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Abstract: The need for reliable, state-of-the-art environmental investigations and pioneering ap-
proaches to address pressing ecological dilemmas and to nurture the sustainable development goals
(SDGs) cannot be overstated. With the power to revolutionize desalination processes, artificial intelli-
gence (AI) models hold the potential to address global water scarcity challenges and contribute to a
more sustainable and resilient future. The realm of desalination has exhibited a mounting inclination
toward modeling the efficacy of the hybrid nanofiltration/reverse osmosis (NF–RO) process. In this
research, the performance of NF–RO based on permeate conductivity was developed using deep
learning long short-term memory (LSTM) integrated with an optimized metaheuristic crow search
algorithm (CSA) (LSTM-CSA). Before model development, an uncertainty Monte Carlo simulation
was adopted to evaluate the uncertainty attributed to the prediction. The results based on several
performance statistical criteria (root mean square error (RMSE) and mean absolute error (MAE))
demonstrated the reliability of both LSTM (RMSE = 0.1971, MAE = 0.2022) and the LSTM-CSA
(RMSE = 0.1890, MAE = 0.1420), with the latter achieving the highest accuracy. The accuracy was also
evaluated using new 2D graphical visualization, including a cumulative distribution function (CDF)
and fan plot to justify the other evaluation indicators such as standard deviation and determination
coefficients. The outcomes proved that AI could optimize energy usage, identify energy-saving op-
portunities, and suggest more sustainable operating strategies. Additionally, AI can aid in developing
advanced brine treatment techniques, facilitating the extraction of valuable resources from the brine,
thus minimizing waste and maximizing resource utilization.

Keywords: desalination; machine learning; uncertainty; permeate conductivity; deep learning

1. Introduction

The rising demand for freshwater, stemming from burgeoning population numbers,
expansive industrial endeavors, and rapid urban growth, has driven us into a global water
sustainability crisis [1,2]. This crisis manifests in several ways: deteriorating freshwater
resources due to over-exploitation of surface waters and groundwater reserves, protracted
periods of drought impaired by climate shifts, the encroachment of seawater into freshwater
reserves, accelerated depletion of groundwater levels, and increased salinization and
contamination of our freshwater bodies. Such precarious circumstances jeopardize both
national and global water security [3]. As a response to these pressing challenges, the
world is increasingly turning to the desalination of brackish water and saltwater as primary
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sources of a dependable water supply [4]. This process involves the extraction of salt
from water, making it suitable for diverse uses such as agricultural irrigation, industrial
processes, and daily household needs [5,6]. Highlighting the immense promise of this
technique, the United Nations put forward that saltwater desalination can augment our
water reserves beyond what the natural hydrological cycle can offer.

Addressing the escalating need for freshwater, the primary strategies being adopted
are desalination through thermal methods and membrane-based separation techniques [5].
Digging deeper into these methods, two prominent processes emerge: reverse osmosis
(RO)—a membrane-based technology, and multistage flash distillation (MSF)—a heat-
driven purification approach [7]. Thermal desalination, primarily using the MSF method,
is frequently lauded for its efficiency, particularly when handling water with a high salt
concentration. The resulting water or ‘permeate’ from this method is of superior quality [4].
On the other hand, the global desalination landscape is dominated by the RO system, with
a staggering 90% of facilities around the world harnessing this technique. The RO method
leverages semi-permeable membranes to sieve out salts and other unwanted minerals from
water [8]. Its popularity is not unwarranted; RO is recognized for its economical nature,
impressive salt rejection rates, and the high quality of the resultant water. Its adaptability is
another selling point—RO systems have found homes in diverse environments, ranging
from standard water and sewage treatment plants to cutting-edge wastewater recovery
and reuse initiatives. Nonetheless, the RO method is not without its challenges. Factors
such as the requirement for high feed pressures; considerable energy and cost expenditures;
the need for periodic membrane maintenance; and fluctuations in temperature, energy,
and costs depending on the time of day or season, continually push researchers and
technologists to innovate and improve RO systems [7].

