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Abstract: The culture growth and carotenogenic activity of two Greek Dunaliella salina strains
(AthU-Al D30 and AthU-Al D31) under stress conditions are investigated herein, with emphasis on
β-carotene production as well as on lutein and zeaxanthin. In particular, the strains were cultivated
in “standard” conditions (60 ‰ salinity and 1.18 M of NaNO3), under salinity stress conditions
(160 ‰ salinity and 1.18 M of NaNO3) and under nitrogen deprivation conditions (60 ‰ salinity
and 0 M of NaNO3). In addition to the two Greek strains, the D. salina CCAP 19/18 strain, which
has been extensively studied regarding carotenogenesis, is included in this study as a reference. All
three strains were found to produce increased amounts of β-carotene when cultivated under nitrogen
deprivation conditions, while the AthU-Al D31 strain also produced high amounts of carotenoids
under salt stress. The HPLC carotenoid profiles of the strains revealed reduced production of lutein
in nitrogen deprivation conditions, coupled with a high production of β-carotene. The strains exhib-
ited various responses in terms of carotenogenic activity, indicating an intraspecific variation in the
metabolic reactions related to carotenogenesis.

Keywords: microalgae; β-carotene; lutein; Dunaliella salina; salinity stress; nitrogen deprivation;
local strains

1. Introduction

The technological and commercial exploitation of microalgal biomass for produc-
tion of secondary metabolites and high-value products has been explored for more than
50 years [1,2]. A variety of compounds are commercially produced from microalgae [3];
these products include essential nutritional fatty acids such as docosahexaenoic acid (DHA)
and eicosapentahexaenoic acid (EPA) [4], as well as high-value carotenoids such as as-
taxanthin and β-carotene [5,6]. The unicellular flagellate microalgal genus Dunaliella
(Chlorophyceae), first described by Teodoresco [7], has been largely investigated with
regards to its carotenoid content and the ability of some of its representatives to produce
high amounts of β-carotene under the influence of certain environmental conditions [8–10].

Dunaliella is one of the most widespread eukaryotic genera of phytoplankton in marine
environments, with a prominent presence in hypersaline habitats [11,12]. Dunaliella cells
are motile and may appear green and/or orange and from ovoid to pyriform (9 to 15 µm),
characterised by the lack of a rigid cell wall [13]. This genus encompasses a variety of
marine, halotolerant and halophilic species, growing in a variety of habitats, with one of
the most prominent species being D. salina; the latter occurs in extremely variable salinities,
from ~ 50 ‰ to saturation, often often exhibiting an optimum growth rate when cultivated
in 200–250 ‰, exhibiting a remarkable capacity for environmental adaptation [8,11,13]. In
order to survive in such extreme environments, cells of certain Dunaliella species synthesise
high concentrations of β-carotene and glycerol as means of protection against intense light
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and osmotic pressure [14,15]. In marine environments, Dunaliella cells usually appear
green; however, when grown under “stress” conditions (sensu Larcher [16]), they may
turn orange–red due to accumulation of carotenoids within the chloroplast [17]. Excessive
production of β-carotene in Dunaliella has been shown to result from a variety of stress
factors that disrupt the balance of the cell, including increased light intensity [18,19], as
well as factors related to growth rate reduction, such as high salinity, extreme pH values
and nutrient deprivation [8,11,20].

It has been suggested that one of the possible roles of carotenogenesis in Dunaliella
is cell protection against oxidative stress [21–23]. Oxidative stress in marine plants has
been directly linked with varying environmental conditions such as salinity increase and
nutrient limitation [24,25]. Those conditions have been linked to increased production
of β-carotene, which has been shown to be a potent antioxidant [26,27] Carotenogenic
strains of Dunaliella are regarded as an alternative and more sustainable natural source of
β-carotene, and recent research has focused on innovative approaches for industrial-scale
cultivation of such strains such as algal biorefineries [28,29]. Furthermore, there is an
increasing demand for natural food additives and colourants [30]. Hence, identification
of highly productive isolates of Dunaliella is of great importance [31,32], and a significant
number of scientific reports have focused on the search for local carotenogenic strains of
Dunaliella worldwide [33–36].

