
implementation of sustainable measures to manage groundwater resources. Changes in
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climate, such as alterations in precipitation patterns and temperature, can influence the rate
at which groundwater is replenished, resulting in a decline in groundwater levels (GWL) in
aquifers. Moreover, human activities, including land use modifications like deforestation
and urbanization, can decrease the amount of water recharge rates in the groundwater
aquifers. In Bangladesh, groundwater is a major source of drinking water and it plays a
significant role in the agricultural sector. However, the overexploitation of groundwater
through excessive pumping for irrigation purposes has resulted in declining GWLs in
multiple regions, causing water scarcity and deteriorating water quality [1]. According to a
recent study, the rate of groundwater depletion in Bangladesh has escalated from 1980 to
2019, leading to a significant impact on agricultural productivity and water availability [2].
To address these issues, forecasting the accuracy of GWL is essential for managing water
resources effectively and minimizing the effects of climate change on water availability.

The use of Machine Learning (ML) algorithms in GWL forecasting has become more
frequent as they are capable of processing large amounts of data and capturing nonlinear
relationships between predictors and response variables. On the other hand, obtaining
comprehensive knowledge about aquifer processes, geometry, and modeling techniques
required for physically based numerical simulation models can be challenging due to data
limitations, especially in developing countries like Bangladesh. Therefore, these models
usually rely on assumptions and simplifications. Physically based numerical simulation
models can be affected by significant uncertainties and errors in areas with limited mon-
itoring data, mainly due to data scarcity and poor quality [3]. Additionally, physically
based models may encounter inaccuracies in their predictions due to simplifications and
assumptions made during the modeling process, leading to structural errors [4]. These
limitations have prompted researchers to seek alternative modeling approaches, such as
data-driven modeling, that can overcome these issues.

On the other hand, ML-based models are commonly considered to be a “black box”
model because they use algorithms to analyze and identify patterns in data without the need
for explicit programming instructions. Nevertheless, the nonlinear dynamics of aquifer
responses can be effectively captured by ML-based algorithms, which have emerged as an
alternative to physically based models. Unlike physically based models, ML algorithms
can establish a direct relationship between predictors and response variables without
requiring an explicit definition of physical system parameters. As a result, they have
become a valuable tool in groundwater management and forecasting. Recent research has
emphasized the effectiveness of ML algorithms in data-driven modeling approaches for
GWL prediction.

As an illustration of the potential of ML in groundwater prediction and management,
Vu et al. [5] employed the Long Short-Term Memory (LSTM) algorithm to create a data-
driven model that surpassed a physically based numerical model in its ability to forecast
GWLs in an arid area. Pham et al. [6] employed ML algorithms to predict GWLs and
discovered that their data-driven model had a superior performance in comparison to a
physically based model. This finding aligns with recent research, which has demonstrated
that data-driven modeling methods can perform equally well or better than physically
based simulation models in forecasting nonlinear time series data, such as groundwater
table data [7–9]. These investigations emphasize the potential of data-driven approaches in
addressing the difficulties related to physically based models, particularly in developing
nations, where data constraints can make it challenging to obtain a comprehensive under-
standing of aquifer processes and modeling techniques. Therefore, our study aimed to
compare the performances of seven commonly used ML models in predicting multi-scale
GWLs at the selected observation wells in Bangladesh. These models included Adaptive
Neuro-Fuzzy Inference System (ANFIS), Bootstrap Aggregated Random Forest (Bagged RF),
Boosted Random Forest (Boosted RF), Gaussian Process Regression (GPR), Bi-directional
Long Short-Term Memory (Bi-LSTM) network, Multivariate Adaptive Regression Spline
(MARS), and Support Vector Regression (SVR). The study aimed at assessing how well each
of the ML models predicted future GWLs at selected wells, taking into account multiple
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time steps into the future. Some recent research has highlighted the capability of these
algorithms in forecasting the accuracy of various parameters. Some applications in their
usage in various disciplines including GWL prediction and forecasting domain comprise
the application of ANFIS [10–12], Bagged RF [13,14], Boosted RF [15,16], GPR [17,18], Bi-
LSTM [19,20], MARS [21], and SVR [22,23]. However, these ML-based forecasting models
individually can often fail to map the nonlinear relationships between the inputs and
outputs relating to GWL fluctuations due to prediction uncertainties.

Recent studies have demonstrated that although ML algorithms can be effective in
predicting GWLs, there are certain limitations and uncertainties when relying solely on a
single algorithm for this task. To address these limitations and uncertainties associated
with using a single ML algorithm for GWL forecasting, recent studies have suggested the
use of heterogeneous ensemble models [24] that combine different algorithms or modeling
techniques. These heterogeneous ensemble models are aimed at improving the accuracy
and reliability of the forecasting results. Researchers have explored different approaches
such as combining multiple ML algorithms, statistical models, or physical models. Exam-
ples of recent studies that have proposed and evaluated heterogeneous ensemble models
for GWL forecasting include the works of Tang et al. [25], Cao et al. [26], and Liu et al. [27].
Overall, these studies highlight that while ML algorithms can be promising in predicting
GWLs, using a single algorithm may not always be enough to ensure accurate and reliable
forecasts. To address this issue, an ensemble of several ML algorithms can be used to
provide robust and precise forecasts.

Ensemble models that combine with multiple algorithms may be necessary to improve
forecasting performance and enhance the robustness of the models. Ensemble learning
is a technique that combines multiple ML-based models to improve forecast accuracy of
a model. There are various types of ensembles that can be used in ML algorithms, in-
cluding bagging, boosting, stacking, blending, and random forest approaches. Each type
of ensemble has its own unique approach to combining the forecasts of multiple mod-
els, and recent studies have demonstrated their effectiveness in improving the accuracy
and reliability of GWL forecasting models. The weighted average approach is gaining
popularity as an ensemble of ML-based models because it assigns weights to individual
prediction models based on their prediction precision. Recent studies have explored the
effectiveness of the weighted average ensemble in GWL prediction [28–30]. A study by
Tao et al. [31] proposed a weighted ensemble of deep learning models for GWL forecasting,
which outperformed single deep learning models and other traditional ML algorithms.
Similarly, a study by Gong et al. [32] used a weighted average ensemble of SVR models
for GWL forecasting, which achieved higher accuracy compared to single models and
other ensemble approaches. Bayesian Model Averaging (BMA) is a popular weighted
average ensemble approach to improve the accuracy of GWL forecasting models com-
pared to other weighted average ensembles. Recent studies have shown the advantages
of using BMA, such as its ability to incorporate uncertainties in model selection and pa-
rameter estimation, which can lead to more accurate and robust predictions. For example,
Zhou et al. [28] compared the performance of BMA with other ensemble methods for GWL
forecasting and found that BMA outperformed other methods in terms of accuracy and
robustness. Similarly, Seifi et al. [33] used BMA to combine multiple ML models for GWL
forecasting and demonstrated that the approach improved the accuracy of the forecasting
results compared to other weighted average ensembles. However, these studies were
conducted with different ML algorithms at different geographical locations, limiting their
applications at other geographical locations. Therefore, the current study aims to enhance
forecast accuracy and tackle modeling uncertainty by utilizing a weighted average ensem-
ble approach based on the BMA of individual forecast models at four different observation
wells located in northern Bangladesh.