Membrane fouling has long been identified as one of the fundamental challenges
associated with the RO desalination technique. However, recent studies suggest that
this problem can be considerably mitigated, if not wholly resolved, by integrating the
RO process with nanofiltration (NF), especially in the realm of seawater desalination.
The incorporation of NF into RO systems substantially enhances the efficiency of the
desalination process by actively reducing the presence of organics, pollutants, and ionic
strength, and by softening the water. This combined approach also leads to a notable
decrease in the overall expenditure tied to desalination [9,10]. The appeal of NF extends
beyond its capacity to complement RO. Researchers laud its multiple benefits, such as
cost-effective operation and maintenance, impressive water throughput (flux), operation at
reduced pressures, and its relatively low installation expenses [10]. That said, a singular
reliance on NF is not without its drawbacks. While it can treat various water impurities
effectively, NF in isolation falls short in adequately reducing the high salinity inherent
in seawater to produce potable water. This shortcoming is where the combined might of
NF and RO shines through, achieving better desalination results [11]. Emerging research
in the realm of membrane technologies, be it NF, RO, or innovative hybrid separation
processes, consistently underscores that energy consumption stands as the most daunting
challenge in their operational spectrum. It is evident that the desalination processes are
composed of multifaceted components like permeate rate, conductivity, recovery, rejection
rate (RR), permeate quality (PQ), pH (potential hydrogen) levels, energy consumption, and
associated costs. In a pursuit to optimize these factors, various experimental undertakings
have advocated for blended solutions, such as the NF–RO combination and the NF–SWRO–
MSF hybrid process. In these innovative configurations, NF primarily functions as an
efficient pre-treatment stage, preparing the ground for the more intensive RO desalination
process [12,13].

Generally, membrane processes in desalination have predominantly been based on
linear or polynomial correlations, even though these methods may generalize the complex
dynamics of the desalination procedure [14–16]. In contrast to these mathematical and
traditional paradigms, which often settle for lower precision, the modern technological
landscape, marked by the beginning of Industry 4.0 and the growing field of the Industrial



Water 2023, 15, 3515 3 of 17

Internet of Things (IoT), has seen artificial intelligence (AI) algorithms making substantial
inroads into various industrial spheres [17]. Rather than the novel computing methodolo-
gies which prioritize absolute accuracy and unerring truth, the world of soft computing
embraces the nuances of imprecision, accepts degrees of truth, grapples with uncertainty,
and is amenable to approximations in order to accomplish a specific objective [18–20].
This adaptive approach has been validated using cutting-edge studies, which reveal that
sophisticated intelligent systems possess the prowess to assimilate experimental data with
impeccable accuracy in the realm of desalination [4,21–25]. Nevertheless, the journey of
integrating data-driven algorithms into the ecosystem of desalination processes, including
RO and NF, has not been devoid of hurdles. Artificial Neural Networks (ANNs), although
revolutionary, have come under scrutiny for certain limitations: their propensity for over-
fitting, challenges with plant-specific performance optimization, the intricacies of their
internal tuning parameters, and concerns over data homogeneity and inadequate neuron
configurations [26].

Achite et al. [27] introduced a hybrid model known as the M5-Gorilla Troops Optimizer
(GTO), built upon a blend of the M5 and GTO algorithms. This research employed nine
diverse parameters including raw water production (RWP), water turbidity, conductivity,
TDS, salinity, pH, water temperature (WT), SM, and O2 as inputs for CD modeling. The
comparative analysis highlighted in the study robustly positions the M5-GTO model as
superior in CD modeling accuracy against numerous established models such as multiple
linear and nonlinear regression, an artificial neural network, multivariate adaptive regres-
sion splines, an M5 model tree, k-nearest neighbor, a least-squares support vector machine,
a general regression neural network, and random forest (RF). This was exemplified by
the recorded values of various error metrics and correlation coefficient criteria for the
M5-GTO, all demonstrating significant improvements over the least effective algorithm, the
LSSVM. The findings further ranked M5 and RF algorithms second and third, respectively.
Moreover, the research provided insight into the significant impact of RWP and WT on CD
alterations, showcasing the inverse relationship of RWP with CD and the direct relation of
WT with CD. In the study conducted by Firzin et al. [28], a novel BLSTM-HHO algorithm
was introduced for an improved groundwater table (GWT) and drought predictions. This
innovative algorithm notably outperformed other benchmark algorithms such as the stan-
dalone BLSTM, LSTM, ANN, SARIMA, and ARIMA in terms of prediction accuracy and
performance criteria. Similarly, in the research conducted by Yan et al. [29] an innovative
approach to predicting influent ammonia nitrogen (NH3-N) concentration in wastewa-
ter treatment plants was proposed, leveraging the synergistic capabilities of the rolling
decomposition method and deep learning algorithms. The integrated model delineated
in the study notably circumvents information leakage during the decomposition process,
showcasing enhanced performance compared to standalone GRU models as evidenced by
reduced RMSE, MAE, and MAPE values. The study robustly underscores the superiority of
the proposed model over other integrated models trained with information leakage, high-
lighting notable strides in prediction accuracy. Recognizing these challenges, the scientific
community has proposed an advanced model called the long short-term memory (LSTM)
model. This model is further strengthened by integrating a powerful metaheuristic opti-
mization algorithm—the crow search algorithm (CSA)—promising enhanced performance
and adaptability in desalination processes.

