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Abstract: Coastal wetlands are complex ecosystems that support biodiversity. They provide many
benefits, including flood mitigation and sustenance for communities. The unique characteristics of
wetlands make them vulnerable to natural and human-induced disturbances. Numerous factors,
including industrialisation, urbanisation, and climate change, add to this phenomenon. The activities
that threaten coastal wetlands in the world are relevant to coastal wetlands in Ghana. The Songor
and Sakumo wetland catchments are international ecosystems endangered by land modifications and
sea level rise. There are gaps in the body of knowledge that need investigation as regards underlying
processes and transformation. This study assessed land use and land cover (LULC) changes between
1990 and 2020. The study used geospatial techniques and intensity analysis. LULC change results
were from Landsat images (1990, 2000, 2011, and 2020). These changes were attributed to an increase
in human activities. Changes in the Sakumo wetland catchment fell more into human-induced LULC
categories, and vice versa for the Songor wetland catchment. The study recommends comprehensive
methods of LULC change analysis. This would enhance biodiversity and allow the sustainable usage
of wetland resources.

Keywords: land use; land cover; Ramsar site; remote sensing; geographic information systems;
intensity analysis

1. Introduction

Wetlands are unique ecosystems with diverse characteristics regarding hydrology,
soils, altitude, and vegetation. The landscapes within which wetlands are formed are catch-
ments [1]. Catchments embody the water resources and the surrounding environment from
which the water drains. Interconnections between the water resources and the surrounding
environment are key factors impacting the changes in catchments. A catchment-based
approach to wetland conservation ensures that the whole catchment system, including land,
air, and water resources, is safe [1]. Wetlands exist on a spectrum: natural artificial, and
tidal or non-tidal [2]. They serve as interactive zones between nature and man. Wetlands in
coastal-urban catchments provide useful services. These services include food provision,
climate regulation, nutrient cycling, and biodiversity sustenance [3]. Irrespective of the
stark contributions from coastal wetlands, human activities and natural processes impact
coastal wetland sustainability. Some of these impacts are urbanisation, over-harvesting,
sand mining and pollution from human activities. Natural processes include sea level rise
and climate change [4]. Human interventions perform a dominant and persistent role,
aside from the actions of natural agents. To buttress the aforementioned, Davidson and
Finlayson [5] noted a 35% global loss of coastal wetlands to land transformations from 1970
to 2015. More coastal zones (wetlands) will be lost because of increasing human activities.
These activities (including sand mining and mangrove over-harvesting) are dire and are
worst in developing countries [6].
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Ghana, situated in West Africa, has a 550 km coastline that accounts for 10% of the
overall landmass. The coastal zone holds over 90 wetland landscapes, which help to
maintain ecological processes. Five of these coastal wetlands have international recognition
as Ramsar sites and cover 1761 km2 [7,8]. Relevant to this paper are the Sakumo and
Songor wetland catchments found within the central and eastern coastal zones. These
areas of interest (AOIs) are prime ecosystems supporting migratory birds, sea turtles, and
human livelihoods. However, the rates at which these wetlands are being lost are alarming,
primarily due to population dynamics, climatic changes, and weak management and
conservation efforts. These factors have led to declines in water and ecosystem qualities
and quantities [9]. The 1964 construction of the Akosombo Dam has retained and reduced
water and sediment flow from the Volta River into the eastern coastal zone of Ghana [10].
The eastern coast of Ghana experiences erosion rates of 2 metres/year. This is anticipated
to cause increased coastal erosion, floods, and morphological change in the near future,
as a response to global warming [9–11]. The relevance of ecosystem services is therefore
imperative to the development of Ghana’s coastal zones.

Parallel to the global ecology, the aforementioned face similar threats. Over the years,
literature has abounded about this subject. Regarding the study area, Asomani-Boateng
noted that 60% of the wetlands in the Greater Accra Region of Ghana have been lost to
urbanisation [12]. Takyi et al. expanded on the management and challenges of coastal
lagoons in Ghana. Yeboah et al. [13] noted that land use land cover (LULC) changes were
due to urban growth in Accra. Ofori-Danson [14] and Ntiamoa-Baidu and Gordon [8]
assessed coastal wetlands management. These literary works indicate various methods
and techniques leading to the contamination of water bodies, increased land degradation,
and reductions in natural resources.

Pertinent to this study is the LULC change. The assessment of coastal wetland catch-
ments applies spatial and temporal dimensions. This relates to the direct comprehensive
modification of the LULC. Geographic information systems (GIS), remote sensing (RS), and
ground-truthing are viable methods for assessment. These methods allow for consistency
and detailed multiple LULC. The LULC is a change or transitional matrix that allows for
multiple assessments, regardless of time and/or spatial scales. By means of enhancing the
negligible gross changes of LULC, an intensity analysis quantifies the underlying links to
changes in land use. This provides a better understanding of a conventional analysis of the
LULC matrices. Over the decade, the literature has supported this assertion on the clarity
of the intensity analysis [15–18].

Based on the study area, the literature presents varied contexts of issues and methods,
as well as variables. Adade et al. [17] assessed the changes in the Songor Ramsar Site over a
25-year period. Ekumah et al. [18] investigated the LULC change in the Densu Delta, Muni-
Pomadze, and Sakumo Lagoon between 1985 and 2017. These studies were only focused
in and around wetlands and thus neglected the impact of the surrounding catchment to
the wetlands. Further, the changes in the Songor and the Sakumo wetland catchments
have precursors, which indicate certain results based on different timeframes, spaces, and
variables. However, these previous studies have only assessed LULC change statistics and
have not quantitatively discussed the factors influencing the changes. This study employs
a catchment-based LULC assessment of the Sakumo and Songor Ramsar sites. Population
and water balance variables are evaluated quantitatively as key explanatory factors that
manipulate these Ramsar sites.

The objective of this study is to evaluate the LULC changes in the Sakumo and Songor
wetland catchments from 1990 to 2020. The evaluation uses intensity analysis to understand
LULC class transitions and quantitatively explores the impact of population and water
balance variability on the wetland catchment changes.

The results of this research would reveal the important role of catchment-based LULC
changes to wetland protection, conservation and restoration in Ghana.