The aim of this research is to demonstrate the application of several ML algorithms,
including ANFIS, Bagged RF, Boosted RF, GPR, Bi-LSTM, MARS, and SVR, to forecast
GWLs and compare their individual performance with a weighted average ensemble based
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on a BMA approach. The study involves developing ensemble forecast models that use
historical GWL data as input variables and applying them to the observation wells situated
in Godagari upazilla, Rajshahi, Bangladesh. Our key contributions to the existing body of
literature involve the first investigation of:

1. Performance evaluation of the seven ML-based individual models to forecast multi-
step ahead GWL fluctuations.

2. Development of a heterogeneous ensemble of the GWL forecast models using the
BMA approach and comparison of the performance of the ensemble with that of the
standalone forecast models.

Therefore, the research aimed at enhancing the forecasting accuracy of multi-scale
GWL fluctuations through the utilization of a heterogeneous ensemble comprising various
ML algorithms. This improvement in forecasting accuracy is crucial for effective water
resource management and decision-making. In addition, by utilizing data-driven ML
models, the research offers a more direct and efficient approach to GWL forecasting. This
reduces the dependence on complex numerical simulation models that require extensive
data and modeling expertise. Another unique aspect is the ensemble’s ability to address
forecast uncertainties inherent in data-driven models. The introduction of the ensemble
approach helps address the inherent uncertainties in standalone data-driven models. By
combining the predictive power of multiple algorithms, the ensemble provides more robust
and reliable GWL forecasts, particularly in scenarios where uncertainty is a critical concern.
While ML-based methods have been applied to this domain before, the integration of
diverse algorithms in an ensemble to enhance accuracy is a unique and innovative aspect
of this study. The findings can assist water resource managers and policymakers in making
informed decisions about groundwater resource utilization and conservation. Overall, this
research will contribute to the advancement of GWL forecasting techniques and provides
valuable insights for sustainable water resource management in the study area and beyond.

2. Materials and Methods
2.1. Study Area and the Data

The study area is located at the Godagari upazilla of the Rajshahi district in the
Rajshahi division, Bangladesh. It is situated between 24◦21′ and 24◦36′ north latitudes and
88◦17′ and 88◦33′ east longitudes with an aerial extent of about 472.13 km2. The area falls
in the extensive Gangetic floodplain, which has a typical climatic pattern with very cold
winters (below 6 ◦C) and very dry and hot summers (up to 45 ◦C) [34]. It experiences little
annual rainfall compared to other parts of the country. Groundwater recharge from rainfall
is hindered by a thick clayey layer of around 18 m at the top surface.

Previous data on GWL fluctuations were used to model future scenarios of GWL
fluctuations in the selected observation wells of the study area, especially to provide a
multi-step ahead forecast of GWLs. For this, weekly historical data on GWL fluctuations
with a period from 10 October 1983 to 24 September 2018 (1825 weekly GWL records)
were collected from the Bangladesh Water Development Board [35], an entity dedicated
to collecting weekly GWL information from designated observation wells. In addition
to these GWL records, this organization possesses pump test and lithology data for the
observation wells. The research primarily focuses on evaluating the effectiveness of our
proposed approach in generating multi-step ahead GWL forecasts with minimal input
variables, specifically, utilizing only past GWL data. Our approach eliminates the necessity
of incorporating multiple attributes and relying on numerical simulation models, which
often demand extensive data and specialized modeling expertise, as well as subjective
judgment. In summary, this research relies on secondary data gathered by the Bangladesh
Water Development Board, which is responsible for collating water quality and water level
data from designated observation wells. This data collection includes manually recorded
measurements of the depth of the water level below the ground surface. Collected data
at different observation wells were carefully checked and four observation wells, namely
GT8134017, GT8134020, GT8134021, and GT8134022, were selected based on the criterion of
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the least number of missing entries. The observation well GT8134017 is positioned between
24.40◦ N latitude and 88.43◦ E longitude. The position of the observation well GT8134020
is between 24.52◦ N latitude and 88.38◦ E longitude. The observation well GT8134021 lies
between 24.49◦ N latitude and 88.46◦ E longitude, whereas the observation well GT8134022
is situated between 24.43◦ N latitude and 88.46◦ E longitude. The study area and the
positions of the observation wells inside the study area are shown in Figure 1.
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Figure 1. Study area.

To ensure that the collected GWL datasets meet the highest standards, a data quality
assurance approach is frequently employed. This approach enhances the reliability of
GWL forecasts made using ML techniques. The quality of the collected GWL data was
rigorously evaluated for accuracy and completeness using range/limit tests, even though
a comprehensive quality inspection method was not applied to the current dataset. The
primary objective of range testing is to confirm that each observation falls within a specified
range. Only measurements within this threshold are accepted, while those outside of the
range are accurately categorized as invalid. To generate a multi-step ahead GWL projection,
the data falling within the permissible range were used to model future GWL changes in
the selected observation wells.

However, there were some missing values in the GWL datasets in the selected obser-
vation wells. The missing entries of weekly GWL data accounted for 0.60% (12 missing
entries out of 2021 data), 0.49% (10 missing entries out of 2021 data), 0.35% (7 missing
entries out of 2021 data), and 0.39% (8 missing entries out of 2021 data) for the observation
wells GT8134017, GT8134020, GT8134021, and GT8134022, respectively. The average of the
preceding and subsequent weeks (i.e., adjacent weeks) was used to fill in any gaps in a
given week’s data [36]. Table 1 presents a few descriptive statistics of the datasets (after
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imputation of the missing entries) at the selected observation wells. Table 1 reveals that
the mean values of GWL data ranged between 6.534 m (at GT8134022) and 7.735 m (at
GT8134020), whereas the standard deviation values varied between 2.274 m (at GT8134022)
and 2.797 m (at GT8134017). The data at all observation wells possessed a longer left
tail than the right tail in their distribution, as evidenced by the negative skewness values
(Table 1). Likewise, the datasets showed “light-tailed” distributions because the kurtosis
values are also negative at all observation wells.

Table 1. Values of the statistical parameters computed on the GWL data (m) at the designated
observation wells.

Observation Well Mean STD Skewness Kurtosis

GT8134017 6.796 2.797 −0.172 −0.446
GT8134020 7.735 2.683 −0.043 −0.596
GT8134021 6.612 2.555 −0.457 −0.535
GT8134022 6.534 2.274 −0.218 −0.557

2.2. Machine Learning-Based Models
2.2.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

A hybrid computational model, called the Adaptive Neuro-Fuzzy Inference System
(ANFIS), incorporates the advantages of both Artificial Neural Network and fuzzy reason-
ing methods. Models that can learn from data and then apply that learning to generate
predictions or anticipate the future may be developed using ANFIS. The ANFIS model
architecture used in this study is Sugeno-based and employs Gaussian and linear-type
Membership Functions (MFs) for the inputs and outputs, respectively. According to
Jang et al. [37], a Gaussian MF comprises the two important model parameters {c, σ} and
can be written as follows:

gaussian(x, c, σ) = e−
1
2 (

x−c
σ )

2
(1)

where c represents the center of the MF, and σ denotes the MF’s width.
Figure 2 can be used to visually display the architecture of an ANFIS model of the

Sugeno-type [37].
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The ANFIS architecture depicted in Figure 2 is a basic design that is developed from a
Sugeno FIS structure of the first order, comprising a single output ( f ) and two inputs (α
and β). The fuzzy if-then rules for the Sugeno FIS are represented as:

Rule 1 : If α is P1 and β is Q1then f1 = p1α + q1β + r1 (2)
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Rule 2 : If α is P2 and β is Q2 then f2 = p2α + q2β + r2 (3)

The ANFIS model is composed of five layers, namely the input layer, fuzzification
layer, rule layer, defuzzification layer, and an output layer. The input data is fed into the
input layer, and subsequently, the fuzzification layer transforms it into fuzzy sets. Rules are
generated in the rule layer based on these fuzzy sets, which are then combined to generate
the system output. The defuzzification layer is responsible for converting the fuzzy output
to a crisp output. During the learning process, the ANFIS model adjusts the parameters of
the fuzzy sets and the rules using the training data. To adjust the parameters of the neural
network, the model employs a backpropagation algorithm, while the parameters of the
fuzzy sets are adjusted using a least squares method. ANFIS offers several advantages
over other modeling techniques due to its ability to handle noisy and uncertain data,
capture non-linear relationships between input and output variables, and integrate expert
knowledge into the model. The GWL forecasting models based on ANFIS are created by
utilizing the functions and commands of MATLAB programming language.