In an effort to handle challenges faced in the field of desalination modeling, we sought
to leverage the advanced capabilities of the LSTM network. The primary focus of this
study was to refine the model’s performance, particularly for the uncertainty analysis and
prediction of the hybrid NF–RO desalination process. To realize this aim, we employed a
state-of-the-art metaheuristic optimization technique, the CSA. A noteworthy novelty of our
methodology was the inclusion of the Particle Swarm Optimization (PSO) algorithm. This
algorithm was instrumental in recognizing the optimal combination of features, serving
as a foundation to our in-depth modeling, statistical evaluations, and graphical analysis.
Such a strategic approach was intended to maximize the accuracy of the hybrid algorithms
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(LSTM-CSA) as well as the LSTM in its single form. For modeling purposes, the six most
important parameters were accurately sourced from seventy-three distinct data points. The
chosen independent parameters covered a diverse range: temperature (◦C), time duration
(h), pressure levels (kg/cm2), feed flow rate (m3/h), and feed conductivity (µs/cm). On the
other hand, our target or dependent parameter was identified as the permeate conductivity
(µS/cm). Through the feature selection insights collected from the PSO algorithm, two
distinct datasets were crafted. The result of our study is expected to show a comprehensive
evaluation of these models, with both training and testing datasets subjected to performance
metrics like the root mean square error (RMSE) and the mean absolute error (MAE). The
finding was that explaining models powered by the metaheuristic algorithms notably
outperformed the singular LSTM model in terms of accuracy.

It is worth mentioning that the use of deep learning in the desalination process, as
illustrated in the given abstract and introduction, holds significant promise in revolutioniz-
ing the efficacy and sustainability of water desalination [6,30–32]. The application of LSTM
networks integrated with an optimized metaheuristic CSA in the hybrid NF–RO desalina-
tion process enhances the overall performance, offering notable advantages. One of the
primary benefits is the increased accuracy in predicting the desalination process outcomes,
with substantial reductions in root mean square error (RMSE) and mean absolute error
(MAE), demonstrating the reliability of AI models. This integration also optimizes energy
usage, enabling the identification and exploitation of energy-saving opportunities for more
sustainable operation. Additionally, AI contributes to the development of advanced brine
treatment techniques, minimizing waste and maximizing resource utilization by facilitating
the extraction of valuable resources from the brine. The models accurately evaluate and
mitigate the uncertainty associated with predictions, ensuring more consistent and reliable
desalination results. The comprehensive optimization of various desalination factors, in-
cluding permeate rate and conductivity, underscores the significant enhancement AI brings
to water treatment and desalination, addressing and overcoming many challenges inherent
in traditional methods [33–35].

The goals and objectives of this research are primarily centered around tackling global
water scarcity by enhancing desalination processes, specifically focusing on the hybrid
NF–RO process. This research aims to develop a model for evaluating the performance of
NF–RO based on permeate conductivity, utilizing deep LSTM integrated with an optimized
metaheuristic CSA and LSTM-CSA. By adopting uncertainty Monte Carlo simulation, this
study evaluates the uncertainty attributed to prediction, aiming to prove the reliability of
both LSTM and the LSTM-CSA in terms of various performance statistical criteria. This
research further addresses the key challenges faced in the RO desalination technique,
aiming to enhance its efficiency by integrating it with NF, and subsequently optimizing
various parameters involved in desalination processes. This study also seeks to leverage the
advanced capabilities of the LSTM network and the CSA to refine the model’s performance,
particularly for the uncertainty analysis and prediction of the hybrid NF–RO desalination
process. This paper is committed to maximizing the accuracy of the hybrid algorithms and
providing a comprehensive evaluation, contributing to the optimization of energy usage,
identification of energy-saving opportunities, and the development of more sustainable
operating strategies in desalination processes.

