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Abstract: Groundwater contaminant source identification is an endeavor task in highly developed
areas that have been impacted by diverse natural processes and anthropogenic activities. In this study,
groundwater samples from 84 wells in the pilot promoter region of the Yangtze River Delta integration
demonstration zone in eastern China were collected and then analyzed for 17 groundwater quality
parameters. The principal component analysis (PCA) method was utilized to recognize the natural
and anthropogenic aspects impacting the groundwater quality; furthermore, the absolute principal
component score-multiple linear regression (APCS-MLR) model was employed to quantify the
contribution of potential sources to each groundwater quality parameter. The results demonstrated
that natural hydro-chemical evolution, agricultural activities, domestic sewage, textile industrial
effluent and other industrial activities were responsible for the status of groundwater quality in the
study area. Meanwhile, the contribution of these five sources obtained by the APCS-MLR model
were ranked as natural hydro-chemical evolution (18.89%) > textile industrial effluent (18.18%) >
non-point source pollution from agricultural activities (17.08%) > other industrial activities (15.09%)

> domestic sewage (4.19%). It is believed that this contaminant source apportionment result could
provide a reliable basis to the local authorities for groundwater pollution management.

Keywords: Yangtze River Delta; groundwater; APCS-MLR; contaminant source apportionment

1. Introduction

Groundwater quality degradation by natural processes or anthropogenic activities
is widely recognized and has drawn the attention of researchers for decades [1–3]. The
natural processes, mainly water–rock interactions, may cause specific ions’ accumulations in
groundwater, such as arsenic, magnesium and iodine [4–6]. In the meantime, anthropogenic
activities can deteriorate groundwater quality and lead to a series of geological environment
problems. For instance, agricultural behaviors including fertilization and livestock breeding
are implicated in excess of nitrogen, phosphorus and potassium [7–9]. Industry effluent and
leakage can lead to increased concentrations of sulfate and some heavy metal ions [10–12],
and domestic sewage can lead to high levels of ammonia in groundwater [13]. Under the
interaction of natural processes and anthropogenic activities, groundwater contamination
management is undoubtedly a vital task. Classifying the contamination into their original
sources is the primary step for an authentic assessment of the contaminated aquifer [14,15].
It will not only benefit the status survey, but also provide a consequential basis for future
groundwater protection and pollution management.

Various methods have been developed for identifying the groundwater contaminant
sources, such as the in situ survey, stable isotope methods, model-based numerical inver-
sion and multivariate statistical approaches [16–20]. The in situ surveys usually attempts
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to find out the potential sources with labor-intensive work, but often fails to give a quan-
tified analysis of the contamination source apportionment. The stable isotope methods
can provide precise apportionment of sources, but only for the isotope-related contami-
nant. As for the model-based numerical inversion methods, they are believed to be more
suitable for local scale research [21–24]. Meanwhile, multivariate statistical approaches
have gained popularity among researchers due to their convenience and efficiency for
regional scale problems [25–27]. This branch of methods include cluster analysis (CA),
principal component analysis (PCA), positive matrix factorization (PMF), absolute princi-
pal component score-multiple linear regression (APCS-MLR) and so on. Compared with
other approaches, the APCS-MLR method is an especially effective and practical method
for identifying pollution sources. It was first developed by Thurston and Spengler [28]
and then applied to pollution source apportionment problems on air, surface water and
sediments [29–33]. More recently, the APCS-MLR method has started to be employed in
groundwater quality research and has proven to be a powerful tool in identifying the im-
pact of natural processes and anthropogenic activities to groundwater quality. For instance,
Zhang et al. [34] employed the PCA and APCS-MLR methods to identify groundwater
pollution sources and their apportionment in the Hutuo River alluvial-pluvial fan region of
northern China. Meng et al. [35] used the APCS-MLR receptor model to assess the potential
pollution sources of groundwater from 2006 to 2016 in the Limin Groundwater Source Area
in Harbin. Yu et al. [36] applied the APCS-MLR method in nitrate pollution sources appor-
tionment and compared its result with a Bayesian isotope mixing model. Sheng et al. [37]
utilized the APCS-MLR receptor model to estimate the source apportionment of heavy
metal pollution in an arid oasis region in Northwest China.