ANFIS employs a hybrid learning algorithm for parameter identification in Sugeno-
type fuzzy inference systems (FIS). This approach combines the least squares method and
the backpropagation gradient descent method to train FIS membership function parameters,
effectively replicating a provided training dataset.

ANFIS models are developed by tuning the parameters of initial FISs, which are
created using the fuzzy c-means clustering algorithm (FCM). The FCM is employed to
compress the training dataset into a set of identical clusters that significantly reduce
the number of rules in FIS generation. This clustering approach substantially reduces
the number of adjustable parameters, both linear and nonlinear, within the FIS models.
Selecting the optimum number of clusters is an important pre-processing step in FIS model
development using the FCM algorithm.

The appropriate number of clusters is determined based on the nature of the problem
and the dimension of the input space. In most cases, a simpler model architecture is
preferred. In this study, we determine the optimal number of clusters by conducting
multiple trials with varying cluster numbers and assessing the resulting Root Mean Square
Error (RMSE) between the actual and predicted responses obtained from the selected FIS
models. We select the number of clusters that yields the minimum RMSE value and the
least variance in RMSE values between the training and testing datasets, considering it to
be suitable. We also scrutinize the lowest variance in RMSE values between the training
and testing datasets to prevent model overfitting.

2.2.2. Bagged and Boosted RF

A Random Forest (RF) is an ML-based algorithm that utilizes an ensemble of decision
trees for making predictions. The method involves generating a group of independent
trees and combining their outputs through averaging. Each tree in the forest is constructed
based on a random subset of features from the dataset, and the splitting criteria for each
tree are determined independently [38]. Bagging and Boosting are commonly utilized
in ML to enhance the accuracy of decision tree-based models like RF. These techniques
can significantly improve the performance of RF models by reducing model overfitting,
variance (in the case of Bagging), and bias (in the case of Boosting). Bagging is a method
that entails generating several random samples of the training data by using bootstrapping
and training a model on each sample. The ultimate prediction is achieved by taking an
average of all the model predictions. This technique helps to mitigate the problem of
overfitting and variance that can occur in a model. On the other hand, Boosting is an ML
technique that involves training a model on the entire training set and iteratively adjusting
the weights of the misclassified samples to enhance the model’s performance. In Boosting,
new decision trees are added to the model to correct the errors of the previous trees. The
final prediction is made by combining the predictions of all the trees, which are weighted
based on their accuracy. A detailed description of the Bagged and Boosted RFs can be found
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in Breiman [38] and is not repeated in this study. The Bagged-RF and Boosted-RF-based
GWL forecasting models are developed using the functions and commands of MATLAB.

2.2.3. Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a non-parametric and Bayesian ML approach
that models nonlinear relationships between input and output variables. It uses a Gaussian
process, which is a set of random variables that have a joint Gaussian distribution, to
model the relationship between inputs and outputs. The goal of GPR is to build a mapping
between the predictors, X(i) and the response variable, Y, expressed as a functional rela-
tionship. In simpler terms, GPR is a way to predict outputs based on inputs by building a
statistical model using a flexible and non-parametric approach. The functional relationship
between X(i) and Y can be defined as [39]:

Y = f (X(i)) + ε (4)

where ε symbolizes the Gaussian noise with variance σ2
n .

When using GPR, the mean and covariance of the Gaussian process are determined by
the data used for training. These two functions play important roles in building the input–
output mapping for the GPR model. The mean function is responsible for determining the
expected value of the function at any given location in the variable space. In other words,
it provides a prediction for the output variable based on the input variables. This mean
function can be written as [40]:

m(xi) = E[ f (xi)] (5)

The most fundamental and significant component in developing a GPR model is
thought to be the covariance function. The covariance function shows how similar or
dissimilarly connected the inputs and outputs are. The covariance function is defined
as follows:

k
(
xi, xj

)
= E

[
( f (xi)−m(xi))

(
f
(

xj
)
−m

(
xj
))]

(6)

A final representation of the Gaussian process is:

f (x) ∼ gp
(
m(xi), k

(
xi, xj

))
(7)

One of the major benefits of using GPR is that it can effectively model intricate rela-
tionships between input and output variables without assuming any specific distribution
of the data. This feature is especially useful when dealing with data that may be noisy or
incomplete, as GPR cannot only provide predictions but also estimates of the uncertainty
associated with these predictions. Therefore, GPR is a powerful tool for predictive model-
ing in situations where the relationships between variables are complex and the data are
imperfect. The GPR-based GWL forecasting models are developed using the functions and
commands of MATLAB.

2.2.4. Bidirectional Long Short-Term Memory (Bi-LSTM) Network

Bi-LSTM is a variant of the traditional LSTM neural network, consisting of both
forward and backward LSTM layers that allow for the integration of long-range context in
both directions. The LSTM architecture addresses the issue of vanishing gradients by using
gating mechanisms, while the Bi-LSTM allows for the inclusion of both preceding and
subsequent data. The traditional LSTM consists of multiple memory blocks with several
memory units and three gates: the input gate selects and converts new data into cell form,
the forget gate removes irrelevant information, and the output gate decides which essential
information from the cell should be used as the output. As a type of Recurrent Neural
Network (RNN), Bi-LSTM transforms the individual activations into dependent activation
sequences by providing all neural network layers with identical weights and biases and
using prior outputs as input for subsequent hidden layers. In a standard RNN architecture,
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the hidden layer undergoes an update based on the layer input and prior hidden form at
each time step t using the following equation.

ht = σh (Wxt + Vht − 1− bh) (8)

where W is the weight matrix delivered via the input to the hidden layer, V is the weight
matrix between two hidden serial states (ht−1 and ht), bh is the bias vector for the hidden
layer, and σh is the activation function to generate the hidden structure. The model output
can be represented as

yt = σy
(
Uht + by

)
(9)

where U is the weight matrix from the hidden layer converted to the output layer, and
σy is the activation function of the output layer. The LSTM layers process sequential data
unidirectionally and modify it to capture the patterns. However, a backward LSTM layer
can introduce bidirectional capabilities to the model. The LSTM layers procedure series
data unidirectionally and modify it to capture the randomness. Nonetheless, a backward
LSTM layer can deliver bidirectionality into the model. Thus, developing a Bi-LSTM layer,
including a forward LSTM layer and a backward LSTM layer, processes series data with
two particular hidden layers and merges them into the same output layer.

In the development of Bi-LSTM models, network architectures featuring three hidden
layers were implemented. Following each of these hidden layers, a dropout layer was
incorporated to prevent or mitigate overfitting in the proposed Bi-LSTM models. The first,
second, and third hidden layers were configured with 100, 50, and 20 hidden neurons,
respectively. Correspondingly, dropout rates of 0.4, 0.3, and 0.2 were assigned to the
respective dropout layers. These optimal values were determined through an iterative
process of experimentation. Various training configurations for the Bi-LSTM models were
explored during these trials and the most effective ones for the model training were selected
(Table 2).

Table 2. Optimal parameter sets for the GWL forecasting models.