2. Experimental Methods

In this study, we aimed to model a complex hydro-environmental system using six
parameters, which were sampled at seventy-three different points. The independent
variables consisted of temperature (◦C), time (h), pressure (kg/cm2), flow feed (m3/h), and
conductivity feed (µS/cm), while the dependent variable was permeating conductivity (PC)
(µS/cm). The data were obtained from the Saline Water Desalination Research Institute
(SWDRI) of the Saline Water Conversion Corporation (SWCC), Saudi Arabia [36], and
open-source data were collected from [8]. Refer to [36] for details of the experimental
analysis and set-up discussion; the diagram is presented in Figure 1a. An essential stage in
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developing deep learning models is the processing of gathered data and the selection of the
right model combination. The intricacy of these built models can be tackled by employing
a multiple heuristic approach such as the CSA and understanding the extent of AI systems
to manage complex and nonlinear-system-like desalination.
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Figure 1. (a) Experimental pilot-plant setup; (b) uncertainty analysis; (c) PSO algorithms.

In this work, we employed a Monte Carlo simulation (Figure 1b) to investigate the un-
certainty, and the PSO metaheuristic algorithm was used to solve this problem. In Figure 1c
is the objective function for selecting optimal features using the PSO algorithm. Further
pre-processing using normalization to improve the accuracy of the prediction was carried
out. The model development also takes into consideration 5k-fold cross-validation to pro-
vide a more comprehensive insight into how the model performs across different subsets
of data. The 5k-fold cross-validation provides a more reliable assessment of how a model
will perform on unseen data by using different data subsets for training and validation [37].
It is widely used in ML to tune hyperparameters and assess the generalization capability of
models. Figure 2 presents the descriptive statistics for visualization that provide a summary
of the main aspects of the data, offering a snapshot of their main characteristics [37]. It is
often the first step in data analysis, simplifying large amounts of data in a sensible way.
In the scenario described in Figure 2a indicating the temperature in an NF/RO system
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to show a sharp drop, several factors could be responsible, and it is crucial to examine
the experimental setup and conditions to determine the exact cause. It might be related
to an experimental error, where an issue with the equipment, such as a malfunctioning
temperature sensor, could give inaccurate readings. Another possibility could be a sudden
change in the system parameters or operating conditions, such as a sudden influx of feed
water at a different temperature or a change in the ambient conditions. An unexpected
drop in temperature could also relate to the system’s performance, indicating potential
issues or inefficiencies within the NF–RO process itself, such as unexpected heat loss. It is
crucial to thoroughly investigate the system, review the experimental procedure, and check
the equipment to accurately diagnose the reason behind the sudden temperature drop.

In this paper, deep learning and CSA are applied to improve the performance and
efficiency of hybrid NF–RO desalination processes. Specifically, a LSTM network, a type of
recurrent neural network, is used to model the desalination process. The LSTM network is
adept at learning from sequences of data, which makes it suitable for modeling complex
processes such as desalination where numerous variables interact over time. LSTM is
integrated with the CSA, a metaheuristic optimization algorithm. The CSA is inspired
by the behavior of crows and is used to optimize the parameters of the LSTM network,
ensuring that the model makes the most accurate predictions possible. Before developing
this LSTM-CSA model, an uncertainty analysis is conducted using a Monte Carlo simulation
to evaluate potential uncertainties related to the predictions made by the model. This
innovative approach utilizing both LSTM and CSA is designed to enhance the prediction of
the performance of the NF–RO desalination process based on permeate conductivity, a key
parameter in assessing the effectiveness of the desalination process. This research aims to
optimize energy usage and suggest more sustainable operating strategies for desalination,
ultimately leading to enhanced water recovery rates, reduced energy consumption, and
improved overall efficiency of the desalination process. In a more technical understanding,
the LSTM network is trained using historical data from the desalination process, learning to
identify patterns and relationships that are not easily discernible. It then uses this learning
to make predictions about the performance of the desalination process under various
conditions. The CSA is applied to fine-tune the parameters of the LSTM network, ensuring
that it operates as effectively as possible. The integration of deep learning with the CSA
thus presents a robust and innovative approach to optimizing the performance of NF–RO
desalination processes, contributing to advancements in addressing global water scarcity
challenges. The performance criteria used to calculate the models’ accuracy are presented
in the following equations [38,39]:

