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Abstract: The present study demonstrates the synthesis and application of Ag/ZnO powder films
(thickness of 4 um) as photocatalysts for natural sunlight and ultraviolet (UV, 315-400 nm) irradiation.
The synthesis procedure is simple and eco-friendly, based on the photo-fixation of silver ions onto
commercial ZnO powder via UV illumination for the first time. The photocatalytic efficiency of the
newly developed films is evaluated through degradation of paracetamol in distilled and drinking
water. Our experimental evidences show that the Ag/ZnO nanostructure films are more active than
pristine ZnO films in the photodegradation process. Namely, the photocatalytic efficiency of the films
modified with 1072 M concentration of silver ions achieve the highest degradation (D) percentages
for paracetamol in both types of water (Dyistiied = 80.97%, Ddrinking = 82.5%) under natural sunlight.
Under UV exposure, the degradation percentages are slightly lower but still higher than those
achieved by pure ZnO films (Dgjstilled = 53-13%, Ddrinking = 61.87%). It is found that the photocatalytic
activity grows in direct proportion to the concentration of Ag* ions: ZnO < Ag 107%/Zn0O < Ag
10~3/Zn0 < Ag 102/ZnO0. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron
spectroscopy, UV-vis diffuse reflectance and photoluminescence spectroscopy are used to characterize
the as-prepared ZnO and Ag/ZnO nanostructures. The improved photocatalytic performance of
the Ag/ZnO films is mostly attributed to the combination of excited electron transfer from ZnO to
Ag and the inhibition of photogenerated electron-hole pair recombination. Furthermore, Ag/ZnO
nanostructure films can retain their photocatalytic activity after three cycles of use, highlighting their
potential practical application for the treatment of pharmaceutical wastewater in real-world scenarios
where natural sunlight is often more readily available than artificial UV light.

Keywords: heterogeneous photocatalysis; Ag/ZnO powder films; distilled and drinking water; UV
light; natural sunlight; paracetamol

1. Introduction

Various pharmaceutical pollutants have been detected in wastewater [1,2], surface
and groundwater [3,4] and even in drinking water [5,6]. More specifically, antibiotics, anal-
gesics, antipyretics and hormones are frequently found in the aquatic environment [2,7].
As long-term consumption of pharmaceutical contaminants through drinking water results
in carcinogenetic disorders that have a negative impact on the human health, the presence
of these compounds in drinking water is a significant problem and causes public con-
cern [6]. The harmful effects of pharmaceuticals include toxicity, resistance to pathogenic
microorganisms, genotoxicity and endocrine disruption [8,9].

One of the most widely used medications—paracetamol (acetaminophen)—is a com-
mon, non-biodegradable and highly water-soluble compound that is present in more
than a hundred pharmaceutical products [10]. Paracetamol (PCA) is frequently used to
treat headaches, a variety of colds and influenza. According to a report from 2000, parac-
etamol ranks third among the top medications, and its consumption exceeds 400 tons
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annually [11]. This analgesic has been discovered in natural and European wastewaters
in amounts up to 10 g/L and 6 g/L, respectively [12]. Recently, many methods, including
electrochemical [13,14], ozonation [15,16], Fenton and photo-Fenton [17,18] and H,O,/UV
oxidation techniques [19,20], to mineralize PCA have been reported. However, one of the
most promising AOPs (advanced oxidation processes) for the removal of PCA from water
medium is heterogeneous photocatalysis.

Heterogeneous photocatalysis with semiconductor materials such as zinc oxide (ZnO)
has indeed gained popularity as an effective method for treating wastewater contam-
inated with dyes, pesticides and pharmaceuticals [10]. ZnO is a low-cost, non-toxic,
chemically stable and easy-to-produce material with a range of applications, including
micro-gas sensing devices [19], solar cells [20], nonlinear optics [21], integrated photonic
devices [22] and photocatalysts for wastewater treatment [23,24]. However, under visible
or sunlight irradiation, ZnO cannot be used as a catalyst due to its significant band gap
energy. Additionally, due to the rapid recombination rate of charge (e~ /h*) couples, its
photocatalytic efficiency is also constrained. To overcome this problem, the ZnO surface
can be modified and functionalized with co-catalysts, typically noble metals, such as Pt,
Pd, Ag and Au, and based on the formation of heterojunctions to limit the possibilities for
recombination [25-27]. Different approaches have been used to combine the ZnO substrate
with metallic co-catalysts [25-27]. Among them, the direct photo-fixation or photocatalytic
deposition of metal clusters under UV light has gained attention recently [28,29]. More
precisely, under the influence of the photogenerated charges on the ZnO substrate, the co-
catalyst can be deposited as a result of the reduction in metal ions, which are typically from
an aqueous solution [28,29]. As photogenerated electron acceptors, the noble metal ions
(Ag", Pt?*, Pd?*, Au®*) can be successfully reduced to the corresponding metals [30-32].