The aim of the present study was to investigate two Dunaliella salina strains, isolated
from coastal areas of Greece, through means of a preliminary evaluation of different
cultivation conditions on carotenogenesis, with emphasis on production of β-carotene.

2. Materials and Methods
2.1. Sample Collection and Strain Isolation

The studied strains were isolated from the ‘Megalon Emvolon’ salt marsh in North-
ern Greece. This salt marsh, located close to the city of Thessaloniki (40◦29′ N 22◦50′ E),
belongs to the wider Angelochori lagoon system, which is a protected area within the
Natura 2000 framework. The salt marsh area extends to 700 × 103 m2 and includes salt
pans that have been active for more than 110 years. Sampling took place during the period
between late winter and midspring of 2000. Water samples of high salinity (60–140‰)
were collected and transferred to the laboratory in sterile isothermal containers and sub-
sequently cultured in sterilised modified saltwater of adjusted salinity (according to that
of the original samples), enriched with Walne’s medium [37,38] (see Supplement S1), for
development of natural multialgal blooms. Salinity was adjusted using analytical-grade
NaCl salt (Sigma-Aldrich, St. Louis, MO, USA). The resulting blooms were observed
under a light microscope for strain selection. Single-strain isolation was carried out using
the micropipette technique [39] on droplets of all blooms and under a light microscope
(×100 magnification). Single cells were obtained using capillary action with a sterile glass
pipette. The cells were placed in droplets of sterile salt water with adjusted salinity and
were subsequently cultivated in conditions that corresponded to sampling-site conditions.
Following acclimation to the lab-culture conditions, the obtained nonaxenic single-strain
cultures were submitted to the AthU-Al (Athens University Algae) Strain Bank (in the
Section of Ecology and Systematics, Department of Biology, National and Kapodistrian
University of Athens, under the supervision of Prof. Athena Economou-Amilli). This
collection is preserved in a closed culture chamber (21–23 ◦C temperature, light inten-
sity of 25–42 µmole photons m−2·s−1, 12 h/12 h day/night period, relative humidity of
approximately 35%).

The strains included in the present study are two Greek strains isolated from ‘Mega-
lon Emvolon’, namely AthU-Al D30 and AthU-Al D31, henceforth referred to as D30
and D31, respectively. Both strains were identified as representatives of the species
D. salina (Figure 1) using classic taxonomy methods, biochemical criteria and molecu-
lar data [40]. The D. salina 19/18 CCAP strain (purchased from the Culture Collection
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of Algae and Protozoa, United Kingdom)—a typical model system regarding carotenoid
production [10,29,41]—was also included.
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2.2. Experimental Design

Strain selection was conducted through a series of screening experiments; during these
experiments, the strains were cultivated in 11 different NaCl concentrations (40–240‰,
with 20‰ intervals), and measurements of cell density, dry biomass, β-carotene content
and productivity were performed. A NaCl concentration of 160‰ was selected for the
induction of salinity stress in these strains; when cultivated in the NaCl concentration of
160‰, all strains used in this study demonstrated elevated β-carotene productivity, while
culture viability was not greatly affected (in higher salinities, cell viability was challenged,
resulting in reduced biomass and β-carotene productivity). Furthermore, a number of other
studies indicate this salinity level to be ideal for induction of salinity stress in D. salina
strains [9,42,43].