RMSE =

√
1
N ∑N

i=1

(
Y (p) − Y(o)

)2
(1)

MAE =
∑N

i=1

∣∣∣y(p) − y(o)
∣∣∣

N
(2)

MSE =
∑N

i=1 Y(p) − Y(o)

)2

N
(3)

where Ypre, i Ycom,i Ypre and Ycom indicate the predicted and computed values Y, with N as
the means for the data points.
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2.1. Long-Term Memory Neural Network (LSTM)

The LSTM neural network emerges as an advanced variation of the recurrent neural
network (RNN). Its inception was specifically aimed at addressing the inherent short-
comings of traditional RNNs, especially their inability to retain memory over extended
sequences (see Figure 3). A significant triumph of LSTM over its predecessor is its prowess
in resolving issues tied to vanishing and exploding gradients, which historically plagued
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the training of RNNs. This enhanced capability not only rectifies these problems but also
augments the accuracy of models based on recurrent networks—a notable advancement as
reported in the literature [40]. Diving deeper into their structure, LSTM neural networks
introduce a set of intricate memory cells. Unlike the transient memory of conventional
RNNs, these memory cells exhibit a longer retention span. The configuration of these cells
can be visualized as interconnected chains, echoing the modular repetition in conventional
RNNs. In their research, Li et al. [41] emphasized the unique structure of these repeating
units. LSTM neural networks boast a range of specialized components, each designed
meticulously to process and hold onto extensive sequences. These components not only
ensure that information is accurately captured but also make it possible for the network
to decide what to remember and what to discard, granting LSTM neural networks their
signature ability to remember sequences over a protracted period.

At the heart of the LSTM structure lies the memory cell, an intricate assembly pivotal
to the LSTM neural network’s prowess. This memory cell is crafted as a network of
sigmoid neurons interconnected in a manner that offers a unique self-feedback loop. Such a
configuration allows the memory cell to fine-tune its operations, selectively choosing what
information to retain and what to dispose of over prolonged durations. Aside from the
memory cell and hidden state, LSTM neural networks have three specialized gates, each
serving a distinct purpose. The research of Zaytar & El Amrani [42] emphasized the essence
of these gating mechanisms. Their ability to judiciously regulate the influx and efflux of
information renders the LSTM neural network its unique capability to maintain relevant
data and discard the superfluous, ensuring optimum performance over extended sequences.
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2.2. Crow Search Algorithm (CSA)

The CSA is an optimization algorithm inspired by the social behavior and memory
capability of crows, specifically their ability to hide food and remember its location for
future use. This nature-inspired heuristic approach is relatively new compared to other
swarm intelligence techniques, yet it has been shown to have competitive performance
for certain optimization problems [43,44]. The program emulates the crow’s behavior by
dividing the search space into various sub-regions, each symbolizing a potential food
source. It then modulates the positions of these sub-regions, drawing parallels to how
crows hide and recover food. Within the CSA algorithm, a collective optimization method,
agents are employed where each one represents a crow, facilitating the exploration of the
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search area. These agents collaborate, sharing insights about the most promising food
sources identified so far. In this distance-centric communication method, agents in closer
proximity exchange more extensive information compared to those positioned farther
away [44].

In addition to its exploration prowess, the CSA incorporates an exploitation strategy
that homes in on pinpointing the optimal solution. This mechanism adjusts the positions of
agents relative to the most promising food source identified thus far. The CSA has demon-
strated its efficacy in solving optimization challenges in fields like engineering design,
feature selection, and image processing. Furthermore, Figure 4 presents a comprehensive
flowchart detailing the CSA’s process, highlighting its primary stages. The swarm of crows
is initialized randomly within a d-dimensional space. The fitness of each crow is assessed
using a specific fitness function, and based on this evaluation, an initial memory value is
assigned. Every crow saves its hiding location in its memory variable, denoted as mi. To
update its position, a crow selects another random crow, represented as xj, which in turn
produces a random value. If this value surpasses the awareness probability threshold ‘AP’,
the crow xi will track xj to pinpoint the location mj.
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3. Results