Therefore, in this research, we employ the APCS-MLR model to assess the potential
sources of groundwater contamination in the pilot promoter region of the Yangtze River
Delta integration demonstration zone. The study area is located in the Taihu watershed in
eastern China, of which the groundwater has been influenced by intense anthropogenic
activities. Previous work has demonstrated the complexity of the groundwater pollution
in this area. Various contaminants have been found, including heavy-metal ions, nitrogen
and phosphorus compounds [38–41]. Despite the numerous individual investigations for
several specific contaminants, the overall groundwater contaminant source apportionment
problem is still unsolved.

The objective of this work is to: 1. recognize the natural and anthropogenic aspects
that affect the groundwater quality; 2. quantify the contribution of potential sources to each
groundwater quality parameter via the APCS-MLR model. Insights from this paper could
provide reliable advice for further pollution remediation plans in the pilot promoter region
of the Yangtze River Delta integration demonstration zone.

2. Materials and Methods
2.1. Study Area

The pilot promoter region of the Yangtze River Delta integration demonstration zone
(30◦54′14′′–31◦09′25′′ N and 120◦39′47′′–121◦07′30′′ E) is located southeastern of the Taihu
Lake with a total area of 653.9 km2 (Figure 1). It is under a subtropical monsoon cli-
mate, with 16.2 ◦C annual temperature and 1127.1 mm annual rainfall [42]. The ground-
water in this region is mainly distributed in the sand and silt layers from Quaternary
sediments [43,44]. The thickness of the Quaternary sediments is larger than 150 m accord-
ing to the borehole materials, and the phreatic aquifer with thickness ranging from 3 to 7 m
is the layer closely related to human activities (Figure 2). The aquifer is recharged from
precipitation, river infiltration, and irrigation; in the meantime, its discharge mainly occurs
through run off to rivers and evaporation since restrictions on groundwater exploitation
have been imposed by the government since 1997 [45]. As an interactive area of Jiangsu,
Zhejiang Provinces and Shanghai metropolis, this area is one of the most developed re-
gions in China. Based on the a remote sensing survey with field validation, a major part
of the land use in this area is cultivated land and residential area. Industries, especially
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textile factories, are mainly scattered in the south of the study area. What is more, a dense
surface water network, including Taipu River and Dianshan Lake, is located in this area,
which makes the surface water–groundwater interaction extremely complex. Hence, heavy
agricultural activities and industrial sewage pose substantial threats to groundwater secu-
rity. The application of nitrogen fertilizers and the use of industrial chemicals constitute
potential point and non-point sources of groundwater contamination.

A

B

Study area

Figure 1. Location of the pilot promoter region of Yangtze River Delta integration demonstration
zone and distribution of groundwater sampling sites with the land-use.

Figure 2. Hydrogeological profile (A-B) of the study area.

2.2. Data Preparation

Groundwater samples were collected from 84 wells in June 2020 and June 2021, and
the sampling sites were chosen with the considerations of land-use types (cultivated land,
residential land, etc.) and spatial distribution (approximately 1 km2 per point) (Figure 1).
In each well, the water temperature (WT), pH, dissolved oxygen (DO) and total dissolved
solids (TDS) were measured by SX-620 pH Testor, SX-630 ORP Testor and Hanna DiST in
situ, respectively. Figure 3 shows the landscape surroundings of several wells and the in
situ test procedures. Polyethylene containers with a capacity of 1.5 L were used to store
groundwater samples, and then brought back to the laboratory for an analysis of total
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phosphorus (TP), Cl−, SO2−
4 , NH4 − N, NO3 − N, NO2 − N, K+, Na+, Ca2+, Mg2+, Mn,

I and Sb. Various instruments were used for the analyses (Table 1).

Figure 3. The landscape surroundings of several wells and the in situ test procedures.

Table 1. Water quality parameters, units and analytical methods used for groundwater samples in
the pilot promoter region of Yangtze River Delta integration demonstration zone.