Most of the studies that have examined ZnO and co-catalytically modified ZnO
focus on the systems using suspended photocatalyst particles. This limits their practical
applicability due to the requirement of centrifugation or filtration to reuse fine ZnO particles.
The design of systems where the photocatalysts are supported on inert substrates as layers
and thin films proved to be successful in overcoming such obstacles [30]. Very recently, Hao
and co-workers [33] described the construction of hydrothermally grown ZnO films on wire
mesh subsequently decorated with Ag nanospheres using the impregnating photoreduction
treatment. The formed Ag-ZnO heterojunction improves the absorption of UV and visible
light, thereby boosting the photocatalytic properties of the films. Rati and co-workers [34]
reported that Ag addition contributes to the improvement of ZnO thin films throughout
the photocatalytic process of methylene blue degradation. Therefore, developing novel
ZnO-based thin-film photocatalysts for water remediation is of constant interest.

The main goal of the present work is to elaborate a new fabrication strategy to grow Ag-
modified ZnO films for photocatalytic removal of paracetamol. In our recent works [35,36],
we proposed a synthetic method to prepare Ag/ZnO films via photo-fixation of Ag onto sol-
gel-derived ZnO substrate, and the photocatalytic performance of the films was investigated
in the removal of methylene blue and malachite green dyes under UV and visible light
illumination. Here, we extend our efforts by exploring the possibility of constructing
photocatalytic films from Ag-modified commercial ZnO powder as a simple and low-cost
preparation method. Moreover, the degradation of PCA over pristine and Ag-modified
ZnO films in distilled and drinking water under ultraviolet and direct sunlight is evaluated
for the first time. It is found that under UV and natural sunlight in both types of water, the
modified ZnO catalysts with various concentrations of silver ions demonstrate increased
drug mineralization capabilities compared to pure ZnO. Finally, the possible photocatalytic
mechanism of PCA degradation over Ag-modified ZnO films is discussed.

2. Materials and Methods
2.1. Materials

Zinc oxide commercial powder (>99.0%), polyethyleneglycol 4000 (PEG 4000), ethanol
(CoH50H, >99.0%) and silver nitrate (AgNO3) were received from Fluka (Buchs, Switzer-
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land). Glass slide substrates (ca. 76 mm x 26 mm) were delivered from ISO-LAB (Schweit-
enkirchen, Germany).

For the photocatalytic tests, the commercially available medication paracetamol
(Amax = 243 nm, 99.0%) from Teva was selected as a model contaminant.

Distilled and drinking waters were utilized in the photocatalytic experiments to
demonstrate the degradation of paracetamol in the presence of various impurities as they
occur in natural water systems. The drinking water in Sofia (Bulgaria) has a low content
of dissolved salts, which makes it suitable for everyday use and useful for the normal
functioning of cells in the body. The ‘Beli Iskar” and ‘Iskar’ dams are where drinking water
is mainly obtained from mountain water sources in Rila, which are over 2500 m above
sea level. The mean value of the indicator “Total hardness” in the water supply system of
the city of Sofia is <0.75 mgeq/L, which categorizes it as “freshwater”. According to the
requirements of the European legislation, the water from the “Beli Iskar” dam, regardless
of the fact that it is mountainous and naturally clean, is also subject to purification and
already passes through the purification station. For the destruction of microorganisms and
dissolved organic substances, a disinfection process is carried out. Table 1 shows the major
water quality indicators for Sofia.