In recent times, the convergence of the Industrial Revolution 4.0 with the adoption of
emerging Artificial Intelligence (AI) and Internet of Things (IoT) technologies has marked a
significant advancement in the fields of wastewater treatment and desalination plants. This
revolution represents the peak of efforts aimed at effectively harnessing these advanced
technologies to address crucial water management challenges. Within this context, the
integration of ML techniques into the operational framework of desalination processes has
gained substantial attention. This integration is seen as a pivotal approach to optimize
and precisely control various aspects of the desalination process. Previous studies have
already underscored the potential and feasibility of employing ML methodologies in this
domain. In this section, we employed the novel deep learning-based LSTM algorithm and
CSA as evolutionary optimization data-driven techniques to simulate the PC (µS/cm) in
a desalination plant. As mentioned above, a stationary analysis was carried out through
the application of Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) tests. This
approach was adopted to address the nonstationary nature of each individual input as
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well as the independent and dependent variables. Although this sort of data mining
and enhancement is not a conventional procedure in advanced engineering problems
like desalination plants, its significance has been highlighted and recognized as a critical
stage in the field of data analysis. The result for the training phase based on several
performance indicators is presented in Table 1. Prior to model development, appropriate
feature engineering owing to the complexity of the system was conducted using GA
algorithms. Hence, the GA used a robust nonlinear input feature selection approach.

The GA was developed in MATLAB 2022b to select the best optimal objective function
for model development. The GA feature can help researchers select the most important
input variables for modeling and predicting the PC of a complex environmental system.
Table 1 shows the indicators based on MAE, MSE, and RMSE, which help to evaluate the
accuracy and reliability of the predicted models. It is worth noting that the deep learning
LSTM model is a type of recurrent neural network (RNN) commonly used for sequence
prediction tasks, such as time series data like PC in this case. For this purpose, modeling
was performed using three LSTM, LSTM-GA, and LSTM-CSA algorithms. Python language
was used for all implementations on a PC with a 3 GHz Core i7 processor and 64 GB of
RAM. The lower the MSE, the closer the predicted values are to the actual values. In
this case, LSTM-CSA-M2 has the lowest MSE (0.1447), indicating that it has the best
overall predictive accuracy among the four models. Similar to MSE, lower RMSE values
suggest better predictive performance. Here, the LSTM-CSA-M2 again has the lowest
RMSE, indicating that it makes predictions with the smallest average error magnitude.
It can be seen that metaheuristic optimization techniques are primarily used for solving
optimization problems. It is well-suited for problems where finding the optimal solution
is challenging due to complex, non-linear, and multi-dimensional search spaces; hence,
its superiority is not surprising. It is well known that the choice between the CSA and
the LSTM model depends on your specific problem domain, the nature of your data, and
your goals. If your goal is to optimize parameters or find optimal solutions in complex
spaces, the CSA might be more suitable. On the other hand, if the problem is to capture
the temporal patterns, the LSTM model could be the better choice. Figure 5 presents the
probability cumulative distribution function between the observed and simulated variables.
In the analysis regarding NF–RO desalination utilizing LSTM and LSTM-CSA models,
it is vital to precisely assess potential errors and experiment shortcomings. Uncertainty
analysis, performed using a Monte Carlo simulation prior to model development, should be
critically evaluated for comprehensive and accurate execution using various error criteria.
The integration of LSTM with the CSA requires precise tuning; any integration issues could
negatively affect the results, leading to inaccuracies in permeate conductivity predictions.
This research’s reliance on diverse parameters for modeling introduces the possibility
of another potential error. Accurate and consistent measurements are fundamental to
ensure the reliability of model predictions. Concerning the observed temperature drop
(Figure 2a) in the NF–RO system, a thorough investigation is necessary to determine if
it is an experimental error, a system issue, or a valid result. Comprehensive analysis,
considering all potential errors, is crucial for validating the research findings and their
real-world applicability in desalination processes.

Table 1. Results of PC in desalination plant for LSTM.