Experiments were performed using aerated liquid cultures. Cultures of all strains
were gradually scaled up from 50 mL to 2 L of rigorously aerated, autoclaved artificial salt
water of adjusted salinity (Tropic Marin® PRO-REEF formula), enriched with a variation
of Walne’s medium nutrient solution, in Erlenmeyer flasks. Artificial illumination was
provided through cool-daylight fluorescent lamps at 150–200 µmol photons m−2·s−1,
12:12 h L/D, while temperature was kept constant at 22 ± 1 ◦C. All inocula came from the
exponential/post-exponential phase (Day 3) of aerated cultures preserved in 60 ‰ salinity.
The inoculum cells were centrifuged and resuspended twice in a nitrogen-free culture
medium in order to remove any residual nitrogen. The strains were cultivated for 10 days
in glass Erlenmeyer flasks (culture volume of 2 L), in aerated (05-1 vvm flow rate, air
only)-batch culture conditions.

All strains were cultivated in three different conditions: (a) 60 ‰ salinity (preservation
salinity after acclimation in the lab) and 1.18 M of NaNO3 (100% nitrate content according
to Walne’s medium), (b) salinity stress conditions (160 ‰ salinity and 1.18 M of NaNO3)
and (c) nitrogen deprivation conditions (60 ‰ salinity and 0 M of NaNO3). In (c), the
culture medium recipe was modified to be identical to the original Walne’s medium recipe
but without the addition of NaNO3 (nitrogen source). Henceforth, (a) will be referred to
as “standard conditions”, as it corresponds to the preservation conditions of the strains in
the lab.

2.3. Analytical Procedures

Culture cell density (Nt, cells·mL−1) was measured daily under a Zeiss KF2 light
microscope (Carl Zeiss AG, Jena, Germany), using a Neubauer Improved Haemocytome-
ter (Marienfeld Superior, Colonia, Germany), to obtain each strain’s growth curve and
determine the maximum exponential growth rates (µmax = [ln(Nt/N0)]/∆t).

Photosynthetic pigments, i.e., chlorophyll-a (Chl a) and chlorophyll-b (Chl b) as well
as total carotenoids (TCs), were also measured daily with a spectrophotometer (ONDA
UV-21, Giorgio Bormac srI, Carpi, Italy). Samples of 12 mL were taken in triplicate for each
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culture and centrifuged at 3000 rpm for 10 min in a Sorvall Dupont Superspeed RC-2B
centrifuge (Thermo Fisher Scientific, Waltham, MA, USA), and after the supernatant was
discarded, the cell pellet was incubated in 5 mL of chilled 80% acetone in −18 ◦C overnight
before optical density (OD) measurements were made. The equations used to determine
final pigment concentration in the samples (expressed in µg/mL) were those proposed by
Borovkov et al. [44]:

Chl a = 11.75 × (A662) − 2.35 × (A645) (1)

Chl b = 18.61 × (A645) − 3.96 × (A662) (2)

TC = (1000 × A470 − 2.27 × Chl a − 81.4 × Chl b)/227 (3)

where A is absorbance.
Moreover, determination of the Chl a, Chl b and TC concentrations was also calculated

via equations initially proposed by Wellburn [45], expressed in µg/mL:

Chl a = 12.21 × (A663) − 2.81 × (A644) (4)

Chl b = 20.13 × (A646) − 5.03 × (A663) (6) (5)

TC = (1000 × A470 − 3.27 × Chl a − 104 × Chl b)/198 (6)

Additionally, a modified spectrophotometric method was applied in this study for
daily estimation of β-carotene production. Pigment extraction was carried out as described
before, and measurements were made at 443, 492 and 505 nm. This method was corrected
using three standard curves (one for each wavelength), which were constructed using pure,
analytical-grade β-carotene (Sigma-Aldrich, St. Louis, MO, USA). Solutions of known
concentration of pure analytical-grade β-carotene of were scanned in the whole UV-Vis
spectrum, and standard curves were run for the three wavelengths that presented the
highest absorption. Subsequently, a system of three equations and three factors was solved
in order to estimate the highest possible percentage of b-carotene in comparison with the
existing equations that used only one wavelength in the literature. This procedure resulted
in the development of Equation (7) for the spectrophotometric estimation of β-carotene
that was applied in the present study:

β-carotene (g/L) = 0.0017(A443) + 0.0054(A492) + 0.0031 (A505) (7)