Table 1. Characteristics of Sofia drinking water used in photocatalytic experiments.

pH

Na*, mg/L

Ca?t, mg/L Mn?*, nug/L Fe?*, ug/L Cl—, mg/L SO4%2~, mg/L  NO;—, mg/L

7.39

<5.01

<10.74 <11 <123 <5 <11 <0.94

2.2. Synthesis of ZnO and Ag/ZnO Powder Films

The method which was employed for the powder catalysts that were manufactured
is simple, affordable, well controlled and guarantees minimal energy use. First, 50 mL
of ethanol was used as a solvent to dissolve 7 g of PEG 4000, a stabilizer. Magnetic
stirring was used to stir the solution at 70 °C for 30 min, after which a clear-color solution
was obtained. Commercial ZnO powder (7 g) was dissolved in 60 mL of ethanol over a
15 min period at room temperature. The resulting dispersion was combined with the PEG
4000 solution, which was then stirred for another 15 min and sonicated (15 kHz) for 30 min.
The as-prepared white suspension was used to fabricate ZnO films.

The substrates for the pure and modified zinc oxide films were glass slides. They
were cleaned with acetone and distilled water and dried for a while in the oven. After
thoroughly reaching room temperature, the slides were rinsed with water and dried in the
air. Using the dip-coating method, the glasses were submerged in the ZnO suspension at
room temperature. Five coatings were used to fabricate four different types of films. After
each layer, the samples were dried at 100 °C for 10 min. Finally, they were then annealed
at 500 °C for 1 h in order to burn the organic material. After the production of ZnO films,
the mass increase was 36.4 mg (8%). About 30 cm? of the surface of the glass substrates
was covered.

Chemical photodeposition was used to create silver co-catalytically modified ZnO
films. After being immersed in aqueous silver nitrate solution for 20 min, the Ag/ZnO
films were photo-fixed (irradiated) with UV illumination and then washed with water. The
modified films were dried at 100 °C for 10 min to remove nitrate ions. In our previous
research, we successfully used the chemical photodeposition technique to photo-fix sol-gel
films with silver ions and degrade organic dyes [35,36]. Experimental, structural and
optical data demonstrated that the modified zinc oxide film (Ag 10~2/ZnO) has superior
properties to pure zinc oxide. This allowed us to create and investigate the photocatalytic
properties of two more additional films prepared with 1073 M and 10~* M AgNO; solutions
(Ag 1073/Zn0O and Ag 10~*/Zn0O).
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2.3. Material Characterization

X-ray powder diffraction (XRD) analysis of pure and Ag/ZnO powder films was
performed by an X-ray diffractometer (Siemens D500 with CuK« radiation, Karlsruhe,
Germany) to examine the crystalline structure. The results were reported with counting
time 2 s/step and over the angular range 20-80° at steps of 0.05° 26.

The shape and morphology of the powder samples were studied using scanning
electron microscopy (SEM, Hitachi TM4000, accelerating voltage 15 kV, Krefeld, Germany).
The elemental composition was stated by energy-dispersive X-ray spectroscopy (EDX)
using Bruker AXS detector (Microanalysis GmbH, Berlin, Germany). X-ray photoelectron
spectroscopy (XPS) analysis was used to determine the binding energy and the oxidation
state of the nanostructures using ESCALAB MKII (VG Scientific, Manchester, UK) electron
spectrometer with a base pressure in the analysis chamber of 5 x 10719 mbar, equipped
with twin anode (MgKa/AlK«). The optic and photocatalytic properties of ZnO and
Ag/7Zn0O films were characterized by ultraviolet—visible spectrophotometer (Evolution
300 Thermo Scientific (Madison, WI, USA).

Room-temperature photoluminescence (PL) of the samples was analyzed by using
Varian Cary Eclipse spectrofluorimeter (Harbor, CA, USA) with an excitation wavelength
of 325 nm.

2.4. Photocatalytic Test

The photocatalytic efficiency of nanostructures was estimated by measuring the degra-
dation of paracetamol in distilled and drinking water. The standard main solution was
made by dissolving 0.5 g of the drug in 0.5 1 water. This solution was diluted to obtain
working solutions with 50 ppm. Photocatalytic experiments were conducted with a pho-
toreactor (200 mL volume) consisting of a magnetic stirrer (rotating speed controlled by
stroboscope, 500 rpm) and an ultraviolet lamp (36 W, 315400 nm emission range). All
catalytic tests in the presence of UV illumination were conducted at room temperature
(23 £2°Q).

For natural sunlight illumination, all experiments were performed in a similar photore-
actor. The reactor was placed under direct sunlight irradiation for 4 h between 10:00 a.m.
and 2:00 p.m. on sunny days of August 2023 in Sofia, Bulgaria. The reaction was performed
at atmospheric conditions under constant stirring. The temperature was 34 & 2 °C. Aliquot
samples were taken at a certain time interval at all photocatalytic tests. In this way, the
concentration of the drug was monitored using UV-vis spectrophotometer (Figure 1).