Training Phase Testing Phase

MSE RMSE MEA MSE RMSE MEA

LSTM-M1 0.3945 0.6281 0.0945 0.3168 0.5628 0.1468

LSTM-M2 0.5444 0.7378 0.0644 0.4284 0.6545 0.1884



Water 2023, 15, 3515 11 of 17

Water 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 

Table 1. Results of PC in desalination plant for LSTM. 

 Training Phase Testing Phase 
 MSE RMSE MEA MSE RMSE MEA 

LSTM-M1 0.3945 0.6281 0.0945 0.3168 0.5628 0.1468 
LSTM-M2 0.5444 0.7378 0.0644 0.4284 0.6545 0.1884 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Observed PC
Simulated PC

Pr
ob

ab
ilit

y

LSTM-M2
Training Phase

0.0

0.2

0.4

0.6

0.8

1.0

.2 .3 .4 .5 .6 .7

Observed PC
Simulated PC

Pr
ob

ab
ilit

y
LSTM-M2
Testing Phase

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Observed PC
Simulated PC

Pr
ob

ab
ilit

y

LSTM-M1
Training Phase

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Observed PV
Simulated PC

Pr
ob

ab
ilit

y

LSTM-M1
Testing Phase

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Observed PC
Simulated PC

Pr
ob

ab
ilit

y

LSTM-CSA-M1
Testing Phase

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Observed PC
Simulated PC

Pr
ob

ab
ilit

y

LSTM-CSA-M1
Training Phase

Figure 5. Cont.



Water 2023, 15, 3515 12 of 17Water 2023, 15, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 5. The probability distribution function (CDF) of PC simulation. 

The CDF is a statistical concept used to compare the distribution of observed (empir-
ical) data with that of simulated (model-generated) data. It provides insights into how 
closely the simulated data matches the observed data in terms of their distribution and 
the likelihood of specific values occurring. The graph displayed that LSTM-CAS-M2 has 
the highest agreement between the observed and simulated PC. A good match between 
the observed and simulated CDFs suggests that the simulated PC data closely resemble 
the observed data in terms of their distribution. Since the CDFs align well, this indicates 
that the model’s predictions are consistent with the real-world desalination data. The com-
parison of CDFs is widely used in various fields, such as climate modeling, financial risk 
assessment, and quality control. Further numerical comparison of the results is presented 
using MAE measures. The MAE indicated the average absolute difference between the 
predicted and actual values. It gives a sense of the average magnitude of errors without 
squaring them. From the training results it can be seen that the MAE of LSTM-M1 = 0.0945, 
the MAE of LSTM-M2 = 0.0644, the MAE of the LSTM-CSA-M1 = 0.0399, and the MAE of 
the LSTM-CSA-M2 = 0.0945. The results show that the LSTM-CSA-M1 has the lowest MAE 
(0.0399), implying that it has the smallest average absolute error in predicting PC during 
the training phase (see Table 2). On the other hand, the LSTM-CSA-M2 has the lowest 
value for RMSE (0.3804), suggesting that it is the most accurate model in predicting PC in 
the training phase (see Figure 6). 

Table 2. Results of PC in desalination plant for LSTM-CSA. 

 Training Phase Testing Phase 
 MSE RMSE MEA MSE RMSE MEA 

LSTM-CSA-M1 0.1664 0.4079 0.0399 0.1985 0.4456 0.1985 
LSTM-CSA-M2 0.1447 0.3804 0.0945 0.1992 0.4463 0.1292 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Observed PC
Simulated PC

Pr
ob

ab
ilit

y

LSTM-CSA-M2
Training Phase

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Observed PC
Simulated PC

Pr
ob

ab
ilit

y

LSTM-CSA-M2
Testing Phase

Figure 5. The probability distribution function (CDF) of PC simulation.