On Day 10, the total biomass of all of the cultures was harvested via centrifugation in
1500 rpm, the liquid supernatant was discarded and the wet pellets were freeze-dried. The
freeze-dried biomass samples were extracted using 80% acetone in a solvent-to-solid ratio
of 10 mL/200 mg of dry biomass; the mixture was vigorously vortexed for 30 sec and left
overnight at 4 ◦C. After being vigorously vortexed for 15 s, the extracts were centrifuged
at 3500 rpm for 15 min. The supernatants were collected and filtered using syringe filters
with a pore size of 0.45 µm and a filter size of 25 mm, then stored in dark glass vials in
a refrigerator until the implementation of carotenoid analysis using HPLC and UV-Vis
spectrophotometric analysis.

Identification and quantification of individual carotenoids was based on their chro-
matographic behaviours in HPLC. Analysis was performed with an HPLC device (Shi-
madzu HP 1100 Series, Shimadzu, Columbia, USA) equipped with a diode array detector.
Carotenoid compounds were analysed with a YMC C30 (Germany) analytical column
(5 m, 250 × 4.6 mm I.D.). The solvents consisted of methanol, t-butylmethylether and 1%
aqueous phosphoric-acid solution, and the flow rate was 1 mL·min−1. The linear gradient
was as follows: 0 min, 15%; 15 min, 30%; 23 min, 80%; 27 min, 80%; 27.1 min, 15%; and
35 min, 15%. Concentration of 1% phosphoric acid solution was constant, at 4%. Detection
of carotenoids was accomplished using a diode array system at a wavelength of 458 nm.
β-carotene, lutein and zeaxanthin were identified via comparison to internal standards and
quantified with the use of a standard curve. Resolution of the detected carotenoids was
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made through creation of absorption spectra and comparison of λmax values with those
referred to in the literature [46].

All sample groups were tested statistically using a one-way ANOVA and a post hoc
Tukey’s HSD (honestly significant difference) test [47].

3. Results
3.1. Growth and Pigments in Daily Basis

Growth curves for all of the strains in the different culture conditions are shown in
Figure 2, while the respective µmax values are shown in Table 1. Daily measurements
were taken from Day 0 (inoculation day) to Day 10. All of the strains showed expected
growth development in standard conditions (Figure 2a), achieving maximum growth
rates (exponential phase) on Day 4 and maximum cell yields (cells per mL of culture) on
Days 8–9. The reference strain, CCAP 19/18, had the highest µmax in standard conditions
(0.513 d−1 ± 0.010), followed by D31 (0.390 d−1 ± 0.004) and D30 (0.255 d−1 ± 0.006). The
growth of the strains was significantly decreased under stress conditions (p < 0.05). When
cultivated under nitrogen deprivation (Figure 2b), all three strains reached maximum
growth on Day 1, with growth rates decreasing from then on; the D31 strain had the highest
µmax (0.288 d−1 ± 0.011). When cultivated under salt stress (Figure 2c), the CCAP 19/18
and D31 strains showed a clear lag phase in growth from Day 0 to Day 5, while the D30
strain showed no lag in growth; under salt stress conditions, all three strains showed the
lowest µmax values compared to the standard values.
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The chlorophyll ratio (Chl a/Chl b) of all of the strains is shown in Figure 3. This
ratio showed a clear decreasing tendency in all of the strains and conditions; however, the
decrease was much steeper in some cases. More specifically, the CCAP 19/18 and D30
strains showed a relatively smooth transition of their chlorophyll ratios to lower values
with time, in all conditions, with the standard conditions (Figure 3a) exhibiting lower
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chlorophyll ratio values. On the contrary, the D31 strain had the lowest values under both
of the stress conditions (salt stress and nitrogen deprivation, Figure 3b,c). The TC/Chl a
ratio is shown in Figure 4. All strains demonstrated a logistic increase in the TC/Chl a
ratio when cultivated under nitrogen deprivation conditions (Figure 4b). This indicates an
increase in carotenoid production coupled with a decrease in production of Chl a, as also
indicated by the Chl a/Chl b ratio (Figure 3). The maximum TC/Chl a ratios for all strains
were also achieved when they were cultivated in nitrogen deprivation conditions.