Model Parameters

ANFIS

Number of clusters:
GT8134017-GWL (t + 1) = 6, GT3330001-GWL (t + 2) = 3, GT3330001-GWL (t + 3) = 3
GT8134020-GWL (t + 1) = 3, GT3330002-GWL (t + 2) = 2, GT3330002-GWL (t + 3) = 4
GT8134021-GWL (t + 1) = 6, GT3330020-GWL (t + 2) = 3, GT3330020-GWL (t + 3) = 5
GT813402-GWL (t + 1) = 5, GT3330020-GWL (t + 2) = 4, GT3330020-GWL (t + 3) = 3

Initial FIS:
Fuzzy partition matrix exponent = 2

Maximum number of iterations = 500
Minimum improvement = 1 × 10−5

ANFIS:
Maximum number of epochs: 500

Error goal = 0
Initial step size = 0.01

Step size decrease rate = 0.9
Step size increase rate = 1.1

Bagged RF

Number of variables to sample = all
Predictor selection = interaction-curvature

Method = bag
Number of learning cycles = 200

Learn rate = 1
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Table 2. Cont.

Model Parameters

Boosted RF

Method = LSBoost
Minimum number of parents = 10

Minimum number of leafs = 5
Maximum splits = 12

Number of learning cycles = 57
Learn rate = 0.1929

GPR

Basis function = Linear
Kernel function = Rational Quadratic

Fit method = Exact, predict method = Exact
Beta = 0, Sigma = 0.4081

Optimizer = quasinewton

MARS

Number of Basis functions at the forward pass = 100
Number of Basis functions at the backward pass = 50

Minimum number of observations between the knots = 3
No penalty is added to the variables to give equal priority to all input variables

Bi-LSTM

Gradient decay factor = 0.9, Epsilon = 1 × 10−8, Initial learn rate = 0.01
Learn rate drop factor = 0.1, Learn rate drop period = 10, Gradient threshold = 1

L2 regularization = 1 × 10−4, Gradient threshold method = l2norm,
Maximum number of epochs = 1000, Mini batch size = 150

SVR
Kernel function = linear, Box constraint = 25.4335, Epsilon = 0.1021

Delta gradient tolerance = 0, Gap tolerance = 1 × 10−3, Kernel scale = 7.4663
Solver = SMO, Bias = 6.7549, Iteration limit = 1,000,000

The training setup consisted of four layers for the Bi-LSTM models:

a. A sequence input layer, which matched the number of input variables or features.
b. A Bi-LSTM layer, whose units corresponded to the number of hidden units.
c. A fully connected layer, tailored to the number of output variables or response variables.
d. Finally, a regression layer.

This architecture allowed effective training and evaluation of the proposed Bi-LSTM
models for the intended task.

2.2.5. Multivariate Adaptive Regression Spline (MARS)

Multivariate Adaptive Regression Spline (MARS) is a non-parametric regression
method that was first introduced by Jerome H. Friedman in 1991 [41]. Since then, it has
become a widely used technique for modeling intricate and nonlinear relationships between
input and output variables in data mining and ML applications. One of the advantages
of MARS is its ability to handle both continuous and categorical input variables, as well
as their interactions. Additionally, MARS is particularly helpful in identifying the most
important input variables in high-dimensional data and modeling non-linear interactions
between inputs and outputs. Overall, MARS is a powerful tool for building flexible and
accurate regression models in situations where the relationships between variables are
complex and nonlinear.

MARS approximates the nonlinear relationship between input and output variables by
dividing them into a series of linear segments, which are connected at “knots”. The selection
of knots is based on the associated data, and they are used to improve prediction accuracy
by minimizing the sum of squared errors between the actual and predicted responses. Each
linear segment is represented as a linear combination of the input variables, where the
coefficients are also determined by the data.

MARS model building involves both a forward and a backward stepwise procedure.
During the forward step, the model is constructed using user-specified Basis functions,
while during the backward step, redundant or unnecessary input variables are systemati-
cally eliminated to reduce the model’s complexity and prevent over fitting. This results in a
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more optimal and accurate model. The mapping between input and output variables in
MARS can be expressed mathematically, as outlined in Roy and Datta [42].

BFi(X) = max
(
0, Xj − a

)
or BFi(X) = max

(
0, α− Xj

)
(10)

Y = f (X) = β± γk × BFi(X) (11)

where i and j symbolize the indices for Basic functions and input variables, respectively; BFi
indicates the ith Basis functions; Xj denotes the jth input variables; α is a constant referred
to as the knot; β indicates a constant value; γk represents the corresponding coefficients of
BFi(X).

2.2.6. Support Vector Regression (SVR)

Support Vector Regression (SVR) is an ML-based approach that is employed for
performing regression tasks by offering both linear and non-linear mappings between the
input and output variables. It is based on the same principle as Support Vector Machines
(SVMs), which are used for classification tasks. The primary goal of SVR is to determine a
function that can best approximate the relationship between input and output variables
while minimizing the prediction error. To achieve this, SVR maps the input variables to
a high-dimensional feature space, where a linear relationship between input and output
variables may exist. The technique then identifies a hyperplane that maximizes the margin
between the predicted values and the actual values, with the margin represents the distance
between the predicted values and the hyperplane. This margin is used to balance the
complexity of the model against the error rate. Additionally, SVR is less prone to overfitting
than other non-linear regression techniques since it concentrates on discovering the best
hyperplane that generalizes well to new data [43]. This effort provides a concise overview
of how SVR models can be used to solve regression problems. When constructing an SVR
model, the training dataset can be expressed using the following equation:

P = {(a1, b1), (a2, b2), (a3, b3), . . . ., (aN , bN)} (12)

where ai(i = 1, 2, 3, . . . ., N) represents a vector comprising real independent variables;
bi(i = 1, 2, 3, . . . ., N) represents the associated scalar real independent variable. The feature
space representation of the regression equation for the training dataset is as follows:

z(a, w) = (w·∅(a) + c) (13)

where w represents the weight vector; c symbolizes a constant; ∅(a) denotes the feature
function; and w·∅(a) represents the dot product. SVR minimizes the following cost function
to accomplish regression tasks:

Minimize : Q( f ) = C
1
N

Lε(b, z(a, w)) +
1
2
‖W2 ‖ (14)

Lε(b, z(a, w)) =

{
0 if |b− z(a, w)| ≤ ε

|b− z(a, w)| − ε otherwise
(15)

The above equation represents the empirical error, while the second term (denoted
by C) measures the trade-off between the empirical error and the model complexity.
Equation (15) represents a loss function referred to as the “ε-insensitive loss function” [44].
By introducing Lagrangian multipliers β and β∗, the optimization problem in Equation (15)
is transformed into a dual problem.
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Support vectors are only defined as combinations of non-zero coefficients and their
corresponding input vectors, ai. The equation eventually has the following final form:

z(a, βi, β∗i ) =
Nsv

∑
i=1

(βi − β∗i )
(
∅(ai)·∅

(
aj
))

+ c (16)

The SVR function can be expressed as follows using the kernel function K
(

xi, xj
)
:

z(a, βi, β∗i ) =
Nsv

∑
i=1

(βi − β∗i )K(a, ai) + c (17)

The above equations are used to compute the term c using the Karush–Kuhn–Tucker
condition. When using the SVR technique to solve a regression problem, the cost function
C, the radius of the insensitive tube ε, and the kernel parameters K

(
xi, xj

)
are thought to be

the most crucial variables. The forecasting models for GWL based on the SVR approach are
developed using MATLAB’s functions and commands.

2.3. Modeling Techniques

This section provides specifics on data pre-processing and modeling techniques
adopted in this research to develop the ML-based forecast models (ANFIS, Bagged RF,
Boosted RF, GPR, Bi-LSTM, MARS, and SVR) proposed in this research to forecast multi-
step ahead GWL fluctuations.