Water 2023, 15, 3568 3 of 21

2. Materials and Methods
2.1. Study Area

The Sakumo and Songor wetland catchments are pertinent to the study area. They
are located in Greater Accra, a coastal region of Ghana (Figure 1). The region is a hub
of political, administrative, and social activities. This region has the highest population
density, with 1681 individuals per km2, and covers the smallest land area of 3245 km2 [19].
Asomani-Boateng [12] highlights the threats posed by population density and rural–urban
migration to wetlands and ecological zones in the region.
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Figure 1. Map of Ghana’s coastal region, showing the areas of interest (AOIs) (Sakumo and
Songor catchments).

The Sakumo Ramsar Site (05◦30′ N, 000◦ 08′ W) is 20 km east of Accra. The cov-
erage area of the site catchment is 276.34 km2. Four main streams (the Onukpawehe,
Mamahuma, Dzorwulu, and Gbagbla-Ankonu) drain the catchment to the wetland and
have active flow in the rainy season. The Mamahuma and Dzorwulu rivers are the main
rivers feeding the Sakumo Ramsar Site [20]. Impacts of rapid urbanisation on the streams
has led to these streams being used primarily for agricultural irrigation purposes, aside
from feeding the wetland. The four habitat types in the area are an open lagoon, flood-
plains, freshwater marshes, and coastal savanna grasslands. The catchment records a mean
rainfall of 800 mm/year and average atmospheric temperatures of 26.7 ◦C. The average
elevation of the catchment is 46 m. Inhabitants of the area rely on fishing, farming, and
petty trade as sources of livelihood. The area is predominantly urban and has industrial
developments [17].

The Songor wetland (5◦45′ N, 0◦30′ E) is the second largest Ramsar Site along Ghana’s
coast. The area covers 511.33 km2. It is located in the Dangme East District and 79 km from
the capital, Accra. The habitats in the catchment are a closed brackish lagoon with mudflats,
sandy beaches (southward), floodplains with mangroves, and coastal savanna vegetation
in the east and north. Elevation ranges from 71 m in the north and 15 m in the south. The
average rainfall is 750 mm/year and the average atmospheric temperature is between 23 ◦C
and 33 ◦C. Multiple streams drain the Songor lagoon, and none of these streams are gauged.
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Key among them is the Sege River, which drains the north-western part of the Songor
lagoon and another stream that flows from north to south and passes through Hwakpo.
The wetland is connected to the Volta River at the east by two canals. These canals feed the
southern plains of the wetland through smaller channel networks [21,22]. Inland waters
feeding the catchment are mainly used to support livelihoods, primarily through irrigation
for agriculture and salt mining activities. Farming, fishing, salt mining, and petty trade are
important sources of livelihood in the area [19,23].

2.2. Data Sources
Imagery Data Sources

The remote sensing data used were satellite imagery from the Landsat Collection 2 Level 1
(Level 1 Precision Terrain—L1TP) (Landsat-4 Thematic Mapper (TM), Landsat-7 Enhanced
Thematic Mapper (ETM), Landsat-8 Operational Land Imager (OLI) and Thermal Infrared
Sensor (TIRS)). Satellite images were selected due to the extended temporal availability of the
satellite mission. The images for LULC analysis for the period 1990 to 2020 were downloaded
from the United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/
(accessed on 19 December 2022)). Obtained images represented 1990 (Landsat-4 TM),
2000 (Landsat-7 ETM), 2011 (Landsat-7 ETM), and 2020 (Landsat-8 OLI/TIRS) (Table 1).

Table 1. Landsat satellite images used.

Satellite (Sensor) Acquisition Dates
(dd-mm-yyyy) Path, Row

Landsat 8 (OLI/TIRS) 02-01-2020

193, 056Landsat 7 (ETM)
17-02-2011

04-02-2000

Landsat 4 (TM) 25-12-1990

Image selection criteria considered low cloud and scene cover over the AOIs. The
images correspond to the major dry season (between December and February) in Ghana.
The selected periods facilitated the assessment of the AOIs before the 1991 Ghana Coastal
Wetlands Management Plans [8], the 1992 Ramsar Site designation, and the 1999 Coastal
Wetlands Management Project Management Plans [7]. Long time intervals were selected
to capture more dynamic changes in the LULC over space and time. This aided in the
identification of trends and the impacts of influencing factors to the LULC. Additionally,
population statistics, gridded meteorological variables, and water balance data for the AOIs
were assessed.

2.3. LULC Classification and Validation

For the LULC classification preprocessing, scan line errors in the 2011 Landsat-7
ETM images were filled by interpolating using inverse distance weighting and smoothing
algorithms. The Quantum GIS (QGIS) version 3.22 software was used for this [24]. All
images were radiometrically and atmospherically corrected. The assessment of images
from different sources requires consistency and comparability. The corrections ensured all
images were alike, based on their quantitative measures, accuracy, and interpretation [25].
Corrections were performed using equations from the USGS (https://www.usgs.gov/
landsat-missions/using-usgs-landsat-level-1-data-product (accessed on 19 December 2022)).
The equations focused on the conversion of digital numbers (DNs) to top-of-atmosphere
(TOA) reflectance values (Equation (1)) and the correction of TOA reflectance for the sun
angle (Equation (2)).

ρλ
′ = MρQcal + Aρ (1)

where ρλ
′ is the TOA planetary reflectance without correction for solar angle, Mρ is the band-

specific multiplicative rescaling factor from the metadata (REFLECTANCE_MULT_BAND_x,

https://earthexplorer.usgs.gov/
https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product
https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product
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where x is the band number), Aρ is the band-specific additive rescaling factor from the metadata
(REFLECTANCE_ADD_BAND_x, where x is the band number), and Qcal is the quantised and
calibrated standard product pixel values (DN).

ρλ =
ρλ
′

cos(θSZ)
=

ρλ
′

sin(θSE)
(2)

where ρλ is the TOA planetary reflectance and θSE is the local sun elevation angle (the scene
centre sun elevation angle in degrees is provided in the metadata (SUN_ELEVATION)),
and θSZ is the local solar zenith angle (θSZ = 90◦ − θSE).

Corrected images were projected into the Universal Transverse Mercator (UTM) pro-
jection system (Zone: 30 N, Datum: WGS84).