Table 1. Maximum growth rates (µmax) of the Dunaliella salina CCAP 19/18, AthU-Al D30 and
AthU-Al D31 strains in different culture conditions.

Strain µmax (d−1)

Standard Conditions Nitrogen Deprivation Salinity Shock

CCAP 19\18 0.513 a,b (0.010) 0.197 a,c (0.013) 0.165 a,b,c (0.007)
AthU-Al D30 0.255 a (0.006) 0.188 a,c (0.013) 0.162 a,b,c (0.017)
AthU-Al D31 0.390 b (0.004) 0.288 b (0.011) 0.112 a,b,c (0.025)

Note: Data: mean (STDEV, n = 3) a,b,c; statistically significant differences (p < 0.05).
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The daily fluctuation in β-carotene cell content (pg·cell−1) is shown in Figure 5. All of
the strains showed an initial decrease in β-carotene content within their cells when those
cells were actively growing (up to Day 2 after inoculation) and an increase when growth
was reduced. When cultivated under stress conditions, the β-carotene content of the cells
increased after the first few days of growth before stabilizing at high values when entering
the stationary phase. The increase was much greater in the case of nitrogen deprivation
(Figure 5b), reaching up to 6.94 pg·cell−1 and 10.16 pg·cell−1 for the CCAP 19/18 and D30
strains, respectively. In standard conditions, the D31 strain exhibited a very small increase
in β-carotene content after the initial decrease; however, the highest value was achieved
when the strain was cultivated under salt stress (13.1 pg·cell−1, Figure 5c).
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3.2. Carotenoid Content on a Dry Basis

In Figure 6, the % TC content of total biomasson a dry basis (db) is shown (p < 0.05). In
the CCAP 19/18 and D30 strains, the TC content increased when cultivated under nitrogen
deprivation conditions reaching up to 1.36% of the db (13.64 mg·g−1) and 2.43% of the
db (24.34 mg·g−1), respectively. The total carotenoids decreased when the two strains
were cultivated under salt stress with values under 1% of the db. On the contrary, the D31
strain—which had the highest TC values, while showing a carotenoid-content increase,
under nitrogen deprivation, reaching up to 2.22% of the db (22.16 mg·g−1)—also exhibited
increased TC content when cultivated under salt stress conditions, reaching up to 2.67% of
the db (26.65 mg·g−1).
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3.3. Carotenoids Composition

The carotenoid compositions of the strains were chromatographically determined on
Day 10 (Figures 7–9, Table 2, full chromatographic data available in Supplement S2). For
the quality characterisation of lutein, zeaxanthin and β-carotene, internal standards were
used. The rest of the carotenoids detected were categorised into seven groups (Car1-Car7)
based on the resemblance of their spectra. The carotenoids that were detected in all of the
strains were Car2, Car3 and Car7. Based on the literature, the spectra of these carotenoid
groups resemble those of β,γ-carotene, β-Apo-12’-carotenal and β-carotene di-epoxide,
respectively [46]. According to Table 2, lutein, zeaxanthin and β-carotene were detected in
all studied strains. In the CCAP 19/18 (Figure 7) strain, lutein was the major carotenoid in
standard conditions (36.84% of the TCs). When cultivated in nitrogen deprivation, there
was a major increase in β-carotene content (39.42%) along with a major decrease in lutein
(8.29%), while no zeaxanthin was detected. When cultivated under salt stress conditions,
lutein (24.29%) and β-carotene (27.87%) represented half of the TCs, along with a small
amount of zeaxanthin (4.31%). In D30 (Figure 8), β-carotene was increased under nitrogen
deprivation (45.55%) but was also one of the major carotenoids in standard conditions and
under salt stress (32.48% and 27.08%, respectively). Similarly to CCAP 19/18, lutein was
majorly decreased under nitrogen deprivation (3.86%) compared to in standard conditions
(15.10%); however, it was slightly increased under salt stress conditions (20.05%). In the D31
strain (Figure 9), β-carotene was majorly increased under nitrogen deprivation (32.49%)
and salt stress conditions (28.07%) compared to in standard conditions (11.48%), and lutein
decreased under nitrogen deprivation conditions (5.77%). Zeaxanthin represented a small
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percentage of the TCs in most cases (Table 2), while it was again absent in the nitrogen
deprivation of the CCAP 19/18 and D31 strains but detected in the D30 strain. In general,
nitrogen deprivation seemed to drastically affect the content of all previously mentioned
major carotenoids. Specifically, lutein and zeaxanthin content were lowered or absent under
nitrogen stress conditions, while β-carotene content was drastically increased. According
to our results, an increase in salinity favoured production of β-carotene in all of the strains.
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Lutein, zeaxanthin and β-carotene peaks are marked on the chromatographs.
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Table 2. Chromatographic features of the studied strains, regarding lutein, zeaxanthin and β-carotene
content, in different culture conditions.