Data pre-processing is a crucial step in enhancing the forecasting accuracy of any ML
model. It encompasses various tasks, including data collection and compilation, quality
assessment, cleaning and imputation, data splitting, feature engineering, and data stan-
dardization, among others, to ensure that the data are suitable for analysis and modeling.
The issues related to data collection and compilation, as well as cleaning and imputation,
are addressed in Section 2.1, ‘Study area and the data’. Subsequent sub-sections provide
detailed information on data splitting, feature engineering, data standardization, and the
modeling techniques employed in this research. These steps collectively contribute to
improving the forecasting accuracy of multi-scale GWL fluctuations using a heterogeneous
ensemble of ML algorithms.

2.3.1. Data Preprocessing

Initially, a total of 1825 GWL records (from 10 October 1983 to 24 September 2018)
were collected for providing multi-step ahead GWL forecasts. The collected weekly GWL
data decreased at every observation well due to temporal lags for the lagged inputs and
the output. At each observation well, a total of 1807 historical records remained (from 13
February 1988 to 24 September 2018 after removing 18 records due to time lagging (3-time
lags forward + 15-time lags backward) from the entire GWL time series of 1825 readings
(from 10 October 1983 to 24 September 2018). The remaining dataset at each observation
well were divided into three subsets: the first 1267 datasets (70% of total) were employed
for model development (training), the next 270 datasets (15% of total) were used for model
validation, and the remaining 270 datasets (15% of total) were used for model evaluation
(testing). After satisfactory training and validation of the GWL forecast models, the models
were tested using an unseen test dataset, which was used neither for model training nor for
model validation. Although there is not a fixed rule for dataset dividing throughout model
training and validation [45], it is generally agreed that the validation division should be
between 10% and 40% of the length of the entire dataset [46].

2.3.2. Selection of Input Variables

One of the most crucial aspects in creating ML-based forecast models is deciding on the
influential input variables [47,48]. In order to choose the input variables for hydrological
and water resources modeling, both linear [49] and nonlinear approaches [48] have been
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used [47]. However, because hydrological and water resource modeling frequently involves
nonlinear issues, linear approaches based on the Partial Auto Correlation Function (PACF)
and Auto Correlation Function (ACF) are normally not the best approaches [50]. In general,
nonlinear approaches based on Mutual Information (MI) [51] outperform linear approaches
for the modeling of hydrology and water resources research areas in addition to other
scientific and technological application domains [32,47,48,52]. Since ANFIS, GPR, Bi-LSTM,
and SVR do not automatically quantify the significance of input variables, it is crucial to
undertake the selection of most influential input variables before developing these models.
In this research, we employed the Minimum Redundancy Maximum Relevance (MRMR)
technique developed by Peng et al. [53], one of the most popular MI techniques for input
variable identification. Using MI to find potential candidate inputs that are pertinent but
not unnecessary, this method chooses input variables from a group of alternatives. It
has been demonstrated that this method chooses input variables that are more suitable
than other methods of a similar kind [54]. An operator Φ(D, R) is defined to concurrently
optimize the minimum redundancy (R) and maximum relevance (D) for selecting an input
subset (S) from d input variables in x [53]. This can be mathematically represented as:

maxΦ(D, R), Φ = D− R (18)

A detailed outline of MRMR can be found in Peng et al. [53] and is not repeated in this
effort. Nevertheless, for approaches like MARS and RF, the choice of the input variable is
not required. Both strategies carry out the internal functions of input variable selection and
variable importance quantification.

2.3.3. Standardization of Data

Data standardization is seen as a method for putting data on a uniform scale, making
them simpler to assess and compare. In order to be certain that various variables or
attributes are on an equivalent scale and have identical ranges, machine learning algorithms
are standardized. In the present investigation, the variables used for input were initially
normalized before the GWL forecasting models were built. Several earlier studies on
hydrology and water resources used the standardization approach [55,56]. As a result, the
dataset was created with a mean of 0 and a variance of 1 [57]. The data were standardized
using the following formula:

Xstandardized =
X− µ

σ
(19)

where X represents the actual input, Xstandardized denotes the standardized input, µ is the
mean value of the input, and σ is the standard deviation of the input.

2.3.4. Development of Individual Models

The choice of the best parameter settings has a significant impact on how accurately
the majority of ML-based algorithms forecast. Probst et al. [58] claim that the vast majority
of ML algorithms require that a set of properly selected appropriate parameters be used.
ML-based model performance is significantly influenced by the choice of parameters [59],
and poor parameter choosing can lead to underachieving models. To enable an equitable
evaluation of ML-based forecasting models, it is ideal to choose the best or optimal parame-
ter sets for each of the ML-based models. In this attempt, a number of trials were run using
different parameter sets for each model in order to pick the best models using the best
parameter values for that model. The training and validation data were used to conduct
these trials, which examined the RMSE of the training phase and validation performance.
When the RMSE values for the training and validation phases differed very little from one
another, it was determined that a model was performing at its peak efficiency and that
no model was overfitted. The parameters that were used for the trained individual GWL
forecast models developed at the four observation wells are shown in Table 2.
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2.3.5. Development of Ensemble Models

Different ML-based modeling approaches have varying degrees of precision in fore-
casting. In accordance with the datasets utilized in both training and evaluation, the efficacy
of a model may change. It is important to select the best model for a specific problem; not
all ML-based modeling techniques can be used in a given study to compare the effective-
ness of each one. This selecting process is difficult and time-consuming. An ensemble
modeling technique has a benefit in these circumstances because it enables the selection
of a predetermined number of effective models and the combination of their forecasts
to provide more precise outcomes. An ensemble forecast enhances forecast reliability by
more accurately capturing the relationships between the predictors and responses in the
dataset. Additionally, it shields a model’s performance from an individual poor model by
minimizing the impact of poor projections from the model in question [60]. An ensemble
technique utilizes the unique characteristics of individual models to recognize various
input–output relationship trends across the whole decision space of the input–output data.
For this reason, ensemble models frequently provide higher precision than an individual
forecast model. Individual forecasting models used in the ensemble development must,
however, be sufficiently precise and varied to be useful for forecasting. The appropriate
balance between independent forecasting models in an ensemble-based forecast is mostly
governed by the trade-offs between model complexity, forecasting accuracy, and the level
of uncertainty minimization.

To overcome the limitations of the forecast performance of the individual models, the
present study utilizes a weighted average ensemble approach using the BMA approach [61].
When there is ambiguity over the best model to utilize, BMA is a statistical method that is
employed to calculate the parameters of the model and generate forecasts. BMA, which
combines forecasts from many different models by weighing them in accordance with
their posterior probabilities, which are determined using the data at hand and a prior
distribution over the models in question, offers an improved comprehension of the overall
forecasting uncertainty [62]. In order to derive consensus predictions, BMA uses proba-
bilistic probability measures for weighting individual predictions, with higher probability
likelihood values obtaining bigger weights than forecasts that have lower probability likeli-
hood values. The fundamental tenet of BMA is to approach model selection as a random
variable and to account for this uncertainty in the analysis. BMA takes into account a set of
candidate models and assigns a probability to each one depending on how well it fits the
data and how well it relates to prior knowledge about the problem, rather than choosing
a single “best” model based on some criterion (e.g., statistical performance assessment
indices). In comparison to individual ensemble members created using several competing
ML algorithms, BMA offers a probabilistic forecast that offers more accuracy and depend-
ability [62]. For challenges involving multi-scale GWL prediction, the BMA technique was
employed in this endeavor. A thorough description of the BMA approach can be found in
the literature [61–63], hence the following is a concise summary of it.

