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Abstract: The development of cost-effective methods for estimating hydraulic conductivity profiles
has been an ongoing effort in the field of engineering practice, which can be used to increase
availability to clarify the hydrogeological complexity of fractured rock aquifers for the aid of solving
groundwater-related problems. A new methodology is presented, which combines electrical well
logs, fluid conductivity logs, double-packer hydraulic tests, Archie’s law, and the Kozeny–Carman-
Bear equation to investigate relations between formation factor (F) and hydraulic conductivity
(K). Available geophysical and hydraulic test data measured from 88 boreholes in fractured rock
formations in Taiwan were collected to perform the correlation studies. The correlation investigation
outcomes indicate that the established F-K relations have the potential to serve as the transformation
function for estimating hydraulic conductivity through the geological directly. To improve F-K
relations in response to the effect of clay mineralogy, two proposed clustering techniques (the natural
gamma ray threshold method and the modified Archie’s law method) successfully play an important
role in filtering clayed data. The prevalence of clay content in most of Taiwan’s fractured rock
formations has been found, which implies that careful consideration of clay-related issues in complex
geologic formations is essential while applying Archie’s law theory. Finally, the predictive models
for estimating hydraulic conductivity have been developed for three types of lithology (sandstone,
schist, and slate).

Keywords: hydraulic conductivity; well logging; formation factor; fluid conductivity; resistivity

1. Introduction

Hydraulic conductivity plays an essential role in controlling the distribution, flow
path, and storage of groundwater in the formation, especially in complex geological en-
vironments where this parameter is highly heterogeneous and, as generally recognized,
may vary with spatial locations [1–4]. Therefore, if detailed and continuous hydraulic
conductivity along boreholes (hydraulic conductivity profiles) can be obtained during
the site investigation [5], it will be constructive to clarify the hydrogeological complexity
of rock formations [6]. However, such detailed information is not easily obtained due
to the limitations of budget, labor, and exploration methods. Most of the projects only
take the representative data as the basis to characterize hydrogeological conditions of
a site for the assistance of engineering planning and design. When the representative
data cannot deal with the complexity of an engineering system, construction accidents
may occur, such as large groundwater inflow accidents during tunnel construction [7].
In addition, limited access to detailed data may lead to undiscovered scientific problems
related to hydrogeology, or the possible cross-disciplinary applications may be limited by
insufficient observed information. Thus, there is a demand for detailed and continuous
hydrogeological information for handling vertical heterogeneity in engineering practice
and science.
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Traditionally, direct field hydraulic tests with the fixed-interval approach can be
adopted to determine the hydraulic conductivity profile along a borehole in a geolog-
ically complex formation [8]. Although this method can provide detailed information
concerning hydraulic conductivity with accurate results, the method is labor-intensive,
time-consuming, and costly, as mentioned above. To improve the limitation, down-hole
logging tools, such as flowmeter [9–11], electrical well logging [5,12,13], the liner profiling
method [14], or NMR (nuclear magnetic resonance) logging [15], have been studied to
explore profiles of the hydraulic properties of formations surrounding boreholes. Although
these down-hole logging tools can provide higher resolutions, not all tools have the advan-
tage of low cost while estimating hydraulic conductivity. Additionally, geophysical data
measured from these tools still need to combine transform functions to obtain hydraulic
conductivity, and these studies have not yet been fully developed [5,10,12,14,15].

Inexpensive and less time-consuming methods with high resolution for estimating
such a profile increase their worth in practical applications. Among these logging tools,
electrical well logging meets the criteria of relatively inexpensive survey costs and high
resolution. Although most of the downhole electrical logging signals are mainly used to
identify the profiles of lithology, porosity, hydraulic property, cementation, strength, and
water-bearing zones of a formation in a qualitative way, a few studies have attempted to
utilize such data to estimate hydraulic conductivity.

Since 1951, studies have focused on exploring electrical–hydraulic relationships for
groundwater exploration [16]. In the early times, previous studies utilized electrical well-
logging data to calculate values of the formation factor [17], and then establish direct
relationships between electrical data and hydraulic conductivity [17–20]. The later studies
used a two-step approach to construct the electrical–hydraulic relationship. First, electrical
well-logging data were utilized to calculate values of the formation resistivity factor and
then estimate the porosity using Archie’s law [17,21]. Second, the predicted porosity is
typically used in conjunction with the Kozeny–Carman model to estimate hydraulic conduc-
tivity. The abovementioned methodology has been presented in the literature [5,12,13,22,23].
These studies also pointed out that Archie’s law and Kozeny–Carman model are only vali-
dated in sandy strata. If clayed or shaley formations are present in the analysis, estimation
results are inferior. To improve electrical–hydraulic relationships in response to the effect of
clay mineralogy, the modification of Archie’s law was proposed by Waxman and Smits [24].
Few studies have considered the new law to improve electrical estimations from hydraulic
conductivity [5,12]. In addition, electrical–hydraulic relationships developed from most
of the previous studies were focused on unconsolidated formations. Such relationships
are less well developed in fractured rock formations. Due to their geologic complexity,
obtaining a good result on the electrical–hydraulic relationship could become challenging.

In this study, relations between hydraulic conductivity and electrical data in complex
geologic environments of Taiwan, where fractured rock aquifers with diverse lithologies
are commonly present, were investigated. Available geophysical and hydraulic data
measured from 88 boreholes using the electrical well-logging tools and double-packer
hydraulic test were collected to perform the correlation studies. The main tasks include
(a) inspection of the quality of the geophysical data by comparing the existing drilling
core data with the consistency of actual lithology; (b) investigation of correlations between
hydraulic conductivity and geophysical parameters (spontaneous potential, short normal
resistivity, long normal resistivity, point resistivity, natural gamma, and fluid conductivity);
(c) classification of collected data with/without clay contents by using two proposed
clustering approaches; and (d) feasibility studies for establishing the relationship between
the formation factor and hydraulic conductivity over various lithologies in fractured rock
formations.

2. Study Area and Data Sources

A twelve-year program related to groundwater resource explorations in Taiwan’s
mountainous areas was initiated by the Central Geological Survey of Taiwan in 2010 [25].
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The main objective of this program is to explore the potential of using groundwater ex-
tracted from fractured rock formations as alternative water resources against drought. To
understand the feasibility of this concept, hydrogeologic data in regolith-bedrock aquifers
over the entire Taiwan mountain areas through various hydrogeological investigation tests
were collected and analyzed to support the purpose of this program. Figure 1 shows the
distribution of the investigated borehole locations in the mountainous area of Taiwan for
the program mentioned above from 2010 to 2021. Each investigated borehole conducted
seven in situ hydrogeological tests, including electrical well logging, fluid conductivity
logging, temperature logging, groundwater velocity logging, borehole imaging, double-
packer hydraulic test, and pumping test. The total investigated boreholes and the depth of
each borehole are 88 and 100 m, respectively.