Pixel-based supervised image classification was undertaken using the Maximum
Likelihood Classifier. Spectral indices for vegetation (Normalised Difference Vegetation
Index (NDVI)), water (Modified Normalised Difference Water Index (MNDWI)), and build-
up (Normalised Difference Built-up Index (NDBI)) were derived to aid in the classification.
Additionally, band combinations of Red, Green, Near-infrared, and Short-wave infrared
2/Mid-infrared were employed to highlight the identification of the LULC categories.
Unsupervised image classification was performed for the Songor AOI, using the Iso-cluster
classifier to ensure relative ease in the LULC selections. The combination of these techniques
and ground-truth data from the field, as well as fine-resolution images from the Google
Earth platform, helped in obtaining the thematic maps.

The LULC classes, including names and definitions were assigned after assessing
multiple relevant works in the literature [8,26,27]. The Sakumo catchment was classified
into seven categories: water, dense vegetation, sparse vegetation, wetland, development,
agriculture, and barren land. The Songor catchment was classified into four categories:
urban (developed and barren land), vegetation (including mangroves, dense and sparse
vegetation, and agriculture (cultivated and fallow lands)), Wet1 (water, lagoons, and inter-
tidal forested wetland), and Wet2 (marshes and mudflats). Similar to [26], LULC categories
that were alike in the Songor catchment were merged during classification to reduce
classification errors. This was because of the relatively low spatial resolution of Landsat
imagery (30 m). The spatial resolution made it difficult to separate similar LULC categories
in the Songor catchment due to the close spectral signature.

A comparison of four classifiers was undertaken to determine which classifier algo-
rithm produced fairly accurate maps. The assessed classifiers were Random Trees (RT),
K-nearest neighbour (KNN), Support Vector Machine (SVM), and Maximum Likelihood
(ML). Accuracies of the classified maps were validated, prior to extracting statistics for the
LULC categories. The classified maps for 2020 were validated using Google Earth Imagery.
Classification results were evaluated with error matrices. Error matrices assess the confor-
mity between the classified map and actual field conditions. Error metrics used to evaluate
the classified maps were overall accuracy and kappa coefficient. The overall accuracy is a
percentage-based metric that shows which classes have been correctly mapped. The kappa
coefficient assesses the conformity between interpretation and actual field conditions. The
rating criteria for the kappa coefficient ranges from 0 (poor) through 0.5 (moderate) to
1 (perfect) [28].

2.4. LULC Change Analysis
2.4.1. LULC Change

In the post-classification assessment, cross-tabulation matrices were evaluated for the
three time intervals (1990–2000, 2000–2011, and 2011–2020) to characterise size variations
in the LULC classes. The cross-tabulation matrices captured a pixel-by-pixel assessment of
the classified maps and identified pixel changes from one class to another.
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2.4.2. Intensity Analysis

Intensity analysis is a mathematical tool that measures and compares differences be-
tween categories over time. With this tool, the identification of changes in LULC quantities
and intensities across various temporal periods and categorical scales was performed [29].
This analysis was performed at three levels (interval, category, and transition) to expose
different types of information per level. The interval level examines LULC (size and speed)
change variations across the time intervals. The category level analyses the size and in-
tensity of gross losses and gross gains in each LULC category with respect to the other
categories for each time interval. The transition level investigates how the size and intensity
of an LULC category’s transitions vary across the other categories that are available for
that transition. At each level, the method checks for the stationarity of patterns across time
intervals. A stationary result implies that the pattern of change in a time interval is the
same as the pattern of change in a different time interval [29,30].

2.5. Analysis of Change Indicators
2.5.1. Trends in Population

Catchment-based population estimates were obtained from local census records taken
by the Ghana Statistical Service (GSS). Available district-scale data used were from the 2010
and 2021 records. The population density of the AOIs is the ratio of the various district
populations within the AOIs to the total coverage area of the AOIs.

The assessment of spatial population changes per catchment was undertaken with
remote LandScan and WorldPop population data. These datasets had 30 arc-second spatial
resolution. Data for 2000, 2011, and 2020 were downloaded from the Oak Ridge National
Laboratory website (https://landscan.ornl.gov/ (accessed on 8 March 2023)) and the
WorldPop Open Population Repository (https://wopr.worldpop.org/?GHA/Population/
(accessed on 10 March 2023)).

Population change rates per catchment were also assessed with the equation below.

Population change rate =
(

Population density di f f erence
Past population density

× 100
)

/Year di f f erence (3)

2.5.2. Trend of Meteorological Variables and Water Balance

The characterisation of water availability per catchment from 1990 to 2020 was assessed
annually, using certain parameters. The parameters assessed were total precipitation (PRE),
average temperature (TAVG), total actual evapotranspiration (AET), and water balance
(WB). These parameters are considered to be components that have the most influence on
water availability over land surfaces. The availability of field observation data is a major
challenge in less developed countries, and this was also revealed in this research, as it has
been by other authors [31–34]. Gridded climate data from TerraClimate was used to assess
the trends of the parameters. TerraClimate data from 1990 to 2020 were obtained from
https://climate.northwestknowledge.net/TERRACLIMATE/ (accessed on 19 March 2023).
Before the analysis, TerraClimate data were validated using Global Historical Climatology
Network (GHCN) data from ground stations nearest to the AOIs (Accra, Tema and Ada).
The average temperature data of TerraClimate were 98.7% accurate compared with that
of GHCN. Water availability influences wetland extents. Thus, wetland proliferation is
directly linked to water availability. The net available water within the catchments was
determined by subtracting the actual evapotranspiration from precipitation following
methods used by Abatzoglou et al. [35].

Trend assessments of the climate variables per catchment were evaluated using the
Mann–Kendall (MK) non-parametric trend test and Sen’s slope estimator. These were
performed to evaluate the existence of monotonic trends. The MK trend test assumes a null
hypothesis that there is no trend, against the alternative hypothesis that a trend exists. This
trend test compares the relative magnitudes of data rather than the data values themselves.
It is extensively employed for trend detection in climatological and hydro-meteorological

https://landscan.ornl.gov/
https://wopr.worldpop.org/?GHA/Population/
https://climate.northwestknowledge.net/TERRACLIMATE/
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data time series [36,37]. The MK statistic (S) test was undertaken using equations shown in
Abbam et al. [38]. Statistics derived from the equations include Tau, Z statistic, and Sen’s
slope. Tau (τ) ranges from −1 to 1 and characterises the strength of the trend. Values of
−1 indicate strong negative trends, 0 for no trends, and 1 for strong positive trends. The Z
statistic (Zs) measures the standard score of the MK trend test. The Sen’s slope estimates
the overall slope of the time series [36–38].