Let us consider the following terms and notations: y denotes the predicted vari-
able, D =

[
yobserved

1 , yobserved
2 , yobserved

3 , . . . , yobserved
N

]
represents the training data with a data

length of N, and f = [ f1, f2, f3, . . . , fk] is the ensemble of all selected individual model pre-
dictions. Furthermore, consider pk(y| fk, D) to be the posterior distribution of y with model
prediction fk and matrix of the training data D. Then, according to the total probability law,
the Probability Density Function (PDF) of the BMA-based probabilistic prediction of y is
presented using the equation below:

p(y|D) =
K

∑
k=1

p( fk|D)·pk(y| fk, D) (20)

where p( fk|D) denotes the posterior probability of the model prediction fk, also known
as the probability of model prediction fk being the accurate prediction for the training
data set D. The term p( fk|D) in Equation (20) determines how precisely this specific
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ensemble member matches the actual observed values. If we consider the term p( fk|D) to
be equal to the weights of the individual ensemble member, i.e., wk = p( fk|D), then the

sum of weights for all individual ensemble members should be equal to 1, i.e.,
K
∑

k=1
wk = 1.

The BMA predictions’ posterior mean and variance can be represented by the following
equations [62]:

E[y|D] =
K

∑
k=1

p( fk|D)·E[pk(y| fk, D)] =
K

∑
k=1

wk fk (21)

Var[y|D] =
K

∑
k=1

wk

(
fk −

K

∑
i=1

wi fi

)2

+
K

∑
k=1

wkσ2
k (22)

where σ2
k denotes the variance related to the model prediction fk concerning the training

data set D. The expected BMA forecast is essentially the average of the various predictions
weighted by the probability that a particular model is accurate for the given observations.

In the BMA algorithm, it is assumed that the conditional probability distribution,
denoted as pk(y| fk, D), follows a Gaussian distribution. In the standard BMA approach,
the EM algorithm is employed to maximize the log-likelihood function associated with the
parameter vector being estimated. If we represent θ as θ = [{wk, σk, k = 1, 2, . . . , K}], the
log-likelihood function can be approximated as follows:

l(θ) = log

(
K

∑
k=1

wk.pk(y| fk, D)

)
(23)

Obtaining an analytical solution for this problem is infeasible, necessitating the use of
an iterative procedure. The EM algorithm is particularly well suited for this purpose. In
essence, the EM algorithm formulates the maximum likelihood problem as a ‘missing data’
problem. This missing data may not represent actual observations but can instead be a
latent variable that requires estimation. It is important to note that the EM algorithm tends
to converge to local optima, and the optimal solution is highly sensitive to the initial guess
of the optimization variables. For clarity, Figure 3 illustrates a flow diagram of the proposed
ensemble model, including the algorithmic flow of the execution of the EM algorithm.

Since the probability of a model is essentially a gauge of how well the model forecasts
match the data provided, one benefit of BMA is that a BMA forecast is given larger weights
from models that perform better. Another benefit of BMA is that it offers a means to account
for model uncertainty (through BMA variance) and prevent overfitting, which can happen
when a single model is chosen based on a particular criterion. BMA variance is made up of
two parts: (1) between-model variance, which is expressed by the very first component on
the right-hand side of the equation (Equation (22)); and (2) within-model variance, which is
indicated by the second component on the right-hand side of the equation (Equation (22)).
As a result, BMA offers a more accurate representation of predictive uncertainty than a non-
BMA-based ensemble strategy, which integrates uncertainty based solely on the ensemble
spread (considers between-model variance alone), and on the other hand, produces under-
dispersive predictions [62].

With the proper estimation of θ = [{wk, σk, k = 1, 2, . . . , K}] and pk(y| fk, θ, D), it is
possible to easily generate probabilistic forecasts using Equation (20).
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2.4. Model Performance Evaluation

Correlation Coefficient (R) [64]:

R =
∑n

i=1
(
GWLi,A − GWLA

)(
GWLi,A − GWLP

)√
∑n

i=1
(
GWLi,A − GWLA

)2
√

∑n
i=1
(
GWLi,P − GWLP

)2
(24)

Root Mean Squared Error (RMSE) [65]:

RMSE =

√
1
n

n

∑
i=1

(GWLi,A − GWLi,P)
2 (25)
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Normalized RMSE (NRMSE) [66]:

NRMSE =
RMSE

GWLA
(26)

Mean Absolute Error (MAE):

MAE = mean[|GWLi,A − GWLi,P|] (27)

Mean Absolute Deviation (MAD) [67]:

MAD(HGWA, GWLP)
= median( |GWLA, i=1 − GWLP, i=1|, |GWLA, i=2
−GWLP, i=2|, . . . , |HGWA, i=n − GWLP, i=n| ) f or i = 1, 2, . . . , n

(28)

Willmott’s Index of Agreement (IOA) [68]:

IOA = 1− ∑n
i=1(GWLi,A − GWLi,P)

2

∑n
i=1
(∣∣GWLi,P − GWLA

∣∣+ ∣∣GWLi,A − GWLA
∣∣)2 (29)

Nash–Sutcliffe Efficiency Coefficient (NS) [69]:

NS = 1− ∑n
i=1(GWLi,A − GWLi,P)

2

∑n
i=1
(
GWLi,A − GWLA

)2 (30)

Mean Bias Error (MBE) [70]:

MBE =
1
n

n

∑
i=1

(GWLi,P − GWLi,A) (31)

a20 − index:

a20 − index =
K20

n
(32)

where GWLi,A = actual groundwater level values, GWLi,P = predicted groundwater level
values, GWLA = mean of the groundwater level values, GWLP = mean of the forecasted
groundwater levels, SD represents the standard deviation of the observed data, n = number
of samples (GWL data), and K20 = number of test samples that have a GWLi,A/GWLi,P
ranging between 0.80 and 1.20. The a20− index quantifies the number of forecasts that have
a ratio of actual and forecasted values within a range of 0.80 and 1.20.

2.5. Variable Importance

MARS and RF variants (Bagged and Boosted RF) inherently offer insights into the
significance of explanatory variables for predicting the target variable. For other models, a
total of sixteen (GWL at present time and 15 lags behind) most significant input variables
were selected using the MRMR technique presented in Section 2.3.2. The feature importance
score was computed and the top 16 predictors were selected for the one-, two-, and three-
steps ahead forecasts individually at the four observation wells. A high score value
indicates the significance of the associated predictor. Likewise, a reduction in the feature
importance score reflects the level of confidence in feature selection. For instance, if
the MRMR technique confidently selects feature x, the score value of the subsequent
important feature would be notably lower than that of feature x. Given that there was no
considerable disparity between the scores of the subsequent predictors until the sixteenth
most significant predictors, we opted for the first sixteen most important features to build
the ML-based models. The analysis revealed that certain variables exhibit substantial
relative contributions to the models, while the majority displayed minimal or negligible
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contributions. It was generally observed that lagged GWL (Lag-1), as expected, was the
most important variable for 1 week ahead forecasting (Figure 4).
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Figure 4. Variable importance based on MRMR scores for one-, two-, and three-step ahead predictions
at different observation wells.