Parameters Abbreviations Units Analytical
Equipments

Water temperature WT ◦C SX-620/SX-630
Pondus Hydrogenii pH pH unit SX-620 pH Testor
Dissolved oxygen DO mg/L SX-630 ORP Testor

Total dissolved solids TDS mg/L Hanna DiST
Chloride Cl− mg/L Dionex-2500
Sulfate SO2−

4 mg/L Dionex-2500
Ammonical nitrogen NH4 − N mg/L AutoAnalyzer3

Nitrate nitrogen NO3 − N mg/L Dionex-2500
Nitrite nitrogen NO2 − N mg/L TU-1950

Potassium K+ mg/L ICAP 6300Duo
Sodium Na+ mg/L ICAP 6300Duo
Calcium Ca2+ mg/L ICAP 6300Duo

Magnesium Mg2+ mg/L ICAP 6300Duo
Manganese Mn µg/L ICAP Q

Total phosphorus TP µg/L ICAP 6300Duo
Iodine I µg/L ICAP Q

Antimony Sb µg/L ICAP Q

2.3. Multivariate Statistical Analysis

For an in-depth analysis of the groundwater chemistry data, APCS-MLR was em-
ployed. The ACPS-MLR is a receptor model based on the results of principal component
analysis (PCA), together with a multivariate linear regression using the measured contami-
nant concentrations [46–48]. First, Kaiser-Meyer-Olkin (KMO) criteria and Bartlett’s test
of sphericity were performed to assess the adequacy of the dataset for PCA [49,50]. We
employed the criteria that for the PCA to be considered reliable, the KMO value needs
to be larger than 0.5, and the significance level of Bartlett’s test of sphericity should be
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smaller than 0.05. By conducting PCA procedure, the principal components from the
related groundwater quality parameters could be obtained, as follows:

(Az)ij = ai1C1j + ai2C2j + . . . + aimCmj, (1)

for i = 1, 2, . . . , p, and j = 1, 2, . . . , n, where Az represents the component score; a stands
for the component loading; C is the measured concentration of each groundwater quality
parameter; p is the number of components; n is the number of samples and m is the number
of groundwater quality parameters.

The principal components, with eigenvalues greater than 1.0 in the variance com-
putation, are believed to be able to provide qualitative information about the potential
contamination [51,52]. For a clearer interpretation, the original loadings normally need
to be rotated until the loadings of PCs are redistributed and polarized. This procedure
is normally mentioned as varimax rotation and the obtained new variables are called
varifactors (VFs). For each VF, the component loadings reflect relative attribution of the
groundwater quality parameters, with absolute loading values >0.75, 0.75–0.5 and 0.5–0.3
defined as strong, medium and weak, respectively [53,54].

Then, the component scores from the PCA are normalized to perform APCS-MLR for
groundwater contaminant source apportionment. A detailed description of this method
could be found in Thurston and Spengler [28] and Rahman et al. [30]. In brief, the
APCS-MLR model assumes that the contaminant sources attribute linearly to the pollutant
concentration at each sampling site. Hence, the concentration of each contaminant at each
sampling site (Ckj) can be calculated by a multiple linear regression of the contribution of
contaminant sources through Equation (2):

Ckj = rk0 +
p

∑
i=1

rki × APCSij, (2)

where rk0 represents the constants term of multiple linear regression for pollutant k; rki
stands for the coefficient of multiple linear regression of the contaminant source i for the
pollutant k; APCSij is the absolute principal component scores and it can be obtained
through Equations (3)–(5).

(Z0)k =
−C̄k
σk

, (3)

(A0)i =
m

∑
k=1

Ski × (Z0)k, (4)

APCSij = (Az)ij − (A0)i, (5)

where (Z0)k stands for the normalized concentration of contaminant k in a non-pollution
site; C̄k represents the mean concentration and σk indicates the standard deviation of con-
taminant k; (A0)i is the principal component score in the non-pollution site; Ski represents
the score coefficient of component i for pollutant k; (Az)ij stands for principal component
score of sample j in principal component i.

Here, rki × APCSij implies the contribution of contaminant source i to pollutant k
in sample j. The average of all samples rki × APCSi is established as the contribution of
contaminant source i to pollutant k. Notably, negative values may be achieved during the
calculation process, which could lead to a total contribution of all pollutants exceeding
100%. Hence, Haji Gholizadeh et al. [46] proposed an absolute value method to calculate
the contribution of contaminant sources to water quality parameters, as it is shown in
Equations (6) and (7).

PCki =

∣∣rki × APCSi
∣∣

|rk0|+ ∑
p
i=1

∣∣rki × APCSi
∣∣ × 100%, (6)
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PCk =
|rk0|

|rk0|+ ∑
p
i=1

∣∣rki × APCSi
∣∣ × 100%, (7)

where PCki stands for the relative contribution rate of contaminant source i to the pollutant
k; PCk indicates the relative contribution rate of unrecognized source to the pollutant k;
APCSi is the average value of the absolute principal component scores of all samples.