UV illumination Natural sunlight

PCA, 50 ppm, 150 mL

Catalyst
— ¥
[]
— -
Heterogeneous Photocatalysis UV-vis spectroscopy

Figure 1. Heterogeneous photocatalysis involving a photoreactor and UV-vis absorption spec-
troscopy.
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The percentage PCA degradation (D, %) was calculated using Equation (1).

Cp—-C

c. M

Paracetamol Degradation = 100 x
where Cj is the initial drug concentration, C is the drug concentration in the reactor after
illumination.

3. Results and Discussion
3.1. Physicochemical Characterization of the Nanostructure Materials

Different diffraction peaks at 260 = 31.94°, 34.67°, 36.51°, 48.23°, 56.84°, 63.22°, 67.53°
and 68.18° are depicted in the diffraction pattern (Figure 2) of pure ZnO and Ag 10-2/ZnO
powder films. These peaks correspond to the lattice plane orientations of each peak with
hkl of (100), (002), (101), (102), (110), (103), (112) and (201), which are indexed to zinc
oxide hexagonal wurtzite structure [37]. The peak positions are in good agreement with
JCPDS card no. 96-230-0117. The powder films’ diffraction peaks demonstrate a crystalline
structure that is free of impurities or phase modifications. The strong and sharp peaks in
the XRD patterns of both pure ZnO and Ag 10-2/ZnO samples indicate a high degree of
crystallinity [38]. In addition, the diffraction pattern of Ag/ZnO (co-catalytically modified
zinc oxide at the highest Ag* concentration of 10~2M) shows additional small peaks. The
crystal planes of metallic Ag with JCPDS card no. 96-901-3048 can be found at 26 = 38.46°,
45.86° and 64.72°, with diffraction peaks (111), (200) and (220) at 20 = 38.46°, 45.86° and
64.72°. The XRD patterns of pure ZnO and Ag 10~2/ZnO-modified films have no noticeable
differences due to the low concentration of silver ions.

1000
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800 |

(002)

600 |
i Zn0O

110

400
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{103)

Intensity, a.u

200

>
e
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=]
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(220)

0 11 | I IR T '] /1
30 40 50 60 70

2 O, degree
Figure 2. X-ray diffraction spectra of ZnO and Ag 1072/Zn0O films.

The Debye—-Scherrer equation (Equation (2)) is employed to determine the crystallite
size of both pure and modified films using the Bragg equation to determine the interpolation
distance and crystallite length dimensions.

_09A
Pk ™ 8 cos0

@

where Dy is the average crystallite size (nm), A is the X-ray wavelength of CuK« radiation
(A = 0.154056 nm), B is the full width at half maxima and 8 is the Bragg’s diffraction angle.

The introduction of Ag* ions in ZnO has no significant effect on crystallite size.
The average size of crystallites decreases slightly, with d(ZnO) being 52.6 nm and d(Ag
1072/Zn0O) being 47.2 nm. The parameters of the crystalline lattice of the pure and
co-catalytically modified films are very close (ZnO: a=b=3.2524 A, ¢ = 52124 A, Ag
1072/Zn0: a=b =3.2518 A, c = 5.2105 A), confirming that the nanostructured materials
possess a wurtzite hexagonal structure [39]. Furthermore, the c-axis lattice parameter is
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used to determine the microstrain of the films. The calculation shows a positive value that
indicates tensile strain. Compared to pure ZnO (0.8 x 1073 a.u.), the microstrain in Ag
1072/ZnO films (0.7 x 1072 a.u.) has a slight magnitude of tensile strain.

Scanning electron microscopy measurements show that the surface of the ZnO and
Ag 1072/ZnO film presents a homogeneous morphology with particles of different sizes
(Figure 3a,b). This is due to the inevitable agglomeration caused by the high temperature
(500 °C) during preparation of the films. The fine granular structure of the film surface
is revealed by higher-magnification images (see the inserts of Figure 3a,b). The silver
co-catalytic modification does not significantly alter the morphology of the initial ZnO films
(Figure 3b). As can be seen, the modification ions result in a small decrease in the crystal
size, which is in line with the X-ray diffraction analysis. Figure 3c depicts a cross-section of
the ZnO film, which also contains fine granules in the interior. The thickness of the films
obtained after five coatings is 4 um. After modification with silver ions, the powder film’s
thickness remains unchanged.