3. Results and Discussion
3.1. Performance of the Individual Forecasting Models during Training and Validation

Training and validation were carried out for the individual forecasting models to
assess their performance. Figures 5 and 6 display the RMSE index, utilized to compare
the efficiency of the proposed models across the learning and validation phases. The
RMSE values for various standalone models forecasting GWL one, two, and three weeks
in advance are presented for both the learning and validation datasets. This index serves
as a metric for gauging the accuracy of the models during their development. The results
reveal that, in the cases of wells GT8134017, GT8134021, and GT8134022, the SVR model
exhibited lesser disparities between RMSE values in training and validation, in contrast
to other models like ANFIS, BaggedRF, BoostedRF, GPR, BiLSTM, and MARS, which
demonstrated more significant discrepancies. Conversely, for well GT8134020, the MARS
model showcased a smaller variance, while ANFIS, BaggedRF, BoostedRF, GPR, BiLSTM,
and SVR displayed higher divergences. Of all the models, ANFIS displayed the weakest
performance, yielding the most notable dissimilarities in terms of RMSE values between
the training and validation phases.
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Figure 5. Train and validation RMSE during the training and validation phases of model development:
observation wells GT8134017 and GT8134020.
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Figure 6. Train and validation RMSE during the training and validation phases of model development:
observation wells GT8134021 and GT8134022.
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3.2. Performance of the Standalone and Ensemble Models on the Independent Test Dataset

When applied as individual models, ML-based models often struggle to capture
the wide range of complex patterns contained in the dataset. This limitation can lead to
poor predictions. In such situations, an ensemble of standalone prediction models can be
employed, which sometimes outperforms an individual model [24]. Therefore, due to the
frequent inability of standalone forecast models to capture the true trends within training
and testing patterns of the dataset, the concept of ensemble prediction has been introduced
in this research. Furthermore, efforts in model development typically focus on reducing
prediction uncertainties to provide meaningful predictions and enhance the generalization
capacity of the developed models. This can be accomplished by integrating the predictions
of multiple standalone models, creating an ensemble of models that produces a single
combined prediction [60].

An ensemble approach can be either homogeneous or heterogeneous, depending on
the use of single or multiple ML-based algorithms in the ensemble formation [24]. Pre-
vious studies on GWL prediction have demonstrated the effectiveness of homogeneous
ensembles [29], which outperformed standalone models. Although recent studies on salt-
water intrusion problems in coastal aquifers have applied a heterogeneous ensemble of
prediction models [24], this approach has not been previously employed to enhance the
forecasting accuracy of multi-scale GWL forecasts. This study examines the application
of a BMA-based ensemble approach to enhance the accuracy and reliability of multi-scale
GWL forecasts. The approach involves consolidating multiple competing forecasts gen-
erated by various ML algorithms. BMA is a statistical method that derives consensus
predictions by assigning weights to individual predictions based on their probabilistic
likelihood measures. Predictions with superior performance receive greater weights than
those with poorer performance. Additionally, BMA offers a more dependable represen-
tation of the overall predictive uncertainty compared to the other ensemble approaches,
resulting in a more precise and well-calibrated Probability Density Function (PDF) for the
probabilistic predictions.

Ensemble techniques aim to enhance the accuracy and consistency of predictions by
amalgamating multiple standalone forecast models. The rationale underlying ensemble
forecasting rests upon the notion that diverse models possess individual strengths and
weaknesses. By consolidating their predictions, a more resilient and precise ML-based
algorithm can be crafted. Ensemble forecasting is a widely favored strategy to amalgamate
the forecasting accuracies of individual models due to their divergent performances in
varied scenarios [24]. A comprehensive comparison between the performances of inde-
pendent models and the BMA ensemble approach distinctly showcases the supremacy
of the BMA methodology across the GT8134017, GT8134020, GT8134021, and GT8134022
observation wells. It is worth noting that the precision of forecasts, as gauged by evalu-
ation indices, diminishes as forecasting horizons extend. In essence, one-week forecasts
outperformed two-week forecasts, and two-week forecasts exhibit greater accuracy than
three-week forecasts.

Figures 7 and 8 illustrate the individual model performances across various statistical
indices when predicting the weekly GWL of four observation wells. In Figure 7, the
NRMSE and MAD values for various ML-based algorithms are presented across different
observation wells. In terms of statistical significance, the accuracy of a model improves as
the NRMSE and MAD values decrease. At the GT8134017 well, the BMA model emerged as
the highest-ranking model, showcasing lower NRMSE values (0.09, 0.12, and 0.13 for one-,
two-, and three-week ahead GWL forecasts) as well as lower MAD values (0.17, 0.25, and
0.27 for one-, two-, and three-week ahead GWL forecasts). Conversely, the MARS model
exhibited the poorest performance, characterized by higher NRMSE and MAD values
(NRMSE = 0.20, 0.91, and 0.85; MAD = 0.48, 3.18, 3.48 for one-, two-, and three-week ahead
GWL forecasts). Similarly, across the GT8134020, GT8134021, and GT8134022 wells, the
BMA model consistently demonstrated lower NRMSE and MAD values, further confirming
its favorable performance.
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Conversely, depicted in Figure 8 are the values of R, IOA, and a-20 index for distinct
ML-based algorithms across various observation wells. Broadly, heightened values of
R, IOA, and a-20 index correspond to enhanced model accuracy. For the GT8134017
observation well, BMA exhibited superior performance when compared to alternative
models, as evidenced by its higher values of R (0.93, 0.88, and 0.86), IOA (0.96, 0.93, and
0.92), and a-20 index (0.94, 0.91, and 0.91) for one-, two-, and three-week ahead GWL
forecasts, respectively. Likewise, BMA consistently outperformed other models across the
remaining observation wells, corroborating its efficacy. The findings presented in Figures 7
and 8 collectively indicate that the BMA model emerges as the superior choice across
various prediction horizons for different observation wells, surpassing other standalone
models when evaluated on the independent test dataset.

In this study, the BMA approach exhibits exceptional performance, with larger R, IOA,
and a-20 index values and smaller NRMSE and MAD values across all three forecasting
horizons and the four observation wells. For instance, at the GT8134017 observation
well, the BMA model improves the accuracy of statistical indices in one-week forecasts by
(R = 25.67%, NRMSE = 55%, MAD = 68%, IOA = 15.67%, and a-20 index = 18.98%) compared
to the poorest-performing model. On average, the BMA model consistently demonstrates
greater accuracy than other individual models across other observation wells. According
to our study, the BMA approach offers a more dependable and robust comprehension of
overall predictive uncertainty.

The effectiveness of the proposed Bayesian Model Averaging approach over the inde-
pendent models is also apparent when considering other statistical performance evaluation
measures, as presented in Table 3. It is evident from the data presented in Table 3 that,
despite the individual models yielding comparatively reduced Root Mean Squared Error,
Mean Absolute Error, and Mean Bias Error values, the Bayesian Model Averaging approach
consistently yields the most minimized values across all observation wells and forecasting
horizons. While the standalone models exhibit relatively lower Nash–Sutcliffe Efficiency
Coefficient values, the Bayesian Model Averaging approach consistently outperforms them
in terms of NS for all instances.

Table 3. Performance of the models in forecasting weekly groundwater levels of GT8134017,
GT8134020, GT8134021, and GT8134022.