The CDF is a statistical concept used to compare the distribution of observed (empir-
ical) data with that of simulated (model-generated) data. It provides insights into how
closely the simulated data matches the observed data in terms of their distribution and
the likelihood of specific values occurring. The graph displayed that LSTM-CAS-M2 has
the highest agreement between the observed and simulated PC. A good match between
the observed and simulated CDFs suggests that the simulated PC data closely resemble
the observed data in terms of their distribution. Since the CDFs align well, this indicates
that the model’s predictions are consistent with the real-world desalination data. The com-
parison of CDFs is widely used in various fields, such as climate modeling, financial risk
assessment, and quality control. Further numerical comparison of the results is presented
using MAE measures. The MAE indicated the average absolute difference between the
predicted and actual values. It gives a sense of the average magnitude of errors without
squaring them. From the training results it can be seen that the MAE of LSTM-M1 = 0.0945,
the MAE of LSTM-M2 = 0.0644, the MAE of the LSTM-CSA-M1 = 0.0399, and the MAE
of the LSTM-CSA-M2 = 0.0945. The results show that the LSTM-CSA-M1 has the lowest
MAE (0.0399), implying that it has the smallest average absolute error in predicting PC
during the training phase (see Table 2). On the other hand, the LSTM-CSA-M2 has the
lowest value for RMSE (0.3804), suggesting that it is the most accurate model in predicting
PC in the training phase (see Figure 6).

Table 2. Results of PC in desalination plant for LSTM-CSA.

Training Phase Testing Phase

MSE RMSE MEA MSE RMSE MEA

LSTM-CSA-M1 0.1664 0.4079 0.0399 0.1985 0.4456 0.1985

LSTM-CSA-M2 0.1447 0.3804 0.0945 0.1992 0.4463 0.1292
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However, the LSTM-CSA-M2 performs the best across all three metrics (MSE, RMSE,
and MAE) among the four models during the training phase for PC. The LSTM-CSA-M1
has the second-best performance, with the lowest MAE indicating the smallest average
absolute error. These metrics collectively offer insight into the accuracy and precision of
the model’s predictions, helping to identify which model is most suitable for predicting PC
in the desalination plant’s training phase. In intricate processes like desalination, where
uncertainties arise from both human activities and the characteristics of the source water,
the connections among physicochemical factors are prone to being nonlinear due to these
uncertain factors. The evidence in Table 2 indicates that the PC simulation was shown to
be a satisfactory and reliable simulation in the testing phase. The quantitative comparison
of the testing phase depicted that MSE measures the average of the squared differences
between the predicted and actual values. Lower MSE values indicate that the model’s
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predictions are closer to the actual values. In this case, the LSTM-CSA-M1 and LSTM-
CSA-M2 have the lowest MSE values, suggesting that these models have better overall
prediction accuracy in comparison to the other models. The numerical accuracy for each
model in the testing phase was as follows: LSTM-M1 (MSE = 0.3168, RMSE = 0.5628,
MEA = 0.1468), LSTM-M2 (MSE = 0.4284, RMSE = 0.6545, MEA = 0.1884), the LSTM-CSA-
M1 (MSE = 0.1985, RMSE = 0.4456, MEA = 0.1985), the LSTM-CSA-M2 (MSE = 0.1992,
RMSE = 0.4463, MEA = 0.1292). Similarly, the lower RMSE values indicate better predictive
performance. Similarly, LSTM-CSA-M1 and LSTM-CSA-M2 have the lowest RMSE values,
implying that these models are better at minimizing prediction errors. In this case, the
LSTM-CSA-M2 has the lowest MEA value, suggesting that it has the smallest average
prediction error. Based on these metrics, it appears that the models with the prefix LSTM-
CSA (LSTM with CSA) tend to perform better than the other models (LSTM without CSA)
across all three metrics. Additionally, between the LSTM-CSA-M1 and the LSTM-CSA-M2,
the latter (LSTM-CSA-M2) seems to outperform the former with slightly lower values in
most metrics (see Figure 7).
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4. Conclusions

In the face of ever-growing ecological challenges and the critical importance of the
sustainable development goals, it is evident that innovative solutions are a necessity. This
research highlights the transformative potential of artificial intelligence in advancing desali-
nation processes, particularly in addressing the global issue of water scarcity. By focusing
on the hybrid NF–RO process, this study introduces an AI model using deep learning LSTM
combined with the metaheuristic CSA, termed the LSTM-CSA. This model was rigorously
tested based on several performance criteria and validated using both external and internal
validation techniques, with a preliminary uncertainty assessment using a Monte Carlo
simulation. The statistical performance of the models was commendable. The LSTM model
displayed noteworthy accuracy, but the LSTM-CSA outperformed it, suggesting that the
integration of the CSA with deep learning augments predictive capability. This was further
corroborated via innovative 2D graphical visualization methods