Glass slide

Figure 3. Surface morphology of (a) pure and (b) silver (10~2 M) co-catalytically modified ZnO
nanostructures. Cross-section of the ZnO film (c). The inserts of (a,b) show higher-magnification images.

Energy-dispersive X-ray spectroscopy is utilized to estimate the presence of Zn, O and
Ag chemical elements (Figure 4) in the co-catalytically modified ZnO film with the greatest
(1072 M) silver content.

The spectrum shows peaks with different strengths that correspond to the atoms of
zinc, oxygen and silver. The weight percentage of Ag equals to 2.93 wt%. The absence
of impurity peaks (other metal ions) in the EDS spectrum demonstrates the cleanliness
of the powder films that are produced. This result demonstrates that high-purity Ag
co-catalytically modified ZnO material photo-fixed under UV illumination could be suc-
cessfully produced.

Figure 5a compares the full survey spectra of the ZnO and Ag 10~2/ZnO films, reveal-
ing the presence of Zn, O and adventitious carbon. The high-resolution Zn2p spectra of
the samples are practically identical. Figure 5b shows two characteristic peaks positioned
at 1021.2 eV and 1044.4 eV corresponding to the core levels of Zn 2p3,, and Zn 2p1 /,, re-
spectively. These values are in agreement with those reported for pure ZnO [40]. Figure 5¢
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shows the details of the O 1s peaks deconvoluted using Gaussian lineshapes. Each peak
is deconvoluted into three components at 530.7 eV (Oy), 532.6 eV (Oyy) and 534.1eV (Opy),
corresponding to O?>~ ions in ZnO, oxygen vacancies and/or OH groups and physisorbed
water molecules [41]. As seen, the components for both films show equal intensity propor-
tions. This result suggests that the oxygen environment for ZnO and Ag 10~2/ZnO films is
very similar. Interestingly, the HR scan in the 360-380 eV BE range for Ag 1072/ZnO film
(Figure 5d) detects two weak signals at 368.2 eV and 374.8 eV. These peaks can be attributed
to the Ag 3ds5/, and Ag 3d3,,, supporting the presence of metallic Ag [42]. Contrary to this,
XPS examination of ZnO film does not show the existence of Ag.

cps/eV
1.4
b 0
- Elecr)nent wt%
1.0

Zn
0.8 Ag

Figure 4. Energy-dispersive X-ray spectroscopy of silver (1072 M) co-catalytically modified zinc

oxide powder film.

(a) (b)
Zn2p,,
o
(+]
c
r~
o=
63
3 E 3
% %- Ag 10-%Zn0
5 Ag 10-2Zn0O g
E E
Zn0
T T T T T T T T
1000 800 600 400 200 0 1050 1040 1030 1020 1010
Binding energy, eV Binding energy, eV
(d)
Agad,,
g ag10uzno | 3 Agid,,
s £
@ @
5 g
= £ Ag 10-2Zn0
Zno0
537 53‘4 5:‘!1 52"8 6§25 380 37‘5 3}"0 3;55 360
Binding energy, eV Binding energy, eV

Figure 5. (a) XPS survey spectra, (b) Zn2p, (c) O 1s and (d) Ag 3d core-level spectra of the ZnO and
Ag 10~2/ZnO films.

UV-vis absorbance spectroscopy is used to calculate the band gap energy (Eg) of pure
and co-catalytically modified ZnO films (Figure 6a). The spectra show the presence of a
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band edge in the ultraviolet region (Amaxag 1072 /7zn0 = 365 nm and Apaxzno = 362), which
is consistent with zinc oxide’s properties [43]. This is explained by the zinc oxide being
photoexcited from the lower valence band to the higher conduction band. Additionally,
the reaction between the noble metal and semiconductor is assumed to be responsible for
the shifting of absorbance peaks to higher wavelengths [44,45]. Using data from UV-vis
spectroscopy, the band gap energy (Eg) is computed (Figure 6b).

4.0 160
5 —7Zn0 ZnO
T30 120 ||— Ag/iZnO
2 —Ag/Zn0O
[ ?A
= = L -
5 20 Amax zno = 362nm 3 80 Egzno=3.25 eV
i Amax Ag/izno = 365nm I EgAg/z,,o =3.23 eV
1.0 40
| (a) (b)
00 1 1 1 0 1 ) ( '
350 400 450 500 550 3 3.1 32 33 34 35
Wavelength, nm Eg,eV

Figure 6. (a) UV-vis absorption spectra and (b) Tauc plots of ZnO and Ag 10~2/ZnO powder films.