3. Results
3.1. Accuracy Assessment of Landcover Classification from Satellite Observations

Table 2 shows validation outcomes. The outcomes are for four classification methods.
The 2020 classified maps per AOI were assessed for the overall accuracy and kappa coeffi-
cients. The ML classification registered the best outcomes. The overall accuracy was 72%
for the Sakumo catchment and 77% for the Songor catchment. The kappa coefficient was
0.63 for the Sakumo catchment and 0.70 for the Songor catchment. The kappa coefficients
fell within the high–moderate strength of agreement.

Table 2. Validation of classification methods (K-nearest neighbour (KNN), random trees (RT), max-
imum likelihood (ML), and support vector machine (SVM)). OA—overall accuracy, SK—Sakumo
catchment, SG—Songor catchment.

OA_SK kappa_SK OA_SG kappa_SG

KNN 66% 0.55 65% 0.56

RT 60% 0.45 62% 0.52

ML 72% 0.63 77% 0.70

SVM 67% 0.55 59% 0.48

3.2. LULC Change Analysis
3.2.1. LULC Change

The LULC maps of the AOIs for the four time points are shown in Figure 2. The cross-
tabulation matrices (Tables 3 and 4) show the LULC category changes for the AOIs. This
covered the time intervals (first: 1990–2000, second: 2000–2011, and third: 2011–2020). Each
matrix shows the comprehensive data. These include LULC category gross losses, gross
gains, and net changes per time interval. The rows and columns display the categories
of an initial time and a subsequent time, respectively, while boldened entries on the
diagonal indicate persistence. The analyses included relative percent proportions of the
LULC categories.

The LULC categories over the time intervals in Sakumo showed variations. These
variations showed significance in percentages and coverage areas. The dominant LULC
categories in the Sakumo catchment were agriculture (129.94 km2; 45.67%) in 1990 and
developed in 2000 (101.07 km2; 35.52%), 2011 (99.19 km2; 34.86%), and 2020 (179.95 km2;
61.84%). In 1990–2000, agriculture converted to developed (53.24 km2; 18.71%) and sparse
vegetation (38.79 km2; 13.63%). Within the second time interval (2000–2011), sparse vegeta-
tion (54.65 km2; 19.21%) lost the most. Agriculture (20.01 km2; 7.03%), barren (22.53 km2;
7.92%), and developed (11.79 km2; 4.14%) gained from the loss. For the third time interval
(2011–2020), barren converted to agriculture (13.75 km2; 4.83%), developed (39.08 km2;
13.74%), and sparse vegetation (6.53 km2; 2.29%).

In the Songor catchment, vegetation (186.83 km2; 37.25%) dominated the LULC cate-
gories for 1990. Vegetation persisted in 2000 (240.91 km2; 48.03%), 2011 (246.94 km2; 49.23%),
and 2020 (271.02 km2; 54.03%). In 2000, urban was the second dominant LULC category
(97.31 km2; 19.40%). Wetland-related categories changed in order. In 2011, Wet1 registered
18.72% (93.90 km2) and Wet2 18.58% (93.22 km2). For 2020, Wet2 covered 103.94 km2

(20.72%) and Wet1 had 92.20 km2 (18.38%).
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open water and inter-tidal forested wetlands, WET2—marshes, URBAN—development and barren land,
VEG—vegetation and agriculture).

Gross changes fluctuated between LULC categories in the Sakumo catchment over
the time intervals. In the first time interval (1990–2000), agriculture (34.60%; 98.46 km2)
lost the most and developed (67.10 km2; 23.58%) gained the most gains. Within the second
time interval, sparse vegetation (54.65 km2; 19.21%) lost most to barren (63.26 km2; 22.23%).
In the third time interval, barren (20.87%; 59.39 km2) lost the most area to developed
(87.40 km2; 30.72%).
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Table 3. LULC cross-tabulation matrices (km2) for the Sakumo catchment (1990–2000, 2000–2011, and
2011–2020).

LULC 2000 1990–2000
Category Agriculture Barren Dense Veg Developed Sparse Veg Water Wetlands TOTAL Gross Loss
Agriculture 31.478 0.616 2.526 53.235 38.789 0.614 2.681 129.938 98.461
Barren 0.269 0.019 0.016 0.768 0.148 0.007 0.018 1.245 1.226
Dense Veg 1.934 0.000 12.618 0.018 1.301 0.000 0.006 15.878 3.260
Developed 7.486 0.243 0.091 33.962 5.244 0.178 3.746 50.951 16.988
Sparse Veg 15.177 0.022 4.877 7.911 33.462 0.191 1.436 63.075 29.613
Water 0.040 0.000 0.000 0.016 0.040 1.383 0.129 1.607 0.224
Wetlands 5.279 0.008 0.721 5.156 5.998 0.428 4.258 21.847 17.589

LULC 1990

TOTAL 61.662 0.907 20.849 101.066 84.982 2.801 12.273 284.540
1990–2000 Gross Gain 30.184 0.888 8.231 67.104 51.520 1.418 8.015 167.360

LULC 2011 2000–2011
Category Agriculture Barren Dense Veg Developed Sparse Veg Water Wetlands TOTAL Gross Loss
Agriculture 11.447 16.254 0.691 19.241 13.393 0.026 0.609 61.662 50.215
Barren 0.046 0.320 0.000 0.527 0.015 0.000 0.000 0.907 0.588
Dense Veg 4.024 1.449 8.911 0.513 5.952 0.000 0.001 20.849 11.939
Developed 9.232 22.635 0.001 62.745 5.757 0.005 0.690 101.066 38.321
Sparse Veg 20.012 22.529 0.037 11.790 30.334 0.005 0.276 84.982 54.648
Water 0.097 0.080 0.002 0.002 0.020 2.012 0.589 2.801 0.789
Wetlands 3.188 0.311 0.000 4.375 1.555 0.143 2.702 12.273 9.572

LULC 2000

TOTAL 48.046 63.577 9.642 99.193 57.026 2.191 4.867 284.540
2000–2011 Gross Gain 36.599 63.257 0.731 36.447 26.692 0.179 2.165 166.071