Sample Carotenoids Ret. Time
(min) Area Height Area% Lamda Max

CCAP 19/18

Standard
Lutein 12.528 14821899 890778 36.844 444/472/267/205/332

Zeaxanthin 14.264 1826232 99707 4.54 450/477/204/275/663
β-carotene 23.972 4194955 497210 10.428 452/478/204/273/659

N-Stress
Lutein 12.475 2086890 127377 8.285 444/472/204/267/333

β-carotene 23.947 9928467 1031593 39.416 452/478/204/273/601

Salt Stress
Lutein 12.438 610784 36318 24.293 204/444/472/267/331

Zeaxanthin 14.158 108323 6245 4.308 204/450/478/659/225
β-carotene 23.926 700634 77453 27.867 204/451/478/270/659

AthuAl D30

Standard
Lutein 12.395 4238251 256546 15.098 444/472/204/267/333

Zeaxanthin 14.097 806390 46474 2.873 204/450/477/274/659
β-carotene 23.906 9118255 1036987 32.483 452/478/204/273/659

N-Stress
Lutein 12.384 1301617 79794 3.86 444/472/204/267/332

Zeaxanthin 14.08 439293 25564 1.303 204/450/476/274/630
β-carotene 23.912 15360003 1846875 45.55 452/478/204/273/659

Salt Stress
Lutein 12.394 579670 34787 20.048 204/444/472/267/335

Zeaxanthin 14.098 230176 13772 7.961 204/450/476/273/629
β-carotene 23.95 782976 87623 27.079 204/452/478/272/659

AthuAl D31

Standard
Lutein 12.457 8527333 519453 14.461 444/472/267/204/333

Zeaxanthin 14.173 2669667 152510 4.527 450/477/204/274/659
β-carotene 23.908 6770635 812780 11.482 452/478/204/273/659

N-Stress
Lutein 12.411 2735242 166483 5.774 444/472/204/267/333

β-carotene 23.896 15389583 1629503 32.485 451/478/204/273/630

Salt Stress
Lutein 12.393 13798884 850817 14.126 444/472/267/205/332

Zeaxanthin 14.105 7717916 441817 7.901 450/477/204/274/659
β-carotene 23.891 27417197 3572706 28.067 449/478/273/204/659