To develop a model for determining the hydraulic conductivity of mountainous for-
mations along a borehole, this study collected samples from a part of the above-mentioned
hydrogeological tests. The analyzed data mainly aimed at survey data from the electrical
well logging (spontaneous potential, short normal resistivity, long normal resistivity, point
resistivity, and natural gamma), fluid conductivity logging, and double-packer hydraulic
test. Data samples for each borehole were selected from the borehole sections by performing
double-packer hydraulic tests (the test interval of 1.5 m). A total of 396 double-packer
hydraulic test samples were collected. In addition, the electrical well logging and fluid
conductivity logging have one-centimeter data sampling, which can meet this study’s
research goal of high resolution. Finally, each borehole’s drilling core logs and image data
confirmed whether the geophysical values can reflect the lithology presented.

The lithological environment covered by the collected data samples includes quartz
sandstone, sandstone, sandstone interbedded with shale, silty sandstone, sandy shale,
shale, alternations of sandstone and shale, mudstone, siltstone, argillaceous siltstone,
andesite, volcanic agglomerate, phyllite, marble, slate, schist, gneiss, argillite, quartzite,
metasandstone, and argillite interbedded with some sandstone. The number of data
samples collected for each sub-lithology is shown in Table 1. Among the analyzed data,
the five most abundant rock types include sandstone, slate, alternations of sandstone
and shale, schist, and shale. The above data collected can construct electrical parameters
to hydraulic conductivity, followed by statistical techniques to possibly develop reliable
models for predicting hydraulic properties of various subsurface formations. Due to the
wide range of geological environments covered by the data sources collected, the formation
factor–hydraulic conductivity relation can be investigated more comprehensively.

Table 1. Statistics of lithology for the data samples collected from the double-packer hydraulic test.

Main Lithology Sub-Lithology Amount

Sedimentary rock

Sandstone 93
Shale 31

Sandy Shale 3
Sandstone interbedded with Argillite 2

Mudstone 8
Siltstone 14

Silty Sandstone 20
Alternations of Sandstone and Shale 44

Argillaceous Siltstone 5
Quartz Sandstone 6

Igneous rock Andesite 7

Metamorphic rock

Volcanic Agglomerate 6
Phyllite 6

Slate 61
Schist 41

Marble 6
Gneiss 5

Argillite 18
Metasandstone 3

Argillite interbedded with some Sandstone 10
Quartzite 7

Total 396
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Figure 1. The study area and locations of investigated boreholes. 
Figure 1. The study area and locations of investigated boreholes.
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3. Methods

To provide a cost-effective approach for producing hydraulic conductivity profiles
along boreholes, this study intends to explore relationships between the formation factor
and hydraulic conductivity using the resistivity data of formation and fluid obtained from
the most commonly used electrical well logging in drilling construction and the theory of
Archie’s law. A flowchart summarizing the implementation of this study for developing
the estimation of hydraulic conductivity is shown in Figure 2. Five investigation stages are
illustrated, including (1) collecting borehole data, including drilling logs and a variety of
well-logging data (spontaneous potential, short normal resistivity, long normal resistivity,
point resistivity, natural gamma, and fluid conductivity); (2) classifying the raw data by
lithology as well as examining the quality of the collected data compared with the existing
rock core logs; (3) performing correlation analysis by investigating relations between
hydraulic conductivity and each geophysical parameter; (4) proposing two data clustering
methods to eliminate raw data with the effect of clay contents; and (5) establishing the
relationship between the formation factor and hydraulic conductivity according to the
clustered data as well as evaluating the feasibility of the developed models.
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Figure 2. Flowchart for investigating formation factor–hydraulic conductivity relationships.

3.1. Data Processing and Classification

Generally, the electrical well-logging signal data are used to infer the stratum’s lithol-
ogy by using geophysics principles on an indirect basis, which is different from geologists’
direct visual recording of lithology. Both methods have their own advantages and disad-
vantages. The electrical signal data are recorded every centimeter, while the artificial core
description is recorded every 20 cm, so the resolution of the latter data is much rougher
than that of the former. Taking the 1.5 m test section of the double-packer hydraulic test as
an example, geologists can only describe the main lithological features in the test section.
Also, due to the visual identification method, it is impossible to describe the lithology for
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the finer parts. However, the electrical measurement data can be used to infer the difference
in lithology in a test interval through variations of the signal value.

To confirm whether numerical changes of these signals correctly reflect the actual
lithology, this study collected five types of signals (including spontaneous potential (SP),
long normal (LON), short normal (SHN), single-point resistivity (SPR), and natural gamma
ray (NGAM)) of double-packer test sections in different boreholes with different depths. A
total of 150 points were measured for each signal in the 1.5 m double-packer test interval.
For each test section at a given signal, the average value and standard deviation (SD)
value of all samples were calculated. For the section with a large SD value, the data
were compared and verified by core logs and photos to confirm that lithology rather than
artificial errors caused the greater deviation. Figure 3 shows the short normal resistivity
profiles at two different double-packer intervals (1.5 m), and the geologists described the
cores of both intervals as fine-grained sandstone. However, while comparing Figure 3a,b,
the resistivity value of the entire vertical interval in Figure 3b has little difference (SD value
is about 1.66), but the resistivity value of the whole vertical section in Figure 3a shows a
larger variation (SD value is about 53.07). Thus, Figure 3b may be more in line with the
result of the lithological description, so the signal quality of the double-packer interval
in Figure 3a should be rechecked. In particular, the signal results obtained in a relatively
complex geological environment need to be compared carefully with the existing core data
to confirm the correctness of the collected signal data so that the signal values used can
appropriately reflect the hydraulic conductivity value of the formation. After the quality
control of the data, the confirmed data can be classified into a different group by lithology
and used for subsequent statistical analysis.
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3.2. Theory of Formation Factor–Hydraulic Conductivity Relation for Clay-Free Formations

Formation factor F, or formation resistivity factor, was initially presented by Archie [17]
and defined as the ratio of the resistivity of a fully water-saturated granular reservoir rock
(Ro) to the resistivity of the water saturating the pores (Rw). Archie [17] also proposed
the relation between F and porosity n. Since 1942, the F-n relation has been confirmed
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empirically in a variety of singular formations. The relation is commonly expressed in the
following form [21].