LULC 2020 2011–2020
Category Agriculture Barren Dense Veg Developed Sparse Veg Water Wetlands TOTAL Gross Loss
Agriculture 9.149 1.228 0.119 27.014 9.798 0.044 0.695 48.046 38.897
Barren 13.751 4.191 0.016 39.083 6.526 0.000 0.009 63.577 59.386
Dense Veg 1.075 0.124 5.945 0.589 1.887 0.000 0.022 9.642 3.696
Developed 3.993 2.170 0.000 88.547 4.388 0.000 0.095 99.193 10.645
Sparse Veg 14.564 3.219 0.581 20.304 18.122 0.000 0.236 57.026 38.903
Water 0.004 0.004 0.000 0.057 0.059 1.754 0.313 2.191 0.437
Wetlands 0.408 0.040 0.000 0.357 1.857 0.035 2.171 4.867 2.696

LULC 2011

TOTAL 42.943 10.976 6.661 175.951 42.638 1.833 3.540 284.540
2011–2020 Gross Gain 33.794 6.784 0.716 87.404 24.515 0.079 1.369 154.661

Note(s): Boldened numbers on the diagonal indicate persistence. Off-diagonal entries are transitions from an
LULC category to a different category. “TOTAL” shows the total area of cover for an LULC category at each time
point. The analyses include relative percent proportions of the LULC categories.

In the Songor catchment, gross change statistics reported landscape change decreases
over the time intervals. Wet2 (112.35 km2; 22.40%) lost most in the first time interval. Urban
lost most in the second (67.51 km2; 13.46%) and third (53.74 km2; 10.71%) time intervals.
From 1990 to 2000, urban (80.10 km2; 15.97%) gained the most. These gains were greater
than the two highest gains in the subsequent intervals. Vegetation remained the largest
gross gainer in the second (10.74%; 53.87 km2) and third (9.72%; 48.78 km2) time intervals.

The most persistent LULC categories per catchment increased consecutively. Devel-
oped persisted (first = 11.94%; second = 22.05%; third = 31.12%) in the Sakumo catchment,
and vegetation (first = 32.41% (162.60 km2); second = 38.49% (193.07 km2); third = 44.31%
(222.25 km2)) in the Songor catchment. In both catchments, the total land changes decreased
steadily over successive time intervals. For the Sakumo catchment, they declined from
58.82% (167.36 km2) through 58.36% (166.07 km2) to 54.35% (154.66 km2). In the Songor
catchment, they shrunk from 35.84% (179.79 km2) through 30.40% (152.49 km2) to 23.73%
(119.04 km2).
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Table 4. LULC cross-tabulation matrices (km2) for the Songor catchment (1990–2000, 2000–2011, and
2011–2020).

LULC 2000 1990–2000
Category Urban Veg Wet1 Wet2 TOTAL Gross Loss
Urban 17.22 9.74 2.33 2.97 32.27 15.05
Veg 18.49 162.60 0.24 5.50 186.83 24.23
Wet1 19.28 1.92 73.76 6.97 101.93 28.16
Wet2 42.33 66.65 3.37 68.25 180.59 112.35

LULC 1990

TOTAL 97.31 240.91 79.71 83.69 501.62
1990–2000 Gross Gain 80.10 78.31 5.94 15.44 179.79

LULC 2011 2000–2011
Category Urban Veg Wet1 Wet2 TOTAL Gross Loss
Urban 29.80 35.46 16.08 15.97 97.31 67.51
Veg 24.23 193.07 0.86 22.74 240.91 47.84
Wet1 4.09 0.04 73.66 1.92 79.71 6.05
Wet2 9.43 18.37 3.30 52.59 83.69 31.10

LULC 2000

TOTAL 67.55 246.94 93.90 93.22 501.62
2000–2011 Gross Gain 37.75 53.87 20.24 40.64 152.49

LULC 2020 2011–2020
Category Urban Veg Wet1 Wet2 TOTAL Gross Loss
Urban 13.81 30.61 6.89 16.24 67.55 53.74
Veg 7.84 222.25 0.53 16.33 246.94 24.70
Wet1 8.39 0.21 80.23 5.08 93.90 13.68
Wet2 4.41 17.96 4.56 66.29 93.22 26.93

LULC 2011

TOTAL 34.45 271.02 92.20 103.94 501.62
2011–2020 Gross Gain 20.64 48.78 11.98 37.64 119.04

Note(s): Urban; development and barren land, Veg; sparse vegetation and agriculture, Wet1; lagoon, open water,
and intertidal wetland (mangroves), Wet2; marshes. Boldened numbers on the diagonal indicate persistence.
Off-diagonal entries are transitions from an LULC category to a different category. “TOTAL” shows the total area
of cover for an LULC category at each time point.

3.2.2. Intensity Analysis
Interval Level

The results of the interval level intensity analysis over the three time intervals are
displayed in Figure 3. Figure 3 relates the overall annual changes to the uniform annual
change for the Sakumo catchment (Figure 3A) and for the Songor catchment (Figure 3B).
The uniform annual change describes the consistent rate of change that would occur if all
changes were evenly distributed over the entire period of study. If the annual change of a
time interval is greater than the uniform annual change, it is characterised as fast, and slow
when an opposite trend is observed. The Sakumo catchment recorded a uniform annual
change of 5.72%. The Sakumo catchment reported fast changes in the first (5.88%) and third
(6.04%) time intervals and a slow change in the second time interval (5.31%). The Songor
catchment had a uniform annual change of 3%. Fast changes occurred in the first time
interval (3.58%), and slow changes in the second (2.76%) and third (2.64%) time intervals.

Category Level

The category level intensity results display the intensity for a category’s annual change
for both AOIs (Figure 4). The uniform intensity line links the interval and category level
analyses. For each time interval in an AOI, LULC categories behind the uniform line
were dormant and those ahead of it were active. Across all time intervals in the Sakumo
catchment, LULCs of water and dense vegetation remained dormant gainers and losers.
Barren actively gained and lost. Wetlands and development were only active during
1990–2000. Wetlands lost actively in all time intervals. Agriculture and wetland remained
active losers over the three time intervals.



Water 2023, 15, 3568 11 of 21

Water 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 

category (97.31 km2; 19.40%). Wetland-related categories changed in order. In 2011, Wet1 
registered 18.72% (93.90 km2) and Wet2 18.58% (93.22 km2). For 2020, Wet2 covered 103.94 
km2 (20.72%) and Wet1 had 92.20 km2 (18.38%). 