4. Discussion

Carotenoid content in Dunaliella is known to increase to up to 15% of its dry weight
under various stress conditions (high light, temperature, salinity and nitrogen limitation
being some of them), revealing a well-documented antioxidant function [33,48–50]. Ni-
trogen deprivation has been consistently correlated with high β-carotene productivities
in Dunaliella strains [8,10,51–53]. According to our results, limiting nitrogen could be
positively correlated with increased total carotenoids (TCs) and β-carotene content in
all three strains (Figures 4 and 5). Nitrogen depletion is one of the stress factors that
disrupt cell division and have been associated with the production of reactive oxygen
species (ROS) in microalgae, linking increased production of carotenoids to the cellular
response to oxidative stress [2,8,54,55]. Therefore, even though nitrogen deprivation en-
hances carotenogenesis in Dunaliella, if applied long-term, it can lead to a steep decline
in cell density as the cell death rate increases [10,56]. In the present study, cultivation of
the strains in nitrogen deprivation conditions yielded low cell densities compared to in
standard conditions (Figure 2), suggesting that the limitation of this nutrient hindered
culture productivity without, however, halting it; this is also supported by the low growth
rates previously observed when Dunaliella saline was cultivated under nitrogen limitation
by Pisal and Lele [57]. Additionally, low Chl a/Chl b and high TC/Chl a ratios, along
with an exponential daily increase in β-carotene cell content, support gradual limitation
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of photosynthetic activity and chlorophyll content in favour of carotenogenesis. This is
in accordance with previous research on Dunaliella cells grown under nitrogen limitation
conditions [57–59]. Phadwal and Singh [59] found that D. salina and another strain of
Dunaliella sp. showed an increase in cellular β-carotene content from 0.24 and 0.5 pg·cell−1

to 3.4 and 3.94 pg·cell−1, respectively, whereas Pisal and Lele [57] observed an increase from
2.3 pg·cell−1 to 6.4 pg·cell−1 in nitrogen limitation. However, that increase was followed
by a decrease in growth rate in both aforementioned cases.

In the present study, cultivation under salinity stress caused an increase in carotene con-
tent only in the D31 strain, while the total carotenoid and β-carotene content of the CCAP
19/18 and D30 strains remained lower than in the control conditions. Although high salinity
has been successfully used in enhancement of carotenogenic activity of Dunaliella [51–60],
there are cases where it has not yielded analogous results (e.g., [56]). Differential responses
against salinity stress between different Dunaliella species have also been reported previ-
ously [25]. High salinity hampered the growth in all strains tested, similarly to in previous
studies [60,61], as it is known to alter the metabolism of Dunaliella cells and restrict their
growth by implementing oxidative stress as well [25]. Our results are in accordance with
previous observations that indicated an inverse relationship between β-carotene content
and the specific growth rates in D. salina cultures [8,33].

Chlorophyll content has been previously used as an index for the presence of phys-
iological stress [62,63]. Chl a/Chl b ratios have also been correlated to increased light-
harvesting efforts in vascular plants [64]. Each of the three studied strains showed an
important decrease in the Chl a/Chl b ratio in all cultivating conditions (Figure 3), indicat-
ing the presence of physiological stress, which is in accordance with previous findings. Both
Lv et al. [62] and Mirshekari et al. [65] reported an acute decrease in Chl a/b ratios under
nitrogen starvation. However, Yound and Beardall [66] found that Chl a maintenance was
favoured over Chl b in nitrogen-starved Dunaliella tertiolecta cells. In the present experiment,
this decrease differed between the strains; CCAP 19/18 showed a similar decrease in all
culture conditions and D30 showed a greater decrease under standard conditions, while
D31 showed a greater decrease under both stress conditions (nitrogen deprivation and salt
stress). These results indicate a variety of response intensity to stress factors in different
strains of the same species and even between strains of the same locality (D30 and D31).