F =
Ro

Rw
= an−m (1)

where a is the tortuosity constant or lithology constant, and m is the cementation factor. The
values of m and a have been reported for different formations by different investigators [26].
The reported ranges for two parameters in a specific lithology are variable. The reason for
such variations can be attributed to several factors, including size, packing and sorting
of grains, degree of cementation, porosity, pressure, tortuosity, wettability of rock surface,
and clay content. The last factor is especially significant due to violating Archie’s original
experimental conditions. Thus, a meaningful evaluation for Equation (1) is based on
accounting for the clay content effect. Additionally, if a is equal to one, Equation (1) is
called Archie’s first law. While applying both equations, discussions on the difference
between Equation (1) and Archie’s first law can be referred to the study of Glover [27].

Based on the above relation of Equation (1), n can be theoretically obtained from
F. However, valid relations between F and K generally do not exist. However, several
studies have developed for the valid relations between K and n, which can be found
in a textbook [5,12]. One of the famous relations comes from the Kozeny–Carman–Bear
equation given by Bear [28] and Domenico and Schwartz [29].

K =

[
δwg

µ

]
·
[

d2

180

]
·
[

n3

(1− n)2

]
(2)

where δw is the dynamic viscosity; g is the acceleration gravity; µ is the fluid density; d
is the mean grain size; n is the porosity. Equation (2) is developed by the concept of the
capillary tubes and often estimates the saturated K for most soils [30].

Since formation factor F and hydraulic conductivity K are both functions of porosity
n, integrating Equations (1) and (2) links the two parameters F and K. The functional
relationship between K and F can be assumed to be established and given as:

K = Fucntion(F) (3)

In fact, such a relationship has been used in previous studies to estimate hydraulic con-
ductivity [5,12,22,31,32]. However, the relationship was confirmed with a small size of data
and a clay-free lithology. Thus, this study applied the functional relationship to investigate
formation factor–hydraulic conductivity relations in various complex geologic environments.

3.3. Data Clustering for Eliminating Data Containing Clay Content

Since Archie’s law is only applicable to the clay-free formation, the application of
Equation (3) for establishing the relationship between F and K for the study area in the
relatively complex geological conditions of the Taiwan mountains requires testing the data
first for clustering those that are compatible with the original theory. Accordingly, this
study proposes two different clustering methods to screen the data samples less affected by
clay minerals to conform to the theoretical formula of Archie’s law. The clustering methods
and theories are detailed as follows:

(a) Natural Gamma Ray Threshold

The natural gamma ray (NGAM) has the characteristic of strongly distinguishing the
clay mineral in a formation. Therefore, the natural gamma ray may be used to design
the threshold value for recognizing clay minerals. When the average NGAM value of a
formation sample is larger than the threshold value, the sample may contain clay minerals.
Such a sample should be excluded in the subsequent analysis of the correlation with hy-
draulic conductivity. Using natural gamma ray thresholds to confirm whether a formation
is affected by clay mineral effects has been investigated by Kaleris and Zioga [5] at a site in
Greece. His study suggested that strata are less affected by the clay mineral effect when the
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natural gamma ray value in API (American Petroleum Institute) is less than 35. According
to the previous study, the design of the NGAM threshold may be the key to determining
the presence of clay minerals.

The NGAM threshold can be obtained by dichotomy to group data samples into two
categories, which may contain clay or non-clay content, to find a possible NGAM threshold
value. Then, the correlation of F and K can be performed on the grouped data with the
non-clay content. If the correlation outcome is good, it implies that Archie’s law can apply
to the analyzed data set. The NGAM value of splitting into two groups can be the threshold
for recognizing clay content. However, this splitting method does not consider the nature
of the distribution of the data itself. Thus, the frequency distribution of NGAM in the
collected data set was utilized to summarize the information on the number of occurrences
of class intervals in a given NGAM range. The number of class intervals can be calculated
as the following equation.

P = 5× log10(N) (4)

where N is the total amount of collected samples. P is the number of class intervals. If P is a
decimal number, rounding this decimal number to the nearest whole number is needed.
Based on the rounded P number, the frequency of data belonging to each class interval
is plotted in a frequency distribution figure, which is also called a histogram. Each data
set collected in this study was able to use this technique to obtain the frequency pattern
of NGAM. The higher class interval has larger NGAM values, which may be more likely
to contain clay minerals. Subsequently, a stepwise deletion process of sample data from
the class interval (starting from the highest class interval) was carried out, and correlations
between F and K were performed for each group of screened samples. The analyzed
correlation levels were used to determine the natural gamma ray threshold value that could
recognize the existence of clay minerals in the samples.

(b) Modified Archie’s law

Initially, Archie’s law does not consider the influence of clay minerals in a formation.
For the geological environment where clay mineral exists, applying this theory to predict
porosity generally does not work well [26]. The main reason is that clay mineral has a high
degree of ion exchange and a high specific surface area [24,33]. Formations with higher
clay minerals may reduce the correlation between resistivity and hydraulic conductivity.
Later, some studies based on Archie’s law [24,26] proposed a modified Archie’s equation
incorporating the effect of clay minerals, which is given below.

Fa = Fc × (1 + BQvRw)
−1 (5)

Among them, Fa is the apparent formation factor; Fc is the corrected formation factor;
Rw is the resistivity of the water saturating the pores; Qv is the cation exchange capacity; and
B is the equivalent conductivity of each cation. After proper rearrangement, Equation (5)
can be presented as a linear relationship between 1/Fa and Rw.

1
Fa

=
1
Fc

+

(
BQv

Fc

)
Rw (6)

BQv/Fc stands for the gradient [26]; the data of Rw (x-axis) and 1/Fa (y-axis) are
plotted, and then the simple linear regression formula is obtained by using regression
analysis. The intercept of the regression formula is 1/Fc, and its value is calculated by
inversion to obtain Fc.

Afterward, a dimensionless value (Fa/Fc) is calculated by dividing the uncorrected
apparent formation factor (Fa) and the corrected formation factor (Fc) calculated by the
correction method addressed above. A clay-free formation may be expected if Fa/Fc is
greater than or equal to 0.9 [26]. The criterion indicated by Worthington [26] can be used
to separate the collected samples into clay-bearing and clay-free sample groups for data
clustering. The clay-free sample group can meet the original Archie’s law theory hypothesis,
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and the samples can be utilized to establish relations between the formation factor and
hydraulic conductivity.

Therefore, data samples in complex geological environments clustered by the above
two techniques (a) and (b) can be used to recognize the clay-free conditions of the samples.
It may assist in improving the establishment of estimation models for predicting hydraulic
conductivity through downhole resistivity data.

4. Results and Discussion
4.1. Data Processing Result

In this study, the data quality control procedures mentioned in Section 3.1 were used
to eliminate the samples whose electrical signal data were inconsistent with the actual
lithology, and the consistent samples were subjected to basic descriptive statistical analysis.
Five data samples out of 396 were not included in the subsequent analyses. For the
remaining 391 data samples, the sample data of various electrical signals in the 1.5 m
double-packer hydraulic test section with different depths in different boreholes were
compiled. One hundred fifty measurements in the test section were recorded for each
signal sample, and each sample’s mean and standard deviation were calculated. Then, all
samples were classified into three group data categories: singular lithology, three major
rock types, and entire data. The mean and standard deviation for each group type of data
were calculated as shown in Table 2.

Table 2. Descriptive statistics of six well-logging signals for various rock types.

Category

Signal Type SP (V) NGAM (cps) COND (ohm.m)

N µ S.D. µ S.D. µ S.D.

All lithologic types 388 141.81 155.80 121.02 38.61 598.91 704.94

Sedimentary Rock 230 127.49 129.31 114.77 30.93 634.64 608.68
Sandstone 90 97.59 147.39 105.02 31.42 238.39 479.28

Shale 30 147.15 97.09 129.37 20.23 810.53 393.21
Sandy Shale 3 112.41 2.73 135.09 5.46 357.70 10.84

Sandstone interbedded with
Argillite 10 182.97 88.13 150.42 13.17 475.71 433.32

Mudstone 8 153.16 12.01 75.20 43.42 660.81 177.84
Siltstone 14 127.85 81.40 125.69 14.60 1430.85 1018.14

Silty Sandstone 20 179.10 168.03 102.14 22.45 324.68 129.65
Alternations of Sandstone and

Shale 44 135.32 104.48 124.28 27.52 468.51 374.78

Argillaceous Siltstone 5 61.72 6.04 106.40 7.05 476.60 10.33
Quartz Sandstone 6 182.97 216.57 123.38 41.24 2100.29 1459.38

Igneous Rock 13 238.67 168.08 43.35 26.55 359.45 96.49
Andesite 7 124.80 66.79 59.53 7.32 329.46 63.19

Vocanic Agglomerate 6 371.52 152.05 24.48 28.88 394.43 121.77

Metamorphic Rock 145 155.86 186.87 137.85 39.11 563.72 859.02
Phyllite 6 458.57 17.38 155.20 4.95 861.69 55.67

Slate 57 133.41 165.13 157.13 26.16 782.87 1213.49
Schist 41 155.60 202.61 119.14 35.60 375.59 120.84

Marble 6 130.69 15.25 46.27 15.65 244.82 46.86
Gneiss 5 −55.84 22.01 143.68 5.69 269.90 142.64

Argillite 18 203.31 169.42 157.10 23.74 277.10 225.91
Metasandstone 3 463.68 4.05 136.56 34.48 131.96 12.33

Argillite interbedded with some
Sandstone 2 49.03 70.90 153.44 18.23 168.15 2.17

Quartzite 7 30.03 127.06 96.60 42.01 1186.50 1339.26
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Table 2. Cont.

Category

Signal SHN (ohm.m) LON (ohm.m) SPR (ohm.m)

N µ S.D. µ S.D. M S.D.

All lithologic types 388 288.70 596.58 243.23 446.49 182.30 260.95

Sedimentary Rock 230 124.45 254.45 123.47 214.02 106.12 140.89
Sandstone 90 207.92 366.58 176.30 289.81 161.32 193.35

Shale 30 35.69 33.42 56.02 48.89 40.64 28.14
Sandy Shale 3 30.40 7.35 38.85 6.28 58.89 7.84

Sandstone interbedded with
Argillite 10 277.11 228.22 330.14 247.94 176.69 100.96

Mudstone 8 14.27 4.93 17.66 2.94 28.19 11.50
Siltstone 14 27.87 11.44 47.34 27.40 31.32 13.51

Silty Sandstone 20 60.82 82.72 104.34 148.53 73.49 58.88
Alternations of Sandstone and

Shale 44 63.51 79.04 87.46 135.64 82.45 69.08

Argillaceous Siltstone 5 9.54 1.15 12.09 1.21 21.00 1.22
Quartz Sandstone 6 225.83 222.09 105.54 85.37 148.34 173.97

Igneous Rock 13 375.77 590.63 254.86 373.40 217.36 209.74
Andesite 7 618.32 739.84 399.87 474.51 330.52 232.63

Volcanic Agglomerate 6 92.78 43.96 85.68 25.45 85.35 42.46

Metamorphic Rock 145 541.43 846.39 433.46 627.32 300.01 352.76
Phyllite 6 523.33 120.23 513.80 79.44 190.98 42.20

Slate 57 314.15 250.56 290.28 261.60 188.74 93.86
Schist 41 379.55 417.83 289.07 305.18 238.53 139.27

Marble 6 3973.34 1417.58 2864.96 1171.03 1606.99 850.91
Gneiss 5 1329.79 327.79 1031.72 195.14 737.45 118.70

Argillite 18 315.24 316.01 226.36 171.24 291.30 186.95
Metasandstone 3 373.64 134.02 384.41 125.77 312.53 39.43

Argillite interbedded with
Sandstone 2 211.48 141.82 216.72 81.60 205.53 75.00

Quartzite 7 598.84 467.85 491.71 393.95 270.94 181.78

Note: the COND in this table is the reciprocal of the original COND, which was transformed into electrical
resistivity.

When comparing the standard deviations of the three categories, most of the singular
lithology categories have relatively small standard deviations. A greater standard deviation
means that the dispersion of the data is relatively large. If these data are used to develop
a hydraulic conductivity predictive model, the prediction model’s performance may not
be good. Therefore, the statistical results of the underlying data imply the importance of
data classification or clustering in the development of the estimation model. In addition,
comparing the differences in the standard deviations of various signals, it is found that the
standard deviation of the NGAM signal is smaller than other signals in each classification
group. It is speculated that this signal is less susceptible to the external factors of the
well (borehole size, the effect of the invasion of the mud filtrate into the formation, the
heterogeneity of geologic formation, the salinity or conductivity of groundwater), while
other signals are more affected by these external factors of the well. The standard deviation
of the COND signal has the largest variation value, indicating that the mud may affect
the fluid in the borehole. The variation of the SHN signal is larger than that of the LON
signal, probably because the SHN signal reflects the resistivity value of the mud-infiltrated
area and is more significantly affected by the mud. However, the LON signal reflects
the formation resistivity and is less affected by mud. Therefore, the standard deviation
variation can be used to understand the geology heterogeneity and the signal’s degree of
influence by external factors in each double-packer test section.

Furthermore, box plots were used to demonstrate the distributions of numeric signal
data values and the comparisons between multiple groups. First, the selection of box plot
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data is based on a single lithological group with a sample size of more than 20 and no mud
or shale contents. The single lithology groups that meet these selection criteria include
sandstone, slate, and schist. Then, six different signal box plots were drawn for the three
single lithological groups, as shown in Figure 4. The outlier points shown in Figure 4 lie
outside the 10th and 90th percentiles as black circle symbols. The number of outliers and
the dispersion of the primary data points for the three lithological groups were compared
from the box plots of the five signals, which were used to determine the lithology of the
strata. This comparison reveals that the numerical value distribution of sandstone data is
more dispersive than the other two lithologies. This result is consistent with the results
of the standard deviation analysis in Table 2. However, the comparison for the signal of
determining the formation’s fluid conductivity reveals that the slate data points are the
most scattered, followed by sandstone. This result can be used to explain how strongly the
formation fluid was affected by the drilling mud fluid in the borehole at the time of the test.
Therefore, for the samples with the same lithology recorded manually, the results of the
box plots drawn from the downhole exploration data with higher resolution data can be
used to identify whether there is geological heterogeneity in the samples, which can help
the development of estimation models.

Based on the analysis results of the collected data, it can be concluded that (1) prelimi-
nary data quality control is of great importance because these signal data are susceptible to
external factors; (2) these signal data can help further investigate the heterogeneity of the
rock formations than the visual description data recorded by geologists; and (3) the high
degree of geological heterogeneity of the study site has been found, and this result suggests
that it is more appropriate to establish the hydraulic conductivity estimation model based
on a single lithology type.

4.2. Correlation Analysis for Various Well-logging Signals with Hydraulic Conductivity

The correlation analysis for well-logging signals was performed to (1) explore possible
correlations between singular signal and hydraulic conductivity and (2) examine the reso-
lution level of the formation resistivity used in the formation factor. This study correlated
each signal with hydraulic conductivity. Normality tests for each signal were conducted
to determine parametric or non-parametric statistical methods utilized to quantify the
level of association between the various signals and hydraulic conductivity. The bivariate
correlation analysis, then, was adopted to examine correlations between the various signals
and hydraulic conductivity.

Firstly, the normal testing outcomes pointed out that the null hypothesis for a sample
from a normally distributed population was rejected for most of the signals. However,
most of the signals did not pass the normality test. Thus, Spearman’s correlation was used
to quantify the association between each signal and hydraulic conductivity. In addition,
a significance level (p-value) of 0.05 with the two-tailed test was used for all correlation
results in this study. If the results of significance testing show that the p-value is greater
than 0.05, the correlation value is not meaningful.

Table 3 lists various signals that were analyzed for the correlation study. The correla-
tion analysis items include hydraulic conductivity vs. SP, SHN, LON, SPR, NGAM, and
COND. The analyzed data herein were selected from Table 1 for different lithological data
groups, including all lithological rocks, sedimentary rock, igneous rock, metamorphic rock,
sandstone, slate, and schist. In addition, Table 3 marks the correlation coefficient as a hy-
phen symbol if the significant testing does not pass. Based on meaningful correlation results
for the all-lithologic type, the correlation results of SP and NGAM signals are insignificant
among the six signal types. The possible main reason is that the formula for calculating the
formation factor needs to come from the formation resistivity. Although the correlation
between NGAM and K values is not meaningful, the NGAM signal is a crucial indicator
for determining the presence of mud in the geological strata. Therefore, in the subsequent
data clustering process, the NGAM values were used as the threshold to categorize the
data samples into mud-containing and free groups for data clustering purposes.
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Table 3. Correlation outcomes between k and various signal types with various lithologic groups.

Signal
Type

All Lithologic
Type

Sedimentary
Rock Igneous Rock Metamorphic

Rock Sandstone Slate Schist

Sample
quantity 391 230 13 148 90 60 41

SP - - −0.613 - - - -
SHN 0.343 0.575 0.732 - 0.442 - -
LON −0.277 0.480 - - 0.397 - -
SPR −0.378 0.549 0.765 0.245 0.490 - -

NGAM - - - - - - -
COND −0.308 −0.281 - −0.355 −0.338 - 0.345

Note: “-” stands for “the significant testing fails”.
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In addition, the meaningful correlation coefficients shown in Table 3 exist in SHN, LON,
SPR, and COND signals. According to Cohen’s guideline [34] for interpreting the level
of correlation from Spearman’s coefficient, the strength of the relation for SHN, SPR, and
COND reaches the medium strength (0.3–0.5). The strength of the relation for LON belongs
to the low strength (0.3–0.1). While looking at other data groups for specific lithology, the
strength of the relation for these meaningful signals may increase. The increased correlation
strength, which is up to the level of the strong strength, depends on the lithology. The
correlation analysis results regarding the three electrical resistivity signals (SPR, SHN, and
LON) show that the strength of their associations, from best to worst, is in the order of SPR,
SHN, and LON. The electrical resistivity value is commonly used as an essential parameter
for estimating the formation factor (F) of formation. Based on the correlation strength of
electrical resistivity results, theoretically, F should be calculated using the best-correlated
signal, SPR. However, the electrical well-logging data from SPR is typically used only as a
supplementary tool to determine the presence of fractures and groundwater flow in rock
formations. The electrical resistivity values for lithological characterization are usually
determined by SHN and LON signals. Therefore, the SHN signal was adopted in this study,
which showed a stronger correlation with K for estimating the F values. The correlation
of SHN that is better than that of LON was also confirmed by previous studies [5,13]. For
estimating the formation factor, SHN is utilized as it assures a greater resolution of the
formation than LON.

Finally, the correlation between COND and K revealed a certain degree of negative
correlation. The connection between these two parameters was not expected, as the COND
values were initially intended to understand the water quality around a drilling well.
However, a plausible explanation for this connection is that higher COND values indicate
relatively more polluted water quality, possibly due to the poor permeability of the strata,
resulting in the groundwater flowing poorly in the stratum. As a result, the analysis
shows a negative correlation where higher COND values correspond to smaller K values.
Although COND may correlate with K, COND is not directly used to estimate K. Instead,
the reciprocal of COND was transformed into electrical resistivity, which is used as the
resistivity of the water saturating the pores (Rw), as shown in Equation (1). It is then
combined with SHN to calculate F.

4.3. Data Clustering Results

To address the influence of clay minerals on the correlation between F and K, this study
first utilized the findings from Section 4.2, which showed a higher correlation between
single lithological well-logging data and hydraulic conductivity as the basis for data
samples classification. Furthermore, two data clustering methods from Section 3.3 were
employed to progressively eliminate data samples containing clay minerals from each
single lithological group. The remaining samples can be the basis for constructing models
to estimate K from F. The detailed outcomes of the two data clustering methods are
summarized below.

4.3.1. Outcomes from the Natural Gamma Threshold Method

This study classified the data population based on individual lithological data (Table 2).
Three individual lithological groups were selected among these data groups, namely
sandstone, slate, and schist. The selected criteria were based on the data group with a
sample size of more than 20 and did not contain clay minerals in lithological compositions.
These filtered groups were subjected to the NGAM threshold clustering analysis. Using
Equation (4), the frequency distribution figure of NGAM for each single lithology type was
plotted in Figure 5. Based on each histogram, the higher class interval was supported to
have a greater NGAM value that may contain clay minerals. A relatively better correlation
can gradually be found by deleting clay-contained data samples from the highest-class
interval with performing correlation analysis between F and K for each filtered data
group. Tables 4–6 show the process of correlation variations with different data groups for
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sandstone, slate, and schist, respectively. As seen in Table 4, the correlation coefficient of
Spearman between F and K gradually increased by deleting samples with higher NGAM
values. When the NGAM value of the data is between 30 and 90, Spearman’s coefficient is
greater than 0.5, which reaches the minimum lower limit of the strong strength according to
Cohen’s guideline [34]. The Spearman’s correlation coefficient increased from 0.159 (all data
samples) to 0.572 ([30,89] data samples), and the maximum correlation coefficient value is
statistically significant (the p-value is less than 0.05). Therefore, in this case, NGAM equal
to 89 is used as the threshold value for sandstone clustering. Values above this threshold
indicate intervals containing mud, while values below suggest intervals with very low
mud content or being clean. However, the correlation coefficient between F and K shows
a positive relationship, meaning that as F increases, K also increases. This contradicts the
theory of Archie’s law and Kozeny–Carman–Bear equation, implying that the samples
selected using NGAM equal to 89 as the threshold might still contain some muddy samples
or incomplete data of clean sand, which may include some quantities of mud. However,
such an empirical relationship requires more data to be proved.

Table 4. Correlation variations with various filtered data sets for the lithological group of sandstone.

F-Sandstone

K

Data
Sets

All
Data [30–187] [30–167] [30–148] [30–128] [30–109] [30–89]

r 0.180 0.180 0.213 0.217 0.254 0.377 0.554

Sig. 0.089 0.094 0.049 0.050 0.030 0.006 0.002

N 90 88 86 82 73 52 28

Table 5. Correlation variations with various filtered data sets for the lithological group of slate.

F-Slate

K

Data
Sets All Data [94–210] [94–193] [94–177] [94–160] [94–144] [94–127]

r −0.125 −0.089 −0.101 −0.161 −0.283 −0.321 −0.455

Sig. 0.392 0.546 0.501 0.327 0.161 0.285 0.365

N 49 48 47 39 26 13 6

Water 2023, 15, x FOR PEER REVIEW 15 of 22 
 

 

value is statistically significant (the p-value is less than 0.05). Therefore, in this case, 

NGAM equal to 89 is used as the threshold value for sandstone clustering. Values above 

this threshold indicate intervals containing mud, while values below suggest intervals 

with very low mud content or being clean. However, the correlation coefficient between F 

and K shows a positive relationship, meaning that as F increases, K also increases. This 

contradicts the theory of Archie’s law and Kozeny–Carman–Bear equation, implying that 

the samples selected using NGAM equal to 89 as the threshold might still contain some 

muddy samples or incomplete data of clean sand, which may include some quantities of 

mud. However, such an empirical relationship requires more data to be proved. 

Table 4. Correlation variations with various filtered data sets for the lithological group of sandstone. 

F-Sandstone 

K 

Data 

Sets 

All  

Data 
[30–187] [30–167] [30–148] [30–128] [30–109] [30–89] 

r 0.180 0.180 0.213 0.217 0.254 0.377 0.554 

Sig. 0.089 0.094 0.049 0.050 0.030 0.006 0.002 

N 90 88 86 82 73 52 28 

Table 5. Correlation variations with various filtered data sets for the lithological group of slate. 

F-Slate  

K 

Data 

Sets 
All Data [94–210] [94–193] [94–177] [94–160] [94–144] [94–127] 

r −0.125 −0.089 −0.101 −0.161 −0.283 −0.321 −0.455 

Sig. 0.392 0.546 0.501 0.327 0.161 0.285 0.365 

N 49 48 47 39 26 13 6 

Table 6. Correlation variations with various filtered data sets for the lithological group of schist. 

F-Schist 

K 

Data 

Sets 
All Data [23–156] [23–137] [23–118] 

r −0.102 −0.102 −0.461 −0.643 

Sig. 0.526 0.550 0.015 0.01 

N 41 37 27 15 

 

 

Figure 5. Cont.



Water 2023, 15, 3621 15 of 21Water 2023, 15, x FOR PEER REVIEW 16 of 22 
 

 

 

 

Figure 5. Histogram of NGAM for three lithologies (sandstone, slate, and schist, respectively). 

Table 5 shows the correlation variations with various filtered data sets for the slate 

group. Spearman’s correlation coefficients between F and K gradually increased by delet-

ing samples with higher NGAM values. When the NGAM value of the data is between 94 

and 127, Spearman’s coefficient is −0.455, which is the maximum value and belongs to the 

medium strength according to Cohen’s guideline [34]. Spearman’s correlation coefficient 

increased from −0.125 (all data samples) to −0.455 ([94,127] data samples). However, the 

maximum correlation coefficient value is not statistically significant (the p-value is greater 

than 0.05). The insignificant result of F vs. K is that the sample size may not be sufficient. 

The applicability of this clustering method to the slate group needs further confirmation 

with more data. Finally, Table 6 shows the correlation variations with various filtered data 

sets for the schist group. Spearman’s correlation coefficients between F and K gradually 

increased by deleting samples with higher NGAM values. When the NGAM value of the 

data is between 23 and 118, Spearman’s coefficient is −0.643, which is the maximum value 

and belongs to the strong strength according to Cohen’s guideline [34]. Spearman’s corre-

lation coefficient increased from −0.102 (all data samples) to −0.643 ([23,118] data samples), 

and the maximum correlation coefficient value is statistically significant (the p-value is 

less than 0.05). Therefore, in this case, NGAM equal to 118 is used as the threshold value 

for schist clustering. Values above this threshold indicate intervals containing mud, while 

values below suggest intervals with very low mud content or being clean. 

Figure 5. Histogram of NGAM for three lithologies (sandstone, slate, and schist, respectively).

Table 6. Correlation variations with various filtered data sets for the lithological group of schist.

F-Schist

K

Data
Sets All Data [23–156] [23–137] [23–118]

r −0.102 −0.102 −0.461 −0.643

Sig. 0.526 0.550 0.015 0.01

N 41 37 27 15

Table 5 shows the correlation variations with various filtered data sets for the slate
group. Spearman’s correlation coefficients between F and K gradually increased by deleting
samples with higher NGAM values. When the NGAM value of the data is between 94
and 127, Spearman’s coefficient is −0.455, which is the maximum value and belongs to the
medium strength according to Cohen’s guideline [34]. Spearman’s correlation coefficient
increased from −0.125 (all data samples) to −0.455 ([94,127] data samples). However, the
maximum correlation coefficient value is not statistically significant (the p-value is greater
than 0.05). The insignificant result of F vs. K is that the sample size may not be sufficient.
The applicability of this clustering method to the slate group needs further confirmation
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with more data. Finally, Table 6 shows the correlation variations with various filtered data
sets for the schist group. Spearman’s correlation coefficients between F and K gradually
increased by deleting samples with higher NGAM values. When the NGAM value of
the data is between 23 and 118, Spearman’s coefficient is −0.643, which is the maximum
value and belongs to the strong strength according to Cohen’s guideline [34]. Spearman’s
correlation coefficient increased from −0.102 (all data samples) to −0.643 ([23,118] data
samples), and the maximum correlation coefficient value is statistically significant (the
p-value is less than 0.05). Therefore, in this case, NGAM equal to 118 is used as the threshold
value for schist clustering. Values above this threshold indicate intervals containing mud,
while values below suggest intervals with very low mud content or being clean.

4.3.2. Outcomes from the Modified Archie’s Law Method

To understand the mud content within the specific interval of a formation, this study
establishes an alternative clustering approach different from directly using the NGAM
signal to classify intervals into muddy/clean zones based on a threshold value. Instead,
this study first constructed the apparent formation factor (Fa) using formation resistivity
(Ro) and the inverse of formation fluid conductivity (Rw). Then, the modified formation
factor (Fc) was computed employing Equations (5) and (6) in Section 3.3. The Fa and Fc
values are divided to obtain a dimensionless parameter Fa/Fc, and data samples where the
Fa/Fc value falls in the [0.9,1.0] interval as the clean segments [26]. Finally, conducting a
correlation analysis between the corrected formation factor (Fc) and hydraulic conductivity
(K) within the clean zones allows this study to understand the benefits of the improved
correlation between Fc and K resulting after being corrected by this clustering approach.

To obtain Fc values for each sample under a single lithologic classification using the
techniques described in Section 3.3, a scatter plot with 1/Fa and Rw values was created
using 150 downhole signal data points for each sample section (1.5 m double-packer test
interval). Furthermore, simple linear regression analysis was applied to determine the re-
gression equation’s intercept (representing Fc) and slope. However, if the obtained intercept
or slope from the data points is negative, it would contradict the theoretical expectations.
Such samples from the analysis will be excluded from the subsequent correlation analysis
between Fc and K. Based on the analysis as mentioned above criteria, each sample’s (Fa, Fc)
data was obtained for each individual lithological type. Simultaneously, the Fa/Fc ratio was
calculated for each sample. The correlation between Fc and K was then analyzed for differ-
ent ranges of the Fa/Fc ratio. This analysis aimed to investigate the relationship between the
ratio and the correlation of Fc vs. K. Theoretically, as the Fa/Fc ratio increases, the sample’s
mud content decreases, aligning better with Archie’s law’s theoretical assumptions.

Table 7 shows the correlation analysis between modified formation factor (Fc) and
hydraulic conductivity (K) for different lithological types. According to the study by
Worthington [26], the Fa/Fc value of the clean and mud-free formation interval should be
greater than 0.9. However, the analysis results in the table show that very few samples
of different lithological types meet the criterion of Fa/Fc greater than 0.9. Only a few
sandstone samples can exceed this 0.9 threshold. Using this approach to separate samples
from muddy and clean sections of the formation, it is clear that relatively few lithological
samples in the Taiwan region meet the requirements of Archie’s law well.

In addition, the smaller the Fa/Fc ratio, the higher the probability of containing
mud. Table 7 also shows sample groups for different ranges of Fa/Fc ratios along with
the correlation analysis results between Fc and K. Taking sandstone as an example, the
correlation between Fc and K improves as the Fa/Fc ratio increases. Similar trends were
observed for most other lithological types. However, upon comparing these trends with
the results of the correlation coefficient trends for each lithological type, this clustering
approach suggests that sedimentary rock types have a better chance of yielding mud-free
samples. On the other hand, slates in metamorphic rocks are more challenging to screen for
mud-free samples. This conclusion aligns with the findings in the analysis of Section 4.3.1.
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Table 7. Correlation analysis of corrected formation factor (Fc) and hydraulic conductivity (K) of
different lithologies under different Fa/Fc ratio ranges.

Rock
Types Sandstone Slate Schist

Fa/Fc r No. of samples r No. of samples r No. of samples
0–1 −0.1 41 0.168 32 −0.085 16

0.2–1 0.003 21 −0.115 22 −0.297 10
0.4–1 0.245 12 −0.291 13 0.353 6
0.6–1 0.406 10 −0.066 8 0.936 3
0.8–1 −0.800 4 3 N.A. 1
0.9–1 −1.000 3 N.A. 2 N.A. 1

Finally, concerning the proposed method for calculating Fc in this study, the estimated
quality of Fc data deserves discussion, as it determines the reliability of the correlation
analysis results between Fc and K. Figure 6 displays scatter plots and regression curves for
three different sample sets of 1/Fa against Rw. The corresponding regression coefficients
(R2) for the three sample sets are 0.9969, 0.8557, and 0.0099, respectively. The first sample
set exhibits the highest R2 value and a concentrated point distribution, indicating a strong
matching degree and concentrated point set. The estimated Fc value from this kind of
well-matching and concentrated point distribution samples may belong to higher-quality
data. Conversely, the point distribution in the last sample set is more scattered, suggesting
lower-quality data for the estimated Fc value. Thus, the quality of Fc estimation has a
specific impact on the quality of subsequent correlation analysis results between Fc and K.
Therefore, there is room for improvement in the feasibility of this clustering method for
determining mud-containing intervals.
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4.4. Establishment of Hydraulic Conductivity Estimation Models

Using the two clustering methods outlined in Section 4.3, a preliminary selection of
potential mud-free samples conforming to Archie’s law theory has been conducted based
on the collected sample data. This serves as a foundation for further establishing estimation
formulas for predicting hydraulic conductivity based on the formation factor. Regarding
the outcomes of the natural gamma ray threshold clustering method, the analysis primarily
focuses on results from three individual lithological types: sandstone, schist, and slate.
Initially, an examination was performed to check for anomalies in short normal resistivity
and fluid conductivity values within each set of individual lithological samples. These
anomalies were verified against expected short normal resistivity and fluid conductivity
values based on the hydraulic conductivity value. Theoretically, both short normal resis-
tivity and fluid conductivity values should be small for samples with high permeability.
Conversely, for low permeability samples, both values should be larger. When the raw
data signals were rechecked for anomalies, these abnormal data samples were considered
an outlier within that set. Finally, regression analysis between hydraulic conductivity and
formation factors and the construction of hydraulic conductivity estimation models were
performed exclusively for samples with signals conforming to the theoretical values.

During the process of model establishment, it was observed that each lithological
type had outliers after data quality checking. Simultaneously, the R2 values of regression
analyses between original data points and checked data points showed significant differ-
ences between the two sets of analysis results. The accuracy of hydraulic conductivity
estimation models can be greatly enhanced by re-evaluating the rationality of data signals.
Regression analysis results with the removal of outliers revealed R2 values of 0.63, 0.60,
and 0.83 for sandstone, schist, and slate regression models, respectively. For these three
lithological types, the hydraulic conductivity estimation models best matched the power
law model. Equations (7)–(9) show the estimation equations for sandstone, schist, and slate,
respectively. Through the established estimation models, the steps for estimating hydraulic
conductivity are (1) selecting the appropriate lithological estimation model; (2) collect-
ing short normal resistivity and fluid conductivity data from borehole electrical logging;
(3) obtaining the formation factor (F) using Archie’s law theory; and (4) estimating hydraulic
conductivity using the calculated F value and Equations (7)–(9).

K = 7× 10−8F1.3033 (7)

K = 6× 10−4F−2.422 (8)
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K = 2× 10−6F−3.055 (9)

Although this study utilized the statistical method in Section 3.3 to rapidly screen for
valid data samples, there were still some samples for which abnormal signals could not
be entirely screened out. However, further scrutiny of well-logging signals allowed the
selection of ultimately analyzable samples. Improvements can be made to the screening
method in Section 3.3 in the future.

Regarding the outcomes of the modified Archie’s law screening method, only the
single lithological type of sandstone can reach the criterion of Fa/Fc ≥ 0.9 after clustering.
This clustering method is relatively stringent and theoretically grounded for identifying
mud-containing formation intervals. After undergoing this clustering process, the sample
count was reduced from 41 to only 3 that met the clustering criterion. Finally, regression
analysis between K and Fc and the establishment of hydraulic conductivity estimation
models was performed for samples conforming to theoretical signal values. The regression
analysis results for sandstone indicated that this lithological type’s hydraulic conductivity
estimation model exhibited the best match with the power law model, with an R2 value of
0.98. Equation (10) presents the estimation equation for sandstone.

K = 4× 10−6F−7.591 (10)

In summary, after establishing estimation models of hydraulic conductivity based on
the data collected from 88 boreholes in Taiwan’s mountainous areas, Equations (7)–(10) with
electrical well-logging data of a given borehole can be used to easily generate hydraulic
conductivity profiles of this borehole. With such data information, possible applications
include the disclosure of hydrogeological complexity for engineering design and planning,
exploring the potential of using groundwater extracted from fractured rock formations as
alternative water resources against drought, giving information about a drilling depth for
maximizing profits concerning the water supplies availability, finding potential slip surface
locations at landslide-prone sites, and so on.

5. Conclusions

Given the need for information on the continuous hydraulic conductivity of rock mass
vertically required for scientific questions or the development planning of rock engineering,
this study performs a feasibility investigation for estimating hydraulic properties of rock
formations in complex geologic environments using downhole electrical signals. Summa-
rizing the various research findings of this study, the following conclusions can be drawn,
along with potential research recommendations for future efforts.

1. For results concerning data processing and classification, statistical analysis showed
a high degree of geological heterogeneity in the study site has been found. While
developing hydraulic conductivity estimation models, well-logging signals were
suggested to be categorized by lithological types to establish effective relationships
with hydraulic conductivity.

2. For results regarding correlation analysis for various single well-logging signals with
hydraulic conductivity, the three types of resistivity (LON, SHN, and SPR) and fluid
conductivity (COND) signals with hydraulic conductivity for most of the lithological
cases had better correlation performance than SP and NGAM signals. This better
performance confirmed that the resistivity and fluid conductivity parameters were
required to be composed of the formation factor (F). Nevertheless, a single signal
alone is insufficient for constructing a model to estimate hydraulic conductivity.

3. To improve electrical–hydraulic relationships in response to the effect of clay mineral-
ogy, the natural gamma ray threshold clustering and modified Archie’s law clustering
methods successfully play an important role in filtering clayed data. However, to
satisfy Archie’s law’s theoretical requirements, many data entries for various rock
types needed to be removed, indicating that Taiwan’s mountainous rock formations
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are complex and often contain significant clay content. Therefore, careful consider-
ation of clay-related issues in formation layers is essential in practical engineering
applications in mountainous regions.

4. With the assistance of two mud clustering techniques, this study has successfully
established four permeability estimation models for three rock types (sandstone,
schist, and slate). The R2 values are at least 0.6. However, the issue of limited data
during model development is worth noting.

5. During the exploration of electrical well-logging data, it was found that the clay effect
is present in most rock formations in Taiwan. To enhance the utilization of a mathemat-
ical model for estimating hydrogeological parameters of individual rock types using
single resistivity signals, more data collection is required to ensure the reliability of the
model. Furthermore, for hydrogeological parameter estimation models applicable to
multiple rock types, it is recommended to consider recombining the collected signals.
This approach could yield novel signal indicators, enabling the construction of new
relationships between indicators and different hydrogeological parameters.
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