Gross changes fluctuated between LULC categories in the Sakumo catchment over 
the time intervals. In the first time interval (1990–2000), agriculture (34.60%; 98.46 km2) 
lost the most and developed (67.10 km2; 23.58%) gained the most gains. Within the second 
time interval, sparse vegetation (54.65 km2; 19.21%) lost most to barren (63.26 km2; 
22.23%). In the third time interval, barren (20.87%; 59.39 km2) lost the most area to devel-
oped (87.40 km2; 30.72%). 

In the Songor catchment, gross change statistics reported landscape change decreases 
over the time intervals. Wet2 (112.35 km2; 22.40%) lost most in the first time interval. Urban 
lost most in the second (67.51 km2; 13.46%) and third (53.74 km2; 10.71%) time intervals. 
From 1990 to 2000, urban (80.10 km2; 15.97%) gained the most. These gains were greater 
than the two highest gains in the subsequent intervals. Vegetation remained the largest 
gross gainer in the second (10.74%; 53.87 km2) and third (9.72%; 48.78 km2) time intervals. 

The most persistent LULC categories per catchment increased consecutively. Devel-
oped persisted (first = 11.94%; second = 22.05%; third = 31.12%) in the Sakumo catchment, 
and vegetation (first = 32.41% (162.60 km2); second = 38.49% (193.07 km2); third = 44.31% 
(222.25 km2)) in the Songor catchment. In both catchments, the total land changes de-
creased steadily over successive time intervals. For the Sakumo catchment, they declined 
from 58.82% (167.36 km2) through 58.36% (166.07 km2) to 54.35% (154.66 km2). In the Son-
gor catchment, they shrunk from 35.84% (179.79 km2) through 30.40% (152.49 km2) to 
23.73% (119.04 km2). 

3.2.2. Intensity Analysis 
Interval Level 

The results of the interval level intensity analysis over the three time intervals are 
displayed in Figure 3. Figure 3 relates the overall annual changes to the uniform annual 
change for the Sakumo catchment (Figure 3A) and for the Songor catchment (Figure 3B). 
The uniform annual change describes the consistent rate of change that would occur if all 
changes were evenly distributed over the entire period of study. If the annual change of a 
time interval is greater than the uniform annual change, it is characterised as fast, and 
slow when an opposite trend is observed. The Sakumo catchment recorded a uniform an-
nual change of 5.72%. The Sakumo catchment reported fast changes in the first (5.88%) 
and third (6.04%) time intervals and a slow change in the second time interval (5.31%). 
The Songor catchment had a uniform annual change of 3%. Fast changes occurred in the 
first time interval (3.58%), and slow changes in the second (2.76%) and third (2.64%) time 
intervals. 

  

(A) (B) 

Figure 3. Interval level intensity analysis results at the AOIs (Sakumo (A) and Songor (B)). The bars
represent the intensity of annual area of change within each time interval. The red line shows uniform
annual change, if all changes were evenly distributed over all study periods.

Water 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

Figure 3. Interval level intensity analysis results at the AOIs (Sakumo (A) and Songor (B)). The bars 
represent the intensity of annual area of change within each time interval. The red line shows uni-
form annual change, if all changes were evenly distributed over all study periods. 

Category Level 
The category level intensity results display the intensity for a category’s annual 

change for both AOIs (Figure 4). The uniform intensity line links the interval and category 
level analyses. For each time interval in an AOI, LULC categories behind the uniform line 
were dormant and those ahead of it were active. Across all time intervals in the Sakumo 
catchment, LULCs of water and dense vegetation remained dormant gainers and losers. 
Barren actively gained and lost. Wetlands and development were only active during 1990–
2000. Wetlands lost actively in all time intervals. Agriculture and wetland remained active 
losers over the three time intervals.  

In the Songor catchment, urban had the highest gains and actively gained and lost 
over the three time intervals. Vegetation and Wet1 remained dormant over the time inter-
vals. Wet2, on the other hand, actively lost in all time intervals and actively gained in the 
second and third intervals. The bars for each category ended at varied points from the 
uniform line. This means that across all categories, the intensity of change was not uni-
form. 

Figure 4. Category level intensity analysis at the Sakumo and Songor catchment for 1990–2000 (A), 
2000–2011 (B), and 2011–2020 (C). The bars show the intensity of annual gains and losses within 

  
(A) 

  
(B) 

  
(C) 

Figure 4. Category level intensity analysis at the Sakumo and Songor catchment for 1990–2000 (A),
2000–2011 (B), and 2011–2020 (C). The bars show the intensity of annual gains and losses within each
category. The red line represents uniform intensity change, if all changes were evenly distributed
over all categories.
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In the Songor catchment, urban had the highest gains and actively gained and lost over
the three time intervals. Vegetation and Wet1 remained dormant over the time intervals.
Wet2, on the other hand, actively lost in all time intervals and actively gained in the second
and third intervals. The bars for each category ended at varied points from the uniform
line. This means that across all categories, the intensity of change was not uniform.

Transition Level

The transition level focused on categories with the most significant gains. LULC
categories that extended beyond the uniform intensity line showed categories targeted by
the gaining category. Categories behind the uniform intensity line indicated categories
avoided by the gaining category. Figures 5 and 6 show transition level changes to the
highest gaining LULC category for the three time intervals.
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For the Sakumo catchment (Figure 5), in 1990–2000, barren targeted agriculture and
developed at 0.05%. Subsequent intervals showed that barren intensively targeted agri-
culture (2.40%) and sparse vegetation (2.41%) in 2000–2011, and only sparse vegetation
(0.63%) in 2011–2020. Developed targeted barren more intensively than agriculture over
the three time intervals. In the second time interval, developed also targeted wetland.

For the Songor catchment (Figure 6), urban had the most significant gains in all the
time intervals. During 1990–2000, urban targeted Wet1 (1.89%) and Wet2 (2.34%), while
avoiding vegetation (Figure 6A). In 2000–2011 (Figure 6B), Wet2 (1.02%) and vegetation
(0.91%) were targeted and Wet1 was avoided. However, in 2011–2020, urban targeted only
Wet1 (0.99%).

3.3. Analysis of Change Indicators
3.3.1. Trends in Population

Figure 7 shows the population catchment estimates for the 2010 and 2021 local census.
The Songor catchment grew at a rate of 9.51% and the Sakumo catchment at 5.21%. The
population density rose faster in Sakumo than in Songor. The remote datasets showed a
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steeper incline of population densities in Sakumo (Figure 8). The spatial distribution of
the populations within the AOIs showed a consistent surge over the years. This surge was
relatively faster in the 2000–2011 interval than the 2011–2020 interval. Populations closest
to the wetlands increased more than those further away. Overall (2000–2020), regions with
higher populations more than doubled.
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3.3.2. Trends in Meteorological Variables and Water Balance

Figure 9 shows the 30-year (1990 to 2020) trends for the meteorological variables
(annual total precipitation (A), annual average temperatures (B), annual total evapotran-
spiration (C), and annual water balance (D). Though the trend results (Table 5) showed
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positive increasing trends in both locations for most parameters, only temperature showed
significance (p-value < 0.05).
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Songor—right). (A) Annual total precipitation (mm/yr), (B) annual average temperature (◦C),
(C) annual total actual evapotranspiration (mm/yr), and (D) water balance (mm/yr).
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Table 5. Mann–Kendall trend test results for the water balance components.

Annual Total Precipitation

Catchment Mann–Kendall Statistic (S) Tau (τ) Sen’s Slope Estimator (Q) Zs p-value (Two-Tailed Test)

Sakumo 15 0.03 1.15 0.24 8.12 × 10−1

Songor 43 0.09 2.53 0.71 4.75 × 10−1

Annual Average Temperature

Catchment Mann–Kendall Statistic (S) Tau (τ) Sen’s slope Estimator (Q) Zs p-value (Two-tailed test)

Sakumo 249 0.54 0.03 4.22 2.50 × 10−5 *

Songor 241 0.52 0.03 4.08 4.52 × 10−5 *

Annual Total Evapotranspiration

Catchment Mann–Kendall Statistic (S) Tau (τ) Sen’s slope Estimator (Q) Zs p-value (Two-tailed test)

Sakumo 45 0.10 2.55 0.75 4.50 × 10−1

Songor 55 0.12 2.53 0.92 3.60 × 10−1

Annual Water Balance

Catchment Mann–Kendall Statistic (S) Tau (τ) Sen’s slope Estimator (Q) Zs p-value (Two-tailed test)

Sakumo −51 −0.11 −0.83 −0.85 4.00 × 10−1

Songor 23 0.05 0.61 0.37 7.10 × 10−1

Note(s): Values with * indicate significance (i.e. p-value < 0.05).

4. Discussions
4.1. Interpretation of Change Analysis

From the results, LULC change rates were inconsistent. This is in the purview of the
three time intervals and catchments. These changes stemmed from multiple factors (natural
and anthropogenic). As against natural factors, human-induced activities influenced
most of the LULC changes in the catchments. Land changes in the Sakumo catchment
were slow in the second time interval and relatively faster in the third time interval,
compared to the first time interval. Throughout all four time periods, human activities
significantly transformed the Sakumo catchment. The catchment is situated between the
capital (Accra) and a major port city (Tema), thereby making it a prime urban hub for
economic activities. Within the third time interval, encroachment stemming from rapid
urbanisation led to the loss of 38% of the Sakumo Ramsar Site [39]. As presented in the
LULC change analysis, the population explosion within the catchment has led to declines in
vegetative cover and wetland areas, and a resulting rise in urban infrastructure, including
roads and industries [40]. In this study, the Songor catchment area saw a rise in the coverage
area of vegetation. In the north-eastern portion of the catchment, there was a conversion of
Wet2 to vegetation. The intense transition of the land cover to agriculture–vegetation is
driven by human behaviour in the catchment [23,26].

The outcome of the category and transition level intensity analysis showed changes in
gains, losses, and significant transitions within different LULC categories. In the Sakumo
catchment, the agricultural and barren land decreased at the expense of human devel-
opments. Also, in the second time interval, the wetlands were intensively targeted by
developments. This can be credited to urbanisation. A high population growth is directly
linked to an attendant surge in the demand for residential and commercial facilities [41,42].
The increase in the human-induced categories was alluded to by an earlier study in 2020
on three coastal Ramsar Sites in Ghana [43]. Additionally, it affirmed that urbanisation was
the primary underlying process associated with the land transformations. Progressively,
this will lead to the conversion of wetlands and vegetation to impervious surfaces, which
has harmful effects on biodiversity.
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The results show that Songor catchment LULC changes were unlike those of the
Sakumo catchment, as changes were dominated by vegetation expansion. Vegetation is
composed of mangroves, dense and sparse vegetation, and agricultural cover (fallow and
cultivated lands). Expansions in vegetation were primarily derived from Wet2 (comprised
of marshes and mudflats) and urban (consisting of development and barren land) cate-
gories. The main livelihood activities in the Songor catchment are farming, fishing, and
salt mining [17]. This justifies the intense conversion of other LULC classes to agricultural
lands–vegetation. Wet1 and Wet2 were unstable throughout the time intervals. This is
predominately due to human reliance on the ecosystems in the catchment to meet their
self-actualisation and survival needs [23]. Human overexploitation of the natural resources
negatively impacts the Songor catchment. These exploitative acts have increased land frag-
mentation due to salt mining [44], intensified farming, and aquaculture activities in wetland
areas [45], and the overharvesting of mangroves for many services (including fuelwood,
fish net tanning, medication, weaving baskets, smoking fish, and drink distillation) [23,46],
among others. Further to that, in a 2021 assessment of the nearby Keta Lagoon Complex
Ramsar Site, which is less than 10 km east of the Songor catchment, all assessed time points
recorded over 60% coverage area of naturally occurring LULC categories in 1991, 2007,
and 2020 [26]. The decline in urban areas in the Songor catchment is due to rural–urban
migration. This stems from regional economic disparities, environmental changes, and
socio-cultural factors [46,47]. The persistence of these practices will lead to elevated levels
of environmental degradation, caused by poor management strategies to protect wetlands.

4.2. Impact of Change Indicators

The Sakumo and Songor catchments registered a greater population density in the
third time interval (2011–2020) than in the second time interval (2000–2011). This had a
positive impact on economic growth. However, it contributed negatively to the environ-
ment, as natural land covers were substituted for urban and industrial developments [48].
This effect was larger in the Sakumo catchment because it is more urban than the Songor
catchment. Predictions suggest that between 2019 and 2050, the sub-Saharan Africa will
account for more than half of the growth of the world’s population, and it is the only region
projected to sustain a rapid population growth until the end of the current century [49].
Furthermore, urban areas are anticipated to absorb the bulk of the Earth’s population [50].
The consequence is that natural environments will be converted to human-induced envi-
ronments (urban). This robs communities of associated wetland values and services. Based
on the literature, flow patterns, and studies, potential areas of high risk in the catchments
are considered. In the Songor catchment, the direct coastal dwellers would be most affected.
These dwellers combat threats from sea level rise, coastal erosion and changing wetland
hydrological regimes. For the Sakumo catchment, likely areas of greater risk are regions
within the lagoon buffer zone. These areas directly impinge on the drainage regimes of the
wetland, thus making them vulnerable to subsidence and inundation.

The land transformations noted in this study are also consistent with Ghana’s economic
and population growth rate. The growth rate has been documented to be quicker than
sub-Saharan Africa’s average since 2007. Expansions of this nature result in accelerated
and significant changes to LULCs [26]. This requires proper management to conserve the
available natural resources.

Rainfall variability in both the Sakumo and Songor catchments showed a weak and
unsteady pattern. This is typical with current global climate trends of increasing temper-
atures and varied rainfall magnitude [51]. The IPCC reported a low average increase in
rainfall of 0.25% in tropical regions during the twentieth century [52]. Wetland ecosystems
thrive on the availability of water. Hence, continued declines in water availability will
lead to biodiversity losses, especially dwindling migratory waterbird populations in the
Sakumo and Songor Ramsar Sites [17,41,53].

In this study, from 1990 to 2020, annual temperature increased significantly. An
extended temperature rise will negatively affect society, the economy, and the environ-
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ment [12,14]. With reduced rainfall, elevated temperatures result in higher evapotranspira-
tion rates, cumulative drops in water balance, and higher hazard vulnerability (including
sea level rise and extreme weather patterns). This research registered the Sakumo catch-
ment with a decline in water balance, as the Songor catchment was fairly stable. This
implies that the Sakumo catchment is losing more water than it gains. This is primarily
credited to the high population density, which results in increased impervious surfaces and
deforestation [54,55]. This indicates that with continued conditions, water resources in the
Sakumo catchment will be lost, along with accompanying ecosystem services.

4.3. Implications on Water Resource Management

The surface waters draining into the catchment lagoons are primarily used for agricul-
ture irrigation. These surface waters are threatened by untreated surface runoffs. These
untreated surface runoffs come from varied sources, including residential, industrial, and
agricultural sources. The primary constituents of these runoffs are waste materials. Popula-
tion density increases proportionally with waste generation. Untreated wastes typically
find their way into surface waters via stormwater drains and degrade the water quality.

The Songor Lagoon’s water quality is influenced by natural and anthropogenic activ-
ities. The natural processes of tidal flushing and evaporation are heavily complimented
by human pollution. The waters register high levels of nitrates, phosphates, sulphates,
and total dissolved solids (TDS) [21,22]. This is indicative of toxicity from human sources,
including agricultural runoff and untreated urban wastewater. With the continuation of
these conditions, the waters will be eutrophic and unable to support aquatic organisms
and associated vegetation. In the Sakumo Ramsar Site, from 1991 to 2018, significant
elevated concentrations of Nitrate nitrogen (NO3–N), Ammoniacal nitrogen (NH3–N), and
Phosphate compounds (PO4–P) were recorded [20,56–58]. These levels were predominantly
credited to anthropogenic pressures such as urbanisation, industrialisation, agriculture,
and the overexploitation of wetland resources [12,59]. Aside from measures to treat and
mitigate the pollution of these water resources, consistent monitoring and public education
will support the protection of associated wetlands. Regular awareness on the wise use of
wetland resources is imperative to guide conservation efforts in communities.

4.4. Limitations

Satellite images from the Landsat collection, though longstanding, have a medium
spatial resolution of 30 metres, thereby increasing the complexity in distinguishing particu-
lar LULC categories within the AOIs. Higher resolution satellite imagery, dating back to the
assessed periods, would have improved the accuracy of the land cover classification This
challenge was marginally resolved by merging related categories, as undertaken by previ-
ous researchers [26,60]. Furthermore, time intervals of the assessment were not consistent,
owing primarily to the presence of clouds in the AOIs. In resolving this challenge, reduced
cloud or noise coverage over the AOIs and seasonal clear images were key considerations
in the image selection criteria.

5. Conclusions

This study assessed the LULC changes for the Sakumo and Songor coastal wetland
catchments using intensity analysis. The analysis covered three time intervals (1990–2000,
2000–2011, and 2011–2020). This approach facilitated a comprehensive understanding of
LULC changes by examining the size and intensity of land transformations and testing for
stability at three detailed levels. The findings revealed that various processes significantly
influenced land transformations in both catchments, with human activities being the
primary driving force. Interestingly, while human-led activities played a substantial role in
these modifications, the resulting LULC categories differed between the two catchments.

In the Sakumo catchment, noticeable changes were predominantly directed towards
development, reflective of urbanisation and industrialisation. Conversely, the Songor
catchment witnessed transitions mainly towards vegetation–agricultural expansion. Ur-
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banisation, industrialisation, and agriculture were found to be pertinent to LULC changes
within the AOIs. The assessment of population and water balance variables as change
factors showed an increasing potential influence of anthropogenic pressures against natural
processes. These findings hold crucial implications for ecosystem management, especially
in mitigating the ongoing decline of the wetland ecosystems in these catchments.

This research underscores the importance of proactive conservation measures and
sustainable resource utilisation by relevant stakeholders. Ecosystem managers could use
the research outcomes to determine the driving forces for monitoring in AOI conservation.
Policy makers could use them to guide their decisions regarding anthropogenic impact
on environmental resources. Environmentalists and researchers could improve on the
methods used to enhance LULC and catchment evaluation.

The failure to prioritise the conservation of coastal wetland catchments and the sus-
tainable use of their natural resources by relevant stakeholders could result in accelerated
degradation and the eventual loss of associated ecosystem services. Within coastal wetland
catchments, thorough analysis and the regular monitoring of the observed trends and
drivers of catchment changes is necessary. This allows for sufficient understanding of the
interactions between human-induced and naturally existing LULC categories. Addition-
ally, comprehensive assessments relating to LULC changes and natural and anthropogenic
change indicators are required. Future assessments will evaluate the impact of the landform
morphometries on the catchment LULC.
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