Model
GWL (t + 1) GWL (t + 2) GWL (t + 3)

RMSE MAE NS MBE RMSE MAE NS MBE RMSE MAE NS MBE

GT8134017

ANFIS 1.85 0.93 0.40 −0.25 1.57 0.95 0.57 −0.29 1.82 1.16 0.43 −0.44
BaggedRF 1.59 1.01 0.56 −0.86 1.83 1.33 0.41 −1.17 2.03 1.56 0.28 −1.41
BoostedRF 1.67 1.12 0.51 −0.92 2.20 1.63 0.16 −1.48 2.09 1.59 0.24 −1.40

GPR 1.29 0.67 0.71 −0.16 2.16 1.48 0.18 −1.14 3.43 2.60 −1.04 −2.42
BiLSTM 1.38 0.80 0.67 −0.67 1.49 0.98 0.61 −0.68 1.47 0.98 0.63 −0.59
MARS 1.95 1.10 0.33 −0.67 8.65 5.40 −12.06 −5.23 8.13 5.49 −10.46 −5.22

SVR 1.42 0.70 0.64 −0.17 1.46 0.88 0.63 −0.33 1.85 1.31 0.40 −0.80
BMA 0.87 0.50 0.87 0.00 1.13 0.68 0.78 0.00 1.23 0.77 0.74 0.00

GT8134020

ANFIS 0.76 0.45 0.52 −0.10 0.80 0.51 0.47 −0.15 0.98 0.67 0.20 −0.17
BaggedRF 1.17 0.89 −0.15 −0.84 1.25 1.00 −0.31 −0.96 1.42 1.19 −0.70 −1.16
BoostedRF 1.25 0.96 −0.30 −0.94 1.39 1.15 −0.61 −1.13 1.63 1.40 −1.23 −1.39

GPR 0.67 0.41 0.63 −0.21 0.77 0.54 0.50 −0.36 2.08 1.86 −2.62 −1.86
BiLSTM 1.46 1.16 −0.77 −0.98 1.21 0.90 −0.23 −0.83 1.40 1.08 −0.64 −1.00
MARS 1.32 0.68 −0.46 −0.01 1.12 0.67 −0.05 −0.17 1.61 0.92 −1.16 0.06

SVR 0.71 0.41 0.58 −0.18 0.84 0.58 0.41 −0.39 1.07 0.81 0.04 −0.63
BMA 0.59 0.33 0.71 0.00 0.64 0.38 0.66 0.00 0.71 0.47 0.58 0.00
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Table 3. Cont.

Model
GWL (t + 1) GWL (t + 2) GWL (t + 3)

RMSE MAE NS MBE RMSE MAE NS MBE RMSE MAE NS MBE

GT8134021

ANFIS 0.85 0.60 0.79 −0.35 1.15 0.88 0.62 −0.65 1.30 0.97 0.52 −0.59
BaggedRF 1.10 0.80 0.66 −0.69 1.47 1.15 0.38 −1.03 1.85 1.51 0.02 −1.39
BoostedRF 1.07 0.79 0.68 −0.65 1.53 1.19 0.33 −1.05 1.83 1.47 0.05 −1.31

GPR 0.78 0.54 0.83 −0.29 1.11 0.85 0.65 −0.66 1.42 1.13 0.43 −0.96
BiLSTM 0.58 0.40 0.91 −0.23 1.02 0.75 0.70 −0.29 1.08 0.84 0.67 −0.31
MARS 0.83 0.60 0.80 −0.31 1.22 0.96 0.58 −0.39 1.64 1.26 0.24 −0.60

SVR 0.78 0.51 0.82 −0.12 0.98 0.73 0.73 −0.46 1.28 1.02 0.54 −0.82
BMA 0.44 0.27 0.95 0.00 0.75 0.50 0.84 0.00 0.83 0.61 0.81 0.00

GT8134022

ANFIS 0.63 0.45 0.92 −0.23 1.02 0.73 0.81 −0.42 1.35 1.07 0.66 −0.61
BaggedRF 0.63 0.44 0.93 −0.20 1.01 0.72 0.81 −0.44 1.39 1.08 0.65 −0.83
BoostedRF 0.70 0.48 0.91 −0.26 1.07 0.78 0.79 −0.55 1.57 1.19 0.55 −0.95

GPR 0.82 0.63 0.87 −0.49 1.41 1.15 0.63 −1.00 1.70 1.37 0.47 −1.20
BiLSTM 0.34 0.22 0.98 −0.17 0.70 0.53 0.91 −0.34 0.82 0.64 0.88 −0.23
MARS 0.69 0.49 0.91 −0.14 1.10 0.79 0.78 −0.28 1.40 1.08 0.64 −0.53

SVR 0.62 0.45 0.93 −0.23 0.99 0.80 0.82 −0.52 1.26 1.02 0.71 −0.66
BMA 0.28 0.18 0.98 0.00 0.55 0.38 0.94 0.00 0.77 0.56 0.89 0.00

Notes: RMSE = Root Mean Squared Error, MAE = Mean Absolute Error, NS = Nash–Sutcliffe Efficiency Coefficient,
MBE = Mean Bias Error, ANFIS = Adaptive Neuro-Fuzzy Inference System, BaggedRF = Bootstrap Aggregated
Random Forest, BoostedRF = Boosted Random Forest, GPR = Gaussian Process Regression, BiLSTM = Bidirectional
Long Short Term Memory Network, MARS = Multivariate Adaptive Regression Spline, SVR = Support Vector
Regression, BMA = Bayesian Model Averaging.

A noteworthy observation is that the forecasting performance decreases as the fore-
casting horizon extends. This finding aligns well with the conclusions drawn by Rah-
man et al. [71] and Quilty et al. [48], who reported that the accuracy of predictive models
tends to decrease with the expansion of the forecasting horizon. In summary, the sug-
gested heterogeneous ensemble of forecast models based on Bayesian Model Averaging
has substantially enhanced the reliability and accuracy of multi-scale groundwater level
fluctuations within the study area. This result aligns well with the conclusions reported by
Darbandsari and Coulibaly [72].

4. Conclusions

A dependable and precise forecast of GWLs can be used to create a groundwater
management strategy that is effective and sustainable. For agricultural, household, and
industrial uses, this planning will help to determine the best groundwater abstraction
recommendations. But it is frequently challenging to provide precise GWL forecasts because
of the nonlinear nature of GWLs as well as their multi-scale and time-varying behavior.
An essential requirement for building precise ML-based models involves the selection
of the most pertinent input variables from a pool of potential candidates, in conjunction
with the optimization of model parameters. To tackle these concerns, this study evaluated
the efficacy of various ML-based approaches capable of effectively capturing nonlinear
relationships between input and output variables and that often show the best accuracy
for GWL and other research domains in different parts of the world. Few of the ML-based
approaches are able to perform selection of the most significant input variables internally,
while for the others, the most significant input variables were selected using the MRMR
approach. These models were fed into the time-lagged information extracted from the time
series data. Furthermore, these ML-based forecasting model outputs were integrated using
the BMA approach to enhance the forecasting models’ ability. The proposed models were
explored for 1, 2, and 3 weeks ahead GWL forecasting. The performance of the proposed
BMA approach was compared against standalone forecast models.
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The comparison between individual ML approaches and their heterogeneous ensem-
ble (BMA) counterpart demonstrated that the BMA approach exhibited higher accuracy
in comparison to the standalone ML models. The standalone ML methods also show-
cased respectable accuracy, albeit slightly below the level achieved by the BMA approach.
Evaluation indices consistently highlighted the outstanding performance of the suggested
BMA-based heterogeneous ensemble technique, even though performance marginally
declined as forecast horizons increased. The ensemble approach based on BMA notably
enhanced the accuracy of GWL forecasts across various lead times, with particularly notable
improvement for 1-week ahead forecasts than the 2- and 3-week ahead forecasts at the
observation wells. This outcome holds promise for forecasting multi-scale processes fre-
quently encountered in hydrology and water resources. The amalgamation of ML methods
through the BMA approach presents a compelling novel framework for GWL forecasting
in the study area, warranting further exploration in the realm of hydrology and water
resources, both for short-term and long-term predictive applications. It is worth mentioning
that this study utilized a dataset covering roughly 35 years, ranging from 1983 to 2018.
Further validation of the proposed modeling approach can be conducted using the most
recent dataset obtained from the selected observation wells and potentially applied in a
future study.
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