3. Result and Discussion
3.1. Characteristics of the Groundwater Pollution

The descriptive statistics of physicochemical parameters for all groundwater samples
were summarized in Table 2. For several groundwater quality parameters, such as NH+

4 ,
NO−2 , NO−3 , Mn, Ca, I and Sb, the maximum concentration in groundwater samples had
exceeded level III of Chinese Groundwater Quality Standard(GB/T 14848-2017). What
is more, TP, which had a maximum concentration of 2510 µg/L, also deteriorated the
groundwater quality in this region.

Table 2. Summary statistics of physicochemical parameters in groundwater in the pilot promoter
region of Yangtze River Delta integration demonstration zone.

Parameters Min Max Mean Standard
Deviation

Coefficients of
Variation (%)

National
Standards,
Class III

WT 18.4 29.7 23.2 2.4 10 /
pH 6.80 8.19 7.20 0.28 4 6.5–8.5
DO 1.4 24.0 3.5 2.8 80 /
TDS 40 792 383 146 38 1000
Cl− 1.7 170.0 47.9 32.7 68 250

SO2−
4 2.0 146.0 41.4 26.1 63 250

NH4 − N 0.02 4.19 0.36 0.90 250 0.5
NO3 − N 0.01 39.29 4.06 5.90 145 20
NO2 − N 0.002 2.413 0.290 0.538 186 1

K+ 1.3 90.3 20.8 18.6 89 /
Na+ 6.7 174.0 56.3 33.2 59 200
Ca2+ 27.6 148.0 70.0 26.0 37 75
Mg2+ 3.2 75.2 20.9 14.2 68 150

Mn 0.10 1610.00 78.31 266.27 340 100
TP 6.4 2510.0 484.7 556.7 115 /
I 4.4 446.0 83.3 92.2 111 80

Sb 0.10 6.28 1.63 1.45 89 5

The variation coefficient of groundwater quality parameter is an index presenting the
overall variability of the samples, and such variability is believed to be caused by various
anthropogenic activities [51,55,56]. Here, the geographic information system technique
with inverse distance weighted interpolation method was utilized to generate the spatial
distribution of groundwater quality parameters with variation coefficient larger than 80%
(Figure 4). The comparison between figures showed that the contaminants could be classi-
fied into several groups with similar spatial distribution. For instance, Mn, NH+

4 and NO−2
were relatively enriched in the western corner of the study area, while higher concentration
of TP and K+ were detected in the centre and northwestern of the region. As for Sb, it
can be found distributed all across the region, but the highest concentrations are found
primarily in the southern area, which was consistent with the location of textile industries.
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Figure 4. Spatial distribution of Mn, NH+
4 , NO−2 , NO−3 , TP, I, K+and Sb in groundwater .

To uncover the linear correlations between physicochemical water quality parameters,
the Pearson’s correlation coefficient with statistical significance (p < 0.05) was performed
here. As it was shown in Figure 5, strong correlations (r > 0.5) were observed among
Na+, Ca2+, Mg2+ and Cl−, indicating that they may have the same origin from hydro-
geochemical processes. Their high positive correlations with TDS (r > 0.6) implied the
chemical composition of groundwater in this region was mainly controlled by these ions.
A moderate positive correlation (r = 0.55) was also spotted for NH+

4 and NO−2 , illustrating
that the nitrification process is occurring in the groundwater. As for K+, its relations with
other physicochemical parameters were mostly uncorrelated, except for TP. With a positive
correlation of 0.63, K+ and TP were likely to be an indication of agricultural fertilization.
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Based on the above analysis, we believe the nitrogen and phosphorus compounds
could be attributed to the application of fertilizer or waste of livestock breeding. Other
contaminants, such as I and Sb, can be ascribed to the natural minerals and industrial
effluent, respectively.

Figure 5. Correlation coefficients between groundwater quality parameters.