Another indicator of the changes leading to carotenogenesis, that occurred within the
cells under stress conditions„is the ratio of TC/Chl a. It has been reported that carotenoid
content is favoured over chlorophyll content when under stress conditions, especially
under nitrogen starvation in D. tertiolecta [56,66]. All of the studied strains exhibited a great
increase in the aforementioned ratio under nitrogen deficiency (tenfold for D31 and CCAP
19/18 and fivefold for D30) when compared to those in standard conditions (Figure 4).
Under salt stress, D31 and CCAP 19/18 each showed a threefold increase in the total TC/Chl
a ratio. These results are comparable to those of previous research; Srinivasan et al. [61]
achieved a sixfold increase, Lv et al. [62] a fivefold increase and Borovkov et al. [67] a
fivefold increase under nitrogen deprivation conditions. Fazeli et al. [68], while studying
the CCAP 19/18 strain in a salt-concentration increase protocol, achieved a threefold
increase in the total carotenoid/chlorophyll ratio as well. Hadi et al. [69], using culture
conditions and a salinity increase like those presented herein, achieved an increase of
2.5 times in this ratio. Cifuentes et al. [70], using milder salt stress (an increase from 2.14 M
to 4.28 M of NaCl), achieved a 3.7- to 4.5-fold change in seven out of the eight strains
used. These results indicate a clear relationship between carotenoid production and the
reduction in photosynthetic activity under stress conditions, which is supported by the
data presented herein.

Although salinity and nitrogen deprivation are known to be related to carotenogenic
activity in Dunaliella strains, the specifics of those relationships are yet to be clarified.
In 1990, Borowitzka et al. [60] concluded that the lutein biosynthesis path in Dunaliella
salina must be sensitive to osmotic stress; therefore, high salinities favour synthesis of
β-carotene at the expense of lutein production. However, according to the results presented
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herein (Table 2), the production of lutein did not seem to be affected under high-salinity
conditions in any of the studied strains. It has been previously shown that lutein production
in Dunaliella salina can be adversely affected by specific combinations of environmental
stressors [71], and different strains of D. salina may respond differently to salinity stress
regarding lutein production; that response has a genetic background that remains to be
elucidated [72].

On the other hand, according to our results, the production of lutein in the studied
strains was consistently limited only under nitrogen deprivation conditions (Table 2).
Although the metabolite was present, the amounts produced as a percentage of the TCs
were much smaller compared to in the standard conditions, as opposed to the percentage
of β-carotene, which was the major carotenoid produced under nitrogen starvation in the
studied strains. Previous research of microalgae has indicated that nitrogen limitation
enhances accumulation of lutein [73–75]. Nevertheless, it was shown that cultivation of
D. tertiolecta in a medium that completely lacked any nitrogen source (as applied in the
present study) resulted in low lutein production [58,76]. Yeh et al. [77] concluded that a
certain amount of nitrogen in the initial culture medium is required before repletion can
lead to high production of lutein in a Desmodesmus sp. strain. Therefore, it is possible that
complete lack of a nitrogen source might be the reason behind reduced lutein production
in the studied strains.

It is notable that despite the clear tendencies revealed from the results presented herein
(i.e., reduced growth rates and enhanced carotenogenic activity under stress conditions),
there was an apparent diversification in the specific responses among the studied strains
under stress conditions. The D31 strain deviated from the other two strains, as it responded
with higher β-carotene accumulation under salt stress compared to that under nitrogen
deprivation. Additionally, all three strains showed varied responses in photosynthetic
and carotenogenic activity, as well as carotenoid profiles, in all culture conditions. This
indicates that intraspecific diversity that has been recently suggested by molecular data [78]
could be readily reflected in the physiological and metabolic characteristics of different
hypersaline Dunaliella strains, and that this diversity could be apparent even in strains of
the same locality (such as D30 and D31). Another key observation is that the Greek strains
studied here showed comparable and, in most cases, higher TCs and β-carotene contents
compared to the reference strain, CCAP 19/18, thus constituting possible candidates for
further exploitation in the carotenoid-production industry.

Research of local representatives of Dunaliella could reveal highly carotenogenic strains,
and thorough study of their carotenogenic characteristics could not only help elucidate
the intraspecific relationships within the genus but also aid in improved fine-tuning of
their cultivation for high-value secondary metabolites such as carotenoids. This study
is the first report of carotenogenic Dunaliella salina strains from the salt marsh of Ange-
lochori and the wider area of Greece, revealing a potential untapped natural source of
biotechnological interest.
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