The Tauc equation (Equation (3)) yields the band gap energy values.
(ahv)? = A(hv — Eg) &)

where o is the absorption coefficient, h is the Planck’s constant, v is the photon frequency, A
is the constant and Eg is the energy band gap. The Eg values are calculated by extrapolating
a straight line to the x-axis from plots of (ahv)? versus hv. Figure 6 illustrates the values
obtained from the Tauc extrapolation vs. the energy band gap of the films and demonstrates
the alteration in the absorption edge that is attributed to the presence of Ag* in the ZnO [46].
As demonstrated in Figure 6b, pure ZnO has a band gap energy of 3.25 eV, while silver
co-catalytically modified films have a lower Eg of 3.23 eV (Ag 10~2/Zn0). Since they can
trap more electrons, the silver co-catalytically modified ZnO films made with the aid of UV
light (Ag 1072 /Zn0) are anticipated to be more effective in the oxidation and reduction
reactions that take place on the catalyst.

Figure 7 compares the PL spectra of ZnO and Ag 10~2/ZnO films. The lineshapes
of the spectra are very similar. Both samples possess UV PL below 400 nm, ascribed to
the intrinsic near-band edge (NBE) emission of ZnO [47]. Visible emission bands in ZnO
are usually assigned to the defect-related recombinations, such as zinc vacancy (Vz,), zinc
interstitial (Zn;), oxygen vacancy (Vo) or interstitial oxygen (O;) [48]. The violet emission
located at 423 nm for ZnO and Ag 10~2/Zn0 is related to the recombination of an electron
in the defect state of Zni with a hole in the valence band [48]. The presence of a blue band at
444 nm is caused by transitions between the extended Zni levels (singly or doubly ionized
Zn;) and the valence band [49]. Notably, the intensity of ZnO PL features decreases after
introducing Ag. This result indicates the inhibition of photogenerated electron-hole pair
recombination in the Ag 1072/ZnO film.

3.2. Effect of Ag* Concentration and Type of Water

Initially, we investigate the photocatalytic properties only of zinc oxide modified with
silver ions at a concentration of 10-2 M. The experimental results show that the silver-
modified sample has higher activity compared to the pure semiconductor. Furthermore,
the photocatalytic characteristics of two additional films (Ag 10~3/ZnO and Ag 10~*/ZnO)
are also studied. Adsorption tests conducted in complete darkness show that 5% of the
analgesic is adsorbed before being exposed to light radiation. The pseudo-first-order
kinetics of contaminant removal is confirmed by the logarithmic plots of paracetamol
concentration versus irradiation time, and the rate constants (k) are shown in Figure 8a,b. It
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is found that the mean time, during the co-catalyst fixation process, and the photocatalytic
properties for Ag-modified films rise proportionally with the Ag* ions concentration. This
is supported by the fact that the rate constant, k, increases as the concentration of silver ions
increases from 10~* to 1072 M in both cases (paracetamol in drinking water and distilled
water). Since UV light can excite electrons in the catalyst and oxidize the organic pollutant,
higher values of the rate constants indicate faster PCA degradation. This finding may also
be explained by a decrease in the rate of recombination of the formed charge pairs (e~ /h")
and a narrowing of the band gap width in the samples with Ag.

Zn0

Ag 102Zn0O
=]
L1
2
o
=
a
£
o |
o

T T T T T T "
360 420 480 540 600

Wavelenght, nm

Figure 7. Room temperature PL spectra of ZnO and Ag 10~2/ZnO powder films.
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Figure 8. Kinetics of removal of paracetamol in distilled (a) and drinking (b) water; the percent
degradation (c) of the drug under UV illumination.
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When UV or sunlight is absorbed by ZnO, electrons in the valence band (VB) are excited
to move into the conduction band (CB). The rate of photocatalysis is decreased by the recom-
bination of e~ /h* charge carriers. The ability of Ag to trap electrons may help to explain the
beneficial effect of co-catalytic modification with silver ions on ZnO efficiency for paracetamol
photodegradation. The freshly formed Fermi level of Ag/ZnO is lower than the energy of the
bottom of the CB (Fermi level of Ag 0.99 eV vs. NHE) [50], and the transfer of photogenerated
e~ from the CB into Ag is possible. The drug could be broken down by the highly reactive
species (superoxide anion) produced when oxygen molecules interact with the electrons in Ag.
According to Ramasamy et al. [51], the electron transfer to the silver ion cannot be effectively
competed with by oxygen-scavenging electrons at the surface of excited semiconductor particles.
As a result, the formation of O,°*~ is decreased because the electron transfer to the silver ion is
quicker than the electron transfer to the oxygen molecule. However, the loading of Ag metals on
the ZnO surface in the silver co-catalytically modified semiconductor can hasten the transport
of photogenerated electrons to the outer systems. Deposits of metal become partially negatively
charged as a result of electron transfer. By accelerating the transfer of electrons to dissolved
oxygen molecules, the deposits of silver ions on the surface increase photoactivity. As a result,
oxygen reduction leads to the formation of the superoxide anion radical through the transfer of
trapped electrons from Ag metal to oxygen. Furthermore, the holes in VB of ZnO interact with
water molecules to create hydroxyl radicals, which also break down the organic molecules. A
schematic of the proposed photocatalytic mechanism of Ag—ZnO film is presented in Scheme 1.

eee ea(ﬁ.oz
\ i '

products

h+ h* h* h*
Zn0

Scheme 1. Photocatalytic mechanism of Ag—ZnO film for photocatalytic degradation of paracetamol
under light illumination.

The following Equations from (4) to (8) describe the electron-hole reaction in the
Ag/ZnO nanostructure, which breaks down organic pollutants such as drugs.

Ag/ZnO+hv — e +h™ 4)

e +0, =05 ®)

h* +H,0 - H" + OH (6)

h* +OH™ — OH’ @)

PCA + O, /OH' — degradation products ®)

By restricting e~ /h* recombination by charge separation and favoring interfacial
charge transfer between ZnO and Ag, the co-catalytic modification of zinc oxide with silver
ions enhances the semiconductor’s photocatalytic properties.

Figure 8c illustrates the percentage of pharmaceutical removal using four different
catalysts, supporting the accuracy of the rate constants. The Ag 1072/ZnO film displays
the highest activity after being exposed to UV light for 4 h in both drinking and distilled
water. The pure and Ag-modified nanostructure films exhibit a lower degradation rate
of paracetamol in distilled water in comparison with in drinking water. This observation
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can be attributed to the variations of pH values. It is well known that pH regulates the
photocatalytic process. The pH levels of drinking water and distilled water are different
from one another, albeit only by a little (pHgjstizied = 6-8 and pHgrinking = 7.39). Ramasamy
et al. [51] studied the impact of pH on the breakdown of paracetamol in greater detail.
They discovered that as the pH rose from 4 to 8.5, the rate of drug degradation accelerated.
Electrostatic forces between the contaminants and the catalyst can account for this. The
catalyst surface is negatively charged at pH levels higher than the point of zero charge and
vice versa. According to published research, the pH point of Ag/ZnO at zero charge has
the same value as ZnO, which is 9.0 [52]. Paracetamol has an acid ionization constant of 9.5.
Therefore, a rise in pH above 9 gradually accelerates the electrostatic attraction between
the Ag/Zn0O surface and contaminants, which has a negative impact on mineralization
and lowers the rate constant. At pH = 7.39 (drinking water), paracetamol’s maximum
rate constant of 0.2361 h~! is seen, and, as pH falls even by a little, the rate constant (k)
decreases to 0.1803 h~!. Our results are in accord with previous studies [53].

3.3. Effect of Type Light lllumination—Ultraviolet and Natural Sunlight

In the presence of a suitable photocatalyst, sunlight, an abundant natural source
of energy, can be used in the photocatalytic treatment of drugs, improving the process’
economic viability [54]. Under ultraviolet light, the synthesized Ag/ZnO nanostructure
films are discovered to be photocatalytically active, and sunlight is used to test their
applicability in photocatalysis. Figure 9 shows that drug removal can also occur when
sunlight is present. The graph of —Ln(C/Co) vs. time also shows that Ag/ZnO prepared
at 1072 M silver ion concentration has the highest photocatalytic efficiency in both types of
waters, while the other samples exhibit a decline in efficiency. The rate constant comparison
between pure and modified films containing Ag(lO_4 M), Ag(10_3 M) and Ag(lO_2 M) is
provided in Figure 9a,b. The same tendency is seen here as well, namely, that paracetamol
in drinking water breaks down more quickly than in distilled water. The impact of the
type of irradiation is another effect that we are able to estimate in this work—62% of the
paracetamol in drinking water can be degraded using UV illumination, and around 83% is
degraded in 240 min under natural sunlight irradiation in the presence of the Ag 1072/ZnO
powder films (Figures 8c and 9¢). This demonstrates that the Ag/ZnO films exhibit good
photocatalytic activity under natural sunlight and ultraviolet light. The addition of silver
ions to ZnO improves the catalyst’s ability to block the recombination of electron-hole
pairs and expands the range of solar spectrum wavelengths that can be absorbed by the
catalyst, improving the activity of the nanostructures in drug degradation by sunlight.
Under sunlight, the nanocomposites that exhibit light absorption across the entire spectrum
exhibit strong photocatalytic activity. We assume that the co-catalyst experiences additional
excitation from natural sunlight causing activation of the ZnO surface active centers. This
hypothetical reason can be used to explain why pure and silver co-catalytically modified
zinc oxide exhibits higher activity in the presence of natural sunlight. For more information
and a clearer understanding of this claim, more research will be required in the future.

3.4. Effect of Recycle Times of Pure and Ag Co-Catalytically Modified ZnO Powder Films on the
Photocatalytic Degradation of Paracetamol

A green technology known as heterogeneous photocatalysis typically has no issues
with waste disposal. Therefore, it is essential to maintain high catalytic activity throughout
each usage cycle. The regeneration and reuse of ZnO and Ag 10~2/ZnO films are inves-
tigated, and the outcome is presented in Figure 10. It is clear that after each cycle, the
nanostructures’ photocatalytic activity slightly declines. The photocatalytic degradation of
the drug is reduced by about 2-3% after three cycles for both types of catalysts. The results
confirm that Ag (10~2 M) co-catalytically modified film remains highly photocatalytically
active after three cyclical experiments, and, furthermore, the SEM image (Figure 10e) of
the film after these measurements reveals that the integrity and surface morphology of the
starting material are retained.
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Finally, Figure 11 displays UV-vis spectra of paracetamol degradation in the presence
of an Ag 1072/ZnO photocatalyst, as obtained under natural sunlight and UV light in
drinking and distilled water. As previously reported [55], the spectrum of paracetamol
shows bands at 194 and 243 nm due to the 7 — 7t* and to the n — 7* electronic transitions
of the aromatic ring and the C=0O group, respectively [55]. As can be seen, these bands
gradually decline with irradiation time, indicating the efficient photocatalytic reactions. Ac-
cording to the literature, photocatalytic degradation of paracetamol leads to the formation
of non-toxic carboxylic acids as final products of the process. Since no additional bands
appear in the spectra after the photocatalytic reactions, one may conclude that the presence
of toxic by-products in the final solutions can be ruled out.
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Figure 11. Absorbance spectra of the degradation of paracetamol under natural sunlight (drug in
drinking (a) and distilled (b) water) and ultraviolet (drug in drinking (c) and distilled (d) water)
illumination using Ag 10~2/Zn0O powder film.

4. Conclusions

ZnO powder films were produced through a process that is economical, environ-
mentally friendly and green. Namely, ZnO nanostructures were modified with different
concentrations of silver ions (10_2, 1073 and 104 M) via photo-fixation with ultraviolet
(UV) illumination. It was found that the surface morphology of the initial and Ag-modified
films was homogeneous and uniform. The pseudo-first-order kinetic model accurately
depicted the photocatalytic degradation of paracetamol. According to the photocatalytic
results, adding silver ions to ZnO improves the ability of paracetamol to break down in
distilled and drinking water under ultraviolet and direct sunlight irradiation. The im-
provement of the oxidizing power of ZnO is due to electron transfer from its conduction
band to Ag and the inhibition of photogenerated electron-hole pair recombination. Under
sunlight exposure, the Ag 1072/ZnO films achieved the highest degradation percentages
for paracetamol in both distilled and drinking waters (Dgjstiled = 82.867%, Dgrinking = 84.1%).
Under UV exposure, the degradation percentages were slightly lower but still higher than
those achieved by pure zinc oxide (Dyistitled = 54-7%, Darinking = 63.87%). The enhanced
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photocatalytic efficiency, excellent photostability and positive impact of silver ions make
this system an attractive option for the degradation of pharmaceutical drugs, contributing
to the advancement of eco-friendly and efficient wastewater treatment technologies.
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