3.2. Pollution Sources Identified Based on the PCA Analysis

To provide a more detailed pollution-source analysis, the PCA method was then
applied. The Kaiser–Meyer–Olkin(KMO) and Bartlett’s test were performed first to check
the adequacy of the original dataset. The KMO value was equal to 0.732, while the value of
Bartlett’s sphericity test was very close to zero (p < 0.001), indicating the validity of the PCA
application. Based on the criteria, the principal components with eigenvalues exceeding
1.0 were chosen as the potential contaminant sources. As indicated in Table 3, five principal
components were selected in this case, accounting for 71.23% of the total variances. The
rotated factor loadings for varifactors were shown in Figure 6.

The first varifactor, VF1, accounted for 24.72% of the total variance. It was heavily
weighted by TDS (0.83), Cl− (0.91), Na+ (0.94) and Mg2+ (0.79), while moderately weighted
by Ca2+ (0.61) and I (0.70). Generally speaking, the contribution of these ions to VF1 was
the result of water–rock interactions [47,57]. In addition, the quaternary aquifer marine and
lagoon-facies sediments in this area are rich in iodide and serve as a source of dissolved I
in groundwater [58,59]. Hence, VF1 can be interpreted as natural hydro-chemical evolution
contribution. The second varifactor (VF2) accounted for 15.02% of the total variance, and
was mainly characterized by K+ (0.82) and TP (0.78), with moderate positive loadings of
NO−2 (0.52) and NO−3 (0.50). These three ions in the groundwater are normally associated
to the application of chemical fertilizer [60–62]. During our field survey, lots of aquaculture
sites and farmlands could be spotted in the study area, especially near LiLi town. Hence,
VF2 is assumed to represent the non-point source pollution from agricultural activities. VF3
(12.09% of the total variance) had a strong positive loading on NH+

4 (0.85), with moderate
positive loadings of NO−2 (0.54) and Mn (0.63). The most common source of NH+

4 and
NO−2 in groundwater are domestic sewage, livestock wastes and application of nitrogen
fertilizer [48,63]. Dissolved Mn may naturally come from weathering of manganese oxide
minerals, but its concentrations can be increased by contamination from industrial effluent
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and domestic sewage [64,65]. In the pilot promoter region of the Yangtze River Delta
integration demonstration zone, as in some rural areas, the sewage collection system is
imperfect and municipal sewage may leak and contaminate the groundwater. Especially
in the west corner of the study area, several dry toilets and garbage heaps can be spotted
during our field surveys. Therefore, VF3 is considered as domestic sewage. VF4 explained
10.02% of the total variance and had the highest loadings on SO2−

4 (0.78) and NO−3 (0.55).
Meanwhile, weak negative loadings on WT (−0.45) and pH (−0.41) also could be observed.
Since SO2−

4 and low pH value (acidic condition) are normally related with industrial
effluent [47,66,67], this factor can be identified as the influence of industrial activities. The
last component (VF5) accounted for 9.38% of the total variance and it was mainly affected
by DO (0.78) and Sb (0.64). The high level of Sb compound in groundwater normally
comes from mining or textile industry [68,69]. Since the textile industries are widely
distributed in the southern part of our study area, VF5 can be regarded as the impact of
textile industrial effluent.

Table 3. The varifactor loadings of 17 parameters after the varimax rotated. Bold values stand for the
parameters with medium or strong loadings.

Parameters VF1 VF2 VF3 VF4 VF5

WT −0.19 0.31 0.47 −0.45 −0.22
pH −0.12 0.33 −0.20 −0.41 0.46
DO −0.19 −0.09 0.04 0.18 0.78
TDS 0.83 0.03 0.13 0.23 −0.17
Cl− 0.91 0.10 0.03 −0.06 −0.15

SO2−
4 0.13 0.15 0.13 0.78 0.22

NH4 − N 0.13 0.12 0.85 0.01 −0.15
NO3 − N −0.19 0.50 −0.31 0.55 −0.11
NO2 − N 0.02 0.52 0.54 −0.05 −0.25

K+ 0.01 0.82 0.06 0.16 0.05
Na+ 0.94 −0.09 −0.06 −0.09 −0.08
Ca2+ 0.61 −0.07 0.33 0.43 −0.21
Mg2+ 0.79 −0.39 0.19 0.23 −0.12

Mn 0.26 −0.26 0.63 0.20 0.13
TP −0.16 0.78 0.06 −0.06 0.18
I 0.70 −0.47 0.22 −0.03 −0.12

Sb −0.26 0.23 −0.21 0.02 0.64
Eigenvalues 4.20 2.55 2.06 1.70 1.60

% of Variance 24.72 15.02 12.09 10.02 9.38
Cumulative % 24.72 39.74 51.83 61.85 71.23

Figure 6. Component loadings for 17 parameters after varimax rotation.
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3.3. Source Apportionment Using APCS-MLR

Based on the results of PCA analysis, the APCS-MLR model was then employed
to quantify the contribution of each potential contaminant source to all 17 groundwater
quality parameters using Equations (6) and (7). The scatter plots of predicted and observed
concentrations for main groundwater pollutant parameters by using the APCS-MLR model
were shown in Figure 7. Except for Mn (0.59) and Sb (0.57), the linear regression of other
groundwater quality parameters were all well-matched with a R-square values larger than
0.6, indicating the contaminant source apportionment was reliable.
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Figure 7. Scatter plots of the predicted and observed concentrations for main groundwater pollutant
parameters by using APCS-MLR models.

The outcome of source apportionment via APCS-MLR model were shown in Figure 8.
The relative contribution of all pollution sources to each contaminant are calculated accord-
ing to Equations (6) and (7), and the average relative contribution of pollution sources is
also obtained for an overall evaluation. As it is shown in Figure 8B, the hydrochemical char-
acteristics of groundwater in the Yangtze River Delta integration demonstration zone was
greatly affected by natural hydro-chemical evolution (VF1), accounting for 18.89% of the
total sources and showed high contribution ratios in TDS (46%), Cl− (46%), Na+ (50%) and
I (42%) (Figure 8A). The most threatening anthropogenic factor to groundwater quality was
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textile industrial effluent (VF5), accounting for 18.18% of the total sources and presented
high contribution to Sb (44%). Furthermore, non-point source pollution from agricultural
activities (VF2) accounted for 17.08% of the entire sources and presented a relatively high
contribution to K+ (49%), TP (36%) and NO−2 (38%). Other industrial activities (VF4) were
also responsible for 15.09% of the total sources, shown as SO2−

4 (45%) and NO−3 (32%),
while domestic sewage (VF3, 4.19%) presented relatively high contribution ratio in NH+

4
(24%). In addition, the contribution of unidentified sources to each groundwater quality
parameters, which are mainly due to the complex pollutants evolution processes, ranging
from 2% to 59% with the average of 26.58%. Therefore, the contributions of identified
sources in the Yangtze River Delta integration demonstration zone were determined as
being in the following descending order: natural hydro-chemical evolution > textile indus-
trial effluent > non-point source pollution from agricultural activities > other industrial
activities > domestic sewage.

(A) (B)

Figure 8. The contributions on the groundwater quality parameters (A) and average contributions
(B) of pollution sources in the pilot promoter region of Yangtze River Delta integration demonstration
zone according to the APCS-MLR model.

4. Conclusions

In the present study, principal component analysis (PCA) was employed to identify
the potential natural and anthropogenic aspects impacting the groundwater quality, then
the absolute principal component score-multiple linear regression (APCS-MLR) model was
used to quantify the contribution of potential sources to 17 groundwater quality parameters
in the pilot promoter region of Yangtze River Delta integration demonstration zone, China.
Based on the result of PCA analysis and possible sources for each ion, five major sources
that affected the groundwater quality were identified, namely natural hydro-chemical
evolution, agricultural activities, domestic sewage, textile industrial effluent and other
industrial activities. With most linear regression R-square values larger than 0.6, the APCS-
MLR model successfully quantified the contribution of potential sources in this study area.
The contributions of five potential sources were ranked as natural hydro-chemical evolution
(18.89%) > textile industrial effluent (18.18%) > non-point source pollution from agricultural
activities (17.08%) > other industrial activities (15.09%) > domestic sewage (4.19%). The
results clarified the groundwater in the pilot promoter region of the Yangtze River Delta
integration demonstration zone was primarily contaminated by textile industrial effluent
and agricultural activities, while domestic sewage only accounted for a small part of the
responsibility. These insights could provide reliable advice for groundwater pollution
management in highly developed areas. On the other hand, this study still suffered from a
shortage of groundwater quality data, especially in temporal scale. Hence, further research
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with more measurements needs to be conducted and temporal variation could be a possible
way to recognize the unidentified sources.
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