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Abstract: Satellite precipitation products (SPPs) have advanced remarkably in recent decades. How-
ever, the bias correction of SPPs still performs unsatisfactorily in the case of a limited rain-gauge
network. This study proposes a new real-time bias correction approach that includes three steps
to improve the precipitation quality with limited gauges and facilitate the hydrological simulation
in the Min River Basin, China. This paper employed 66 gauges as available ground observation
precipitation, Asian Precipitation—Highly Resolved Observational Data Integration Towards Eval-
uation of Water Resources (APHRODITE) as the historical precipitation to correct Global Satellite
Mapping of Precipitation NOW (GNOW) and Global Satellite Mapping of Precipitation NRT (GNRT)
in 2020. A total of 1020 auto-rainfall stations were used as the benchmark to evaluate the original
and corrected SPPs with six criteria. The results show that the statistic and dynamic bias correction
method (SDBC) improved the SPPs significantly and the cumulative distribution function match-
ing method (CDF) could reduce the overcorrection error from SDBC. The inverse error variance
weighting method (IEVW) integrations of GNOW and GNRT did not have noticeable improvement
as they use similar hardware and software processes. The corrected SPPs show better performance in
hydrological simulations. It is recommended to employ different SPPs for integration. The proposed
bias correction approach is significant for precipitation estimation and flood prediction in data-sparse
basins worldwide.

Keywords: satellite precipitation products; GSMaP; APHRODITE; real-time bias correction;
ungauged basin

1. Introduction

Precipitation plays a crucial role in the fields of climate, meteorology, hydrology, and
agriculture [1–4]. Furthermore, it is a paramount factor, serving as a crucial input for
hydrological model simulation and playing a pivotal role in hydrodynamic models and
various other applications within the model [5–8]. Accurately gauging or estimating the
precipitation is a fundamental step in researches such as water resource management [9],
flood monitoring, and risk management [10,11]. However, ground observations are usually
limited in number and eccentric in location in many places worldwide, especially in
mountainous areas and developing countries [12].

Remote sensing precipitation estimation technology has made significant progress
in the past few decades [13–16], and the resolution and estimation accuracy have been
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steadily improved, providing high-value rainfall monitoring data for watershed hydrologi-
cal scientific research lacking ground data. The sensor technology of satellite precipitation
generally includes visible light and infrared (VIS/IR), passive microwave (PMW), and
active microwave (AMW). Satellite precipitation products (SPPs) are based on the obser-
vational results of a single remote sensor or channel and the comprehensive estimation
method of integrated VIS, PWM, and AMW [17]. For example, the Global Precipitation
Measurement (GPM) project is equipped with Ku/Ka-band Dual-Frequency Precipitation
Radar (DPR) [18,19]. With the continuous improvement of remote sensing technology
and the increasing enrichment of remote sensing data and technology, SPPs have been
widely used in all aspects of hydrology and water resources research, which include the
Tropical Rainfall Measuring Mission (TRMM) [20], Global Satellite Mapping of Precipita-
tion (GSMaP) [17], the Global Precipitation Climatology Project (GPCP) [21], the Climate
Prediction Center MORPHing technique (CMORPH) [22], and Feng Yun (F.Y.) [23].

Although SPPs have made impressive progress, their application in hydrology, me-
teorology, and other fields is still limited, using only satellite precipitation without bias
correction based on ground observation data [24]. Although SPPs have the advantage
of continuous spatiotemporal data, their accuracy does not meet the requirements for
research and practical engineering. On the other hand, ground observation usually has the
most accurate precipitation, but its spatial distribution is often too sparse and has a great
disadvantage in spatial representation. The accuracy and spatiotemporal continuity of
precipitation measurement can be improved by the fusion of the observation information
of the gauge network and the estimated precipitation information of SPPs [25]. Many
previous studies have shown that the assimilation of SPPs and gauges could complement
each other and achieve good performance with sufficient ground observations [11,24,26].
Tian and Peters-Lidard [27] corrected the CMORPH and TRMM data by reducing the error
by 47–63% based on rain gauges in the U.S. Stisen and Sandholt [28] improved hydrological
simulation efficiency by correcting the SPPs in the Senegal River Basin in West Africa.
Zhou et al. [11,24] employed statistical and dynamic bias correction to correct GSMaP and
GPM series data in the Fuji River Basin, Japan. The results showed that the corrected SPPs
significantly improved and benefited the efficiency of runoff simulation.

Nonetheless, correcting the bias of SPPs in regions with limited gauge data poses a
significant challenge, especially when aiming for reliable precipitation data for hydrological
simulations, particularly in near-real-time scenarios. This study aims to address this
challenge through a three-step bias correction method incorporating the statistic and
dynamic bias correction method (SDBC), the cumulative distribution function matching
method (CDF), and the inverse error variance weighting method (IEVW) for SPPs. The
primary objective is to enhance the accuracy of precipitation data and subsequently improve
hydrological simulations in data-sparse basins. This novel bias correction approach is
designed explicitly for near-real-time (NRT) SPPs with a restricted gauge network and is
applied and tested in the Min River Basin (MRB), China.

2. Study Area and Data
2.1. Study Area

Figure 1 shows the location, Digital Elevation Model (DEM), and ground observations
of the Min River Basin (MRB) in China. The MRB is a first-class tributary of the Yangtze
River’s upper reaches on the Tibet Plateau’s edge, with a total length of 711 km and
a watershed area of 135,900 km2. The diversity of climate and the underlying surface
of the MRB make it an ideal choice for validating the bias correction approach in this
study. The MRB is located at the eastern edge of Tibet Plateau and its upper regions
exhibit a diverse climate, encompassing subfrigid to temperate zones, owing to significant
variations in mountain topography. A mountain plateau climate prevails in the elevated
northern expanse, featuring an annual average temperature ranging from 5 to 9 ◦C and
an annual average precipitation of 730 to 840 mm. Moving towards the middle and lower
reaches, a subtropical climate with distinct seasons is prominent. Here, the annual average
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temperature ranges between 15 and 18 ◦C, accompanied by an average annual precipitation
of 900 to 1300 mm. The main features of each subbasin are shown in Table 1.
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Figure 1. The digital elevation model (DEM) and ground observation of Min River Basin. The
numbers 1 to 6 represent the Upper Min River Basin, Upper Dadu River Basin, Qingyi River Basin,
Middle Min River Basin, Middle-down Dadu River Basin, and Down Min River Basin.

Table 1. The main features of Min River Basin.

Subbasin ID 1 2 3 4 5 6

Average elevation (m) 3417 3960 1863 642 2446 782
Max elevation (m) 6176 6520 5307 3843 7510 4014
Min elevation (m) 728 1303 357 353 357 249

Average temperature (◦C) 7 6 166 16 15 17
Max temperature (◦C) 35.6 / 37.7 39.5 38 39.5
Min temperature (◦C) −21 −36 −3.9 −5.9 / −5.9

Annual average precipitation (mm) 420~840 600~700 1776 100–1200 1000~1700 100~1200
Annual average evaporation (mm) 800~1130 1200~2500 700 800~100 1200~1600 800~100

Annual discharge (m3/s) 483 895 489 485 1988 2800

2.2. Data
2.2.1. Ground Observation Precipitation

This study collected the daily precipitation of 66 national rain gauges from July 2019
to December 2020 (denoted as GAUGE) used for correcting SPPs and 1387 auto-stations
from the China Meteorological Administration (denoted as CMA) in 2020 as the referee
to evaluate the original and corrected SPPs. The distribution of ground observations is
shown in Figure 1. Moreover, the quality control process of the CMA data is as follows:
(i) Excluding 56 stations which records are zero; (ii) Excluding five stations with a missing
rate greater than 1%; (iii) Conducting forward linear interpolation for the remaining stations;
(iv) Since there may be a situation where the missing measurement value is written as 0 or
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a fault, and some stations may not work in non-flood seasons, removing the stations with
cumulative annual precipitation less than 500 mm and cumulative precipitation less than
10 mm for 100 consecutive days. As a result, a total of 299 has been excluded; (v) Excluding
five of the stations whose standard deviation is greater than twice the median value (1.08);
(vi) Excluding two stations whose coefficient of variation is greater than twice the median
(6.78). Therefore, 1020 stations remain.

2.2.2. APHRODITE Gridded Precipitation

For grid interpolation precipitation data, Asian Precipitation—Highly Resolved Ob-
servational Data Integration Towards Evaluation of Water Resources (APHRODITE) is a
daily grid precipitation dataset created by the Japan Meteorological Agency by collecting
and analyzing rainfall observation data across Asia [29,30]. The APHRODITE precipita-
tion dataset includes four sub-datasets covering the entire Asian region. This dataset is
currently the only high-resolution (0.25◦, approximately 25 km), long-term (from 1951),
continental-scale gridded precipitation dataset. It is used as a precipitation benchmark
or product and is widely used in studies on climate change, hydrological cycle, and
other fields [31].

This study employed the APHRO_MA_025deg_V1901 version from 2001 to 2015, with
the ground observation data provided by the China Meteorological Administration and
the GTS (Global Telecommunication System) data compiled by the World Meteorological
Organization [30]. We resampled the data to 0.1◦ and calculated the annual precipitation
shown in Figure 2a.
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Figure 2. Annual (average) precipitation distribution of (a) Asian Precipitation—Highly Resolved Ob-
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Administration (CMA) in 2020; (d) GNRT in 2020; (e) Global Satellite Mapping of Precipitation NOW
(GNOW) in 2020.

2.2.3. Satellite Precipitation Products

GSMaP is a satellite precipitation product based on a combined microwave–infrared
algorithm provided by the Japan Aerospace Exploration Agency (JAXA) Global Precipita-
tion Observation System [17,32]. The main feature of the GSMaP algorithm is that it uses
various data from TRMM/PR and GPM/DPR from spaceborne precipitation radar, includ-
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ing geostationary satellites and the low-Earth orbit satellite data NOAA series, GCOM-W,
and MetOp-C series [33]. The temporal resolution of most GSMaP products is one hour,
the spatial resolution 0.1◦ × 0.1◦ (about 10 km × 10 km), and the coverage 60◦ S–60◦ N.

This study used two sets of GSMaP near-real-time satellite precipitation data, GNOW
and GNRT, of which GNOW is currently the product with the shortest latency (half an
hour). We employed GNRT from 2001 to 2015 to calculate annual average precipitation
consistent with APHRODITE and the 2020 daily precipitation consistent with the ground
observed precipitation. As GNOW was released in July 2019, the data from July 2019 to
December 2020 was used for the bias correction.

2.2.4. Annual (Average) Precipitation Distribution

Figure 2 shows the rainfall distribution of several datasets. In the view of annual
average precipitation, GNRT overestimated the actual precipitation and the precipitation
center shifted to the west. In particular, the storm center shifted westward, leading to
an overestimation and expansion of precipitation. Consequently, a substantial disparity
exists between the SPPs and the observed precipitation. GNOW and GNRT notably
overestimated precipitation across various regions in the MRB, particularly in the northern
and southwestern areas. Additionally, the range of SPPs precipitation exceeds that of the
actual precipitation. Considering the overall precipitation patterns in 2020, it is evident
that GNRT and GNOW exhibit a spatial bias that requires correction.

3. Methodology

Figure 3 shows the three-step near-real-time bias correction approach of this study.
APHRODITE is used as historical precipitation data and 66 national stations (GAUGE)
are used as available in-situ data to provide the information for bias correction of GNRT
and GNOW in 2020. Besides, 1020 automatic rainfall stations from the CMA are used as
benchmark data to comprehensively evaluate the original and corrected SPPs and verify
the method’s reliability and applicability. Furthermore, the hydrological simulation is
conducted with all precipitation datasets.
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This study adopted the blockwise use of the TOPMODEL (BTOP) model, which
has been applied to basins worldwide [34], for the hydrological simulation. It requires
a relatively small number of calibrated parameters, all of which hold specific physical
meanings and can account for influences such as soil type, topographic index, and soil
moisture [35,36]. These characteristics indicate that the BTOP model can effectively leverage
spatial distribution information from remote sensing data, topography, land use, etc.,
without excessive reliance on various ground observation data. Overall, these advantages
enable the BTOP model to partially mitigate the impacts of uncertainties in the simulation
process and the challenges of equifinality to some extent. For detailed information about
the BTOP model, refer to Takeuchi et al. (2008) [37].

3.1. Statistic and Dynamic Bias Correction Method (SDBC)

The statistic and dynamic bias correction method (SDBC) was proposed by
Zhou et al. (2022) [24]. This method can utilize historical data and near-real-time data to
perform a steady correction in the case of insufficient ground observations. The process is
as follows:

(1) Statistical bias factor calculation

The statistical bias factor at grid j, FSBC
j , is obtained from the slope of the regression

line for 10-day cumulative precipitation. Due to the limited data range of GNOW, the factor
for GNOW is calculated from July to December 2019, while the GNRT factor is calculated
from the data range of 2001–2015.

(2) Dynamic bias factor calculation

If the gauge and SPPs can be obtained in near real time, the dynamic temporary ratio-
based bias correction method can obtain better results than the statistical bias correction
method [38]. We adopt the dynamic correction of the ten-day cumulative forward-moving
window, and the first ten values are obtained by adding the precipitation of the initial ten
days, shown in Equation (1):

FDBC(i, t) =
∑t=d

t=d−10 GAUGE(i, t)

∑t=d
t=d−10 PS(i, t)

(1)

where GAUGE(i, t) and PS(i, t) represent the gauge precipitation and SPPs at station i,
time t.

(3) Statistic and Dynamic bias factor calculation

In the previous study [24], the SDBC factor was modified by multiplying the modifica-
tion factor obtained from the average statistical bias factor. In this study, we calculate the
modification factor in each Thissen polygon k of GAUGE, and then get the corrected SPPs
at grid j. The equations are as follows:

m(k, i) = FSBC
j (k, j)/FSBC(k, i) (2)

FSDBC(k, j, t) = FDBC(k, j, t) ∗m(k, j) (3)

PSDBC(k, j, t) = FSDBC(k, j, t) ∗ PS(j, t) (4)

3.2. Cumulative Distribution Function Matching Method (CDF)

After the first step of SDBC, there will still be local overestimating or underestimating
precipitation. Therefore, it is necessary to use the cumulative distribution function matching
method (CDF) to further correct the precipitation in the second step. The CDF has been
successfully applied to the correction of various SPPs [21,25,39]. Its concept is that the
satellite precipitation data should have a consistent cumulative distribution function with
the ground observed data [40]. Firstly, calculate the corrected SPPs (Pcor

i ) at station i, shown
in Equation (5); secondly, calculate the difference between GAUGE and SPPs, and then
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interpolate them to SPPs grid j to get Di f j; thirdly, as shown in Equation (7), the corrected
SPPs, PCDF

j , is obtained.

Pcor
i = F−1g

i

[
FS

i

(
PS

i

)]
(5)

Di f i = Pcor
i − PS

i (6)

PCDF
j = PS

j + Di f j (7)

3.3. Inverse Error Variance Weighting Method (IEVW)

According to the results of previous studies [41,42], this study conducted the integra-
tion of corrected GNOW and GNRT in the third step to verify the advantages of fused
satellite precipitation. Mastrantonas et al. (2019) [25] verified a variety of fusion methods,
among which Inverse Error Variance Weighting (IEVW) [42,43] performed the best. This
paper uses this method to integrate the corrected GNRT and GNOW after two correction
steps. The equations are shown below:

SPPsj =
n

∑
k=1

Wk,j × Pk,j (8)

Wk,j =
1

var2
k,j

/
1

∑n
k=1 var2

k,j
(9)

where j is the SPPs grid, SPPsj is the integrated SPPs, Pk,j is the kth SPPs, and the weight
is Wk,j.

3.4. Evaluation Criteria

We employ three classifications and three quantitative evaluation indexes to compre-
hensively evaluate the original and corrected SPPs at each correction step. Their calculation
formulas, Equations (10)–(15), are shown in Table 2.

Table 2. Evaluation indexes.

Evaluation Indexes Formulas Comments Optimal Value

Probability Of Detection
(POD) POD = H

H+M (10) H—days that SPPs and gauge both detect
precipitation
M—days that SPPs fail in detecting
precipitation
F—days that SPPs detect precipitation
while gauge is no precipitation

1

False Alarm Ratio
(FAR) FAR = H

H+F (11) 0

Critical Success Index
(CSI) CSI = H

H+M+F (12) 1

Nash-Sutcliffe Efficiency
(NSE) NSE = 1− ∑n

i=1(XS
i −XO

i )
2

∑n
i=1

(
XO

i −XO
i

)2
(13)

XS
i —SPPs

XO
i —gauge precipitation

1

Bias BIAS = ∑n
i=1(Xs

i−Xo
i )

n (14) / 0
Mean Absolute Error

(MAE) MAE = ∑ n
i=1|Xs

i−Xo
i |

n (15) / 0

The classification evaluation indicators include Probability of Detection (POD), False
Alarm Ratio (FAR), and Critical Success Index (CSI), which can reflect the accuracy of
satellite precipitation product prediction of precipitation events. In this paper, the threshold
is set as 0.1 mm/d according to several previous studies [44–46]. The Nash-Sutcliffe
Efficiency (NSE), Bias, and Mean Absolute Error (MAE) are employed as quantitative
evaluation indexes.
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4. Results and Discussion
4.1. General Evaluation Results
4.1.1. Evaluation of Precipitation Amount

Figure 4 shows the monthly cumulative precipitation of the eight precipitation prod-
ucts in 2020. The original satellite precipitation usually underestimates the total amount of
precipitation in the dry season (November to March) and overestimates the actual precipita-
tion in the rainy season (April to October). GNOW and GNRT significantly overestimated
the actual precipitation, especially in June–August; the GNOW precipitation reached nearly
400 mm in June, which was twice the amount of the observed precipitation. This is con-
sistent with related studies’ findings that SPPs often overestimate heavy precipitation
and underestimate microprecipitation [11,47]. On the other hand, the corrected satellite
precipitation has been greatly improved. However, the first step is generally over-corrected.
For example, the GNOW-I from May to September is obviously less than the measured
precipitation. Among them, the GNOW in June is 395 mm whereas the CMA is 190 mm.
GNOW-I overcorrected the SPPs to 138 mm. However, after the second step of the CDF
correction, the overcorrection is improved, and the total precipitation is almost the same
as the CMA. In terms of the total amount, the IEVW integration is also consistent with
the CMA.
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Moreover, Figure 5 shows the cumulative curves of the average precipitation in the
Min River Basin for eight precipitation products. Similar to the monthly precipitation
comparison chart, it can be seen that the original SPPs are significantly overestimated in
annual precipitation, and the performance of bias correction is quite good, except that
GNOW-I is overcorrected (the total amount of precipitation decreased from 1396 mm to
706 mm). Furthermore, the figure illustrates a consistent overestimation of precipitation in
the original satellite data throughout the flood season, leading to an annual precipitation
value significantly higher than that reported by the CMA.

It is worth noting that GNRT-I obtains a relatively excellent correction effect using
the statistic and dynamic bias correction method. On the contrary, GNOW-I obtains large
biases when using the SDBC method. The main reason is that the static correction factors
obtained by the statistical bias correction method are quite different. The factor used
in this calculation is derived from GNOW data, which spans only a six-month period.
Consequently, this limited timeframe exerts a significant influence on the final results.
Therefore, when applying this correction method, it is recommended to use precipitation
distribution information obtained from longer historical data. Figure 6 can better illustrate
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this problem through the distribution of the statistical bias correction factor of GNRT and
GNOW. Due to the low correction factor of GNOW (most values are in the range of 0.2–0.6),
GNOW-I is overcorrected and underestimates the actual precipitation. The correction factor
of GNRT is obtained from the multi-annual average precipitation distribution from 2001
to 2015. Thus, its rationality, representativeness, and reliability are much better than that
of GNOW.
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4.1.2. Evaluation of Precipitation Distribution

Figure 7 shows the spatial distribution map of the 2020 precipitation for eight types of
precipitation data. Taking the CMA data as the benchmark precipitation, both GNRT and
GNOW overestimate the actual precipitation in the entire basin, especially in the upper Min
River (subbasin 1) and the entire Dadu River basin (subbasin 2 and 5). The improvement
effect of GNRT-I and GNOW-I is significant, and the distribution of precipitation in the basin
is basically consistent with CMA. Nevertheless, there are still differences in specific values.
For example, GNOW-I has over-corrected the previously overestimated area (upstream of
the watershed), resulting in lower precipitation than the observed precipitation. Following
the correction using the CDF, GNRT-II and GNOW-II exhibited notable enhancements in
both the quantity and spatial distribution of precipitation. This led to a more effective
alignment with the precipitation patterns observed by the CMA. The SPPs-III is not much
different from GNRT-II and GNOW-II in terms of precipitation distribution and needs to
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be further analyzed in combination with evaluation indicators. Overall, the SPPs corrected
in each step are significantly improved in comparison with the original GNRT and GNOW.
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4.1.3. Cumulative Precipitation Evaluation at Subbasin Scale

The cumulative precipitation of various precipitation products in the subbasins is
shown in Figure 8. It can be seen that the performances of GNOW and GNRT are generally
consistent, but in the upper reaches of the Dadu River (subbasin 2), the degree of GNRT’s
overestimation of the measured precipitation is greater than that of GNOW. In the upper
reaches of the Min River (subbasin 1) and the Dadu River Basin (subbasins 2 and 5), the
satellite precipitation overestimated the measured precipitation by more than two times.
This deviation was rarely seen in previous research and investigations [16,48,49], indicating
that the extreme precipitation events in 2020 had a greater impact, leading to the overall
overestimation of SPPs. The deviation of satellite precipitation is much smaller in the
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middle and lower reaches of the Min River (subbasins 4 and 6) and the Qingyi River Basin
(subbasin 3).
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Figure 8. Cumulative precipitation of eight precipitation data in each subbasin in 2020. (a) Subbasin-1,
Upper Min River Basin; (b) Subbasin-2, Upper Dadu River Basin; (c) Subbasin-3, Qingyi River Basin;
(d) Subbasin-4, Middle Min River Basin; (e) Subbasin-5, Middle-down Dadu River Basin, and
(f) Subbasin-6, Down Min River Basin.

In general, the corrected SPPs exhibit a cumulative trend that aligns consistently
with the CMA data. After the CDF correction and IEVW integration, the average areal
precipitation at the (sub) basin scale can achieve results that fit the actual precipitation.

4.2. Classification Evaluation Results

Figure 9 shows the boxplots of the classification evaluation indicators at the CMA
site for each original and corrected SPP. From the perspective of the original SPPs, GNOW
performs slightly better than GNRT. Since the latency of GNOW is shorter, it should have
priority in the selection of near-real-time satellite precipitation products for purposes such
as flood prediction. After being corrected by the statistic and dynamic correction method,
the evaluation indicators of each classification did not improve significantly.

The indicators of GNOW-II and GNRT-II show that the entire box and whiskers cover
a wider range, indicating that some sites are well-corrected while others have become
worse. However, on the whole, the sites with better performance in the classification
index increased significantly, and the PODs of some sites reached 1. This shows that the
CDF method can greatly improve the satellite precipitation quality on the basis of the
SDBC method.

For the fusion of SPPs in the third step, the morphology and overall performance of
SPPs-III are consistent with the performance of GNRT-II, indicating that the correction of
precipitation fusion has little effect on improving data quality in classification indicators in
this study.



Water 2023, 15, 3615 12 of 20Water 2023, 15, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 9. Boxplots of classification evaluation results. Ori represents original SPPs. I–III represents 
the three-step bias correction method. 

The indicators of GNOW-II and GNRT-II show that the entire box and whiskers 
cover a wider range, indicating that some sites are well-corrected while others have be-
come worse. However, on the whole, the sites with better performance in the classifica-
tion index increased significantly, and the PODs of some sites reached 1. This shows that 
the CDF method can greatly improve the satellite precipitation quality on the basis of 
the SDBC method. 

For the fusion of SPPs in the third step, the morphology and overall performance of 
SPPs-III are consistent with the performance of GNRT-II, indicating that the correction of 
precipitation fusion has little effect on improving data quality in classification indicators 
in this study. 

The spatial distribution of the classification evaluation indicators in the watershed 
is shown in Figure 10. In addition to the overall performance consistent with the boxplot, 
in terms of spatial distribution, the classification indicators of the original satellite pre-
cipitation have better results in areas with sparse stations (upper Dadu River and upper 
Min River). This phenomenon might be attributed to the infrequent occurrence of pre-
cipitation in these areas, coupled with an overly dense network of stations in the middle 
and lower reaches of the watershed. The interpolation process, reliant on determining 
the presence or absence of precipitation, introduces new deviations due to these condi-
tions. As for the results of corrected SPPs, although the results of the SDBC method are 
not satisfying, after the second step of CDF correction the PODs of most stations in the 
lower reaches of the Qingyi River and the lower reaches of the Min River are close to 1, 
as well as the results of SPPs-III. Furthermore, the trends of the FARs and CSIs are simi-
lar to those of the PODs. 
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The spatial distribution of the classification evaluation indicators in the watershed is
shown in Figure 10. In addition to the overall performance consistent with the boxplot, in
terms of spatial distribution, the classification indicators of the original satellite precipitation
have better results in areas with sparse stations (upper Dadu River and upper Min River).
This phenomenon might be attributed to the infrequent occurrence of precipitation in these
areas, coupled with an overly dense network of stations in the middle and lower reaches of
the watershed. The interpolation process, reliant on determining the presence or absence
of precipitation, introduces new deviations due to these conditions. As for the results of
corrected SPPs, although the results of the SDBC method are not satisfying, after the second
step of CDF correction the PODs of most stations in the lower reaches of the Qingyi River
and the lower reaches of the Min River are close to 1, as well as the results of SPPs-III.
Furthermore, the trends of the FARs and CSIs are similar to those of the PODs.

4.3. Quantitative Evaluation

Figure 11 shows the quantitative index evaluation results of original and corrected
satellite precipitation at the station scale. From the perspective of NSE, the statistic and
dynamic correction method improved the SPPs to a certain extent in the first step. However,
there were still many stations with poor performance. There was a significant improvement
after the second step of CDF correction and the median NSE reached 0.2. The third-
step fusion effect is not apparent, mainly because the two corrected satellite precipitation
performances are relatively close. From the perspective of bias, the correction of GNOW is
overcorrected from a positive bias to a negative bias. However, compared with the original
satellite precipitation, the MAE is still gradually reduced, indicating that the bias correction
method positively affects the correction at the site scale.
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The quantitative evaluation indicators of the original and corrected satellite precipita-
tion at each station location are shown in Figure 12. It can be seen that the performance
of the original satellite precipitation (GNOW and GNRT) in the upper reaches of the Min
River and the Dadu River is obviously inferior to that in the Qingyi River and the middle
and lower reaches of the Min River. There is a great improvement after being corrected
by the statistical-dynamic correction method. However, the effect in the middle and lower
reaches of the Min River has declined, especially GNRT. The discrepancies may arise from
significant uncertainties introduced by extreme events downstream, resulting in substantial
deviations during the correction of certain precipitation events. However, after the correc-
tion and fusion of the second and third steps, the quantitative evaluation index of SPPs-III
is still greatly improved compared with the original satellite precipitation.

4.4. Evaluation for Month Precipitation in August

Since the actual precipitation in August 2020 is the largest monthly precipitation, the
monthly precipitation in August was selected for further analysis and discussion in this
section. Figure 13 shows the distribution of eight types of precipitation data in August 2020.
It indicates that, except for underestimating precipitation in the middle reaches of the
Dadu River, both GNRT and GNOW tend to overestimate actual precipitation. Moreover,
in the Qingyi River Basin and most of the middle reaches and small parts of the lower
reaches of the Min River, SPPs seriously overestimate the actual precipitation, with monthly
precipitation of 1500 mm while the observed value is generally between 800 and 900 mm.
After the SDBC correction, the overestimated area is significantly improved, but in the
middle and lower reaches of the Dadu River and some areas of the upper Min River, due to
excessive correction, it is more overestimated than the original satellite precipitation; after
the second step of CDF, the overall precipitation distribution improved significantly.



Water 2023, 15, 3615 15 of 20Water 2023, 15, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 12. The distribution of quantitative evaluation indexes. (a) GNOW; (b) GNOW-I; (c) 
GNOW-II; (d) GNRT; (e) GNRT-I; (f) GNRT-II; (g) SPPs-III. 

  

Figure 12. The distribution of quantitative evaluation indexes. (a) GNOW; (b) GNOW-I; (c) GNOW-II;
(d) GNRT; (e) GNRT-I; (f) GNRT-II; (g) SPPs-III.



Water 2023, 15, 3615 16 of 20

Water 2023, 15, x FOR PEER REVIEW 17 of 21 
 

 

4.4. Evaluation for Month Precipitation in August 
Since the actual precipitation in August 2020 is the largest monthly precipitation, 

the monthly precipitation in August was selected for further analysis and discussion in 
this section. Figure 13 shows the distribution of eight types of precipitation data in Au-
gust 2020. It indicates that, except for underestimating precipitation in the middle reach-
es of the Dadu River, both GNRT and GNOW tend to overestimate actual precipitation. 
Moreover, in the Qingyi River Basin and most of the middle reaches and small parts of 
the lower reaches of the Min River, SPPs seriously overestimate the actual precipitation, 
with monthly precipitation of 1500 mm while the observed value is generally between 
800 and 900 mm. After the SDBC correction, the overestimated area is significantly im-
proved, but in the middle and lower reaches of the Dadu River and some areas of the 
upper Min River, due to excessive correction, it is more overestimated than the original 
satellite precipitation; after the second step of CDF, the overall precipitation distribution 
improved significantly. 

 
Figure 13. Precipitation amounts of eight datasets in August 2020. (a) GNRT; (b) GNOW; (c) 
GNRT-I; (d) GNOW-I; (e) GNRT-II; (f) GNOW-II; (g) SPPs-III; (h) CMA. 
Figure 13. Precipitation amounts of eight datasets in August 2020. (a) GNRT; (b) GNOW; (c) GNRT-I;
(d) GNOW-I; (e) GNRT-II; (f) GNOW-II; (g) SPPs-III; (h) CMA.

4.5. Hydrological Simulation

Figure 14 shows the hydrograph in 2020, using eight types of precipitation data as
the precipitation input for the BTOP model. The results show that SPPs-III performed the
best among the datasets in daily-scale hydrological simulations for 2020. The correlation
coefficient (CC) and Nash-Sutcliffe Efficiency (NSE) are the highest values: 0.95 and 0.88,
even surpassing the hydrological simulation results based on the CMA data (CC = 0.88,
NSE = 0.76). This is primarily due to the incomplete spatial distribution of CMA data
across the entire watershed, particularly with sparse data points in the upper reaches of the
Dadu River. This leads to limitations in the spatiotemporal accuracy of precipitation across
the watershed. It is worth noting that although human activities significantly influence
the Min River basin, the hydrological model, through automatic parameter calibration,
can better match peak flows, resulting in higher NSE and similar metrics. This is mainly
attributed to the SDBC method, which derives correction coefficients based on ten-day cu-
mulative precipitation. This can lead to overestimation or underestimation. Consequently,
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the performance of hydrological processes at the hourly scale is inferior to that at the
daily scale.

Water 2023, 15, x FOR PEER REVIEW 18 of 21 
 

 

4.5. Hydrological Simulation 
Figure 14 shows the hydrograph in 2020, using eight types of precipitation data as 

the precipitation input for the BTOP model. The results show that SPPs-III performed 
the best among the datasets in daily-scale hydrological simulations for 2020. The correla-
tion coefficient (CC) and Nash-Sutcliffe Efficiency (NSE) are the highest values: 0.95 and 
0.88, even surpassing the hydrological simulation results based on the CMA data (CC = 
0.88, NSE = 0.76). This is primarily due to the incomplete spatial distribution of CMA da-
ta across the entire watershed, particularly with sparse data points in the upper reaches 
of the Dadu River. This leads to limitations in the spatiotemporal accuracy of precipita-
tion across the watershed. It is worth noting that although human activities significantly 
influence the Min River basin, the hydrological model, through automatic parameter cal-
ibration, can better match peak flows, resulting in higher NSE and similar metrics. This 
is mainly attributed to the SDBC method, which derives correction coefficients based on 
ten-day cumulative precipitation. This can lead to overestimation or underestimation. 
Consequently, the performance of hydrological processes at the hourly scale is inferior to 
that at the daily scale. 

 
Figure 14. The hydrological simulation of BTOP with nine precipitation datasets. 

Nevertheless, it is crucial to note that our study relied on a single hydrological 
model for runoff simulation. This approach may introduce limitations and uncertainties 
attributable to the inherent characteristics of the chosen model. In future endeavors, our 
focus will be on refining the bias correction method for SPPs and conducting a compre-
hensive assessment of correction and runoff simulation uncertainties by employing mul-
tiple hydrological models. 

5. Conclusions 
This paper proposes a new bias correction approach that includes three steps 

(SDBC, CDF, and IEVW) to correct the GNOW and GNRT with limited gauges in the 
Min River Basin, China. It used the historical gridded interpolation precipitation (APH-
RODITE), and ground observation precipitation to correct SPPs. The main conclusions 
are summarized below: 

(1) The bias correction approach of SPPs proposed in this paper can effectively im-
prove the precipitation quality: (i) the statistical-dynamic bias correction method can ef-
fectively correct the satellite precipitation to a certain extent; (ii) the satellite precipita-

Figure 14. The hydrological simulation of BTOP with nine precipitation datasets.

Nevertheless, it is crucial to note that our study relied on a single hydrological model
for runoff simulation. This approach may introduce limitations and uncertainties at-
tributable to the inherent characteristics of the chosen model. In future endeavors, our
focus will be on refining the bias correction method for SPPs and conducting a comprehen-
sive assessment of correction and runoff simulation uncertainties by employing multiple
hydrological models.

5. Conclusions

This paper proposes a new bias correction approach that includes three steps (SDBC,
CDF, and IEVW) to correct the GNOW and GNRT with limited gauges in the Min River Basin,
China. It used the historical gridded interpolation precipitation (APHRODITE), and ground
observation precipitation to correct SPPs. The main conclusions are summarized below:

(1) The bias correction approach of SPPs proposed in this paper can effectively improve
the precipitation quality: (i) the statistical-dynamic bias correction method can effectively
correct the satellite precipitation to a certain extent; (ii) the satellite precipitation corrected
by the cumulative distribution function matching method can effectively reduce the over-
correction and further improve the precipitation quality; (iii) the inverse error variance
weighting method is not effective in the fusion of GNOW and GNRT, mainly because
both are GSMaP data series and the errors have certain similarity and consistency. When
studying the fusion of different satellite precipitations, using data products released by
different institutions is recommended.

(2) The performance of the original GNOW and GNRT is relatively consistent. Al-
though the performance of bias correction is not as good as that of GNRT due to the short
data series of GNOW, the latency of GNOW is only half an hour, which has better applica-
tion prospects as it is the fastest real-time satellite precipitation product available currently.

(3) The corrected and integrated SPPs received impressive CC and NSE values of 0.95
and 0.88 in the daily-scale hydrological simulations for 2020. These values even surpass
the simulation results obtained from automatic weather station precipitation inputs. This
indicates that the fusion of multiple data sources can provide reliable precipitation inputs
for hydrological simulations.

Given insufficient data basins that lack rainfall stations, the bias correction approach
proposed in this study can effectively improve the quality of satellite precipitation and
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enhance the hydrological simulation. It is crucial for the application of water resource man-
agement and flood prediction, which has strong practical significance for the widespread
lack of data in the world, making SPPs play a more significant role in precipitation estima-
tion and hydrological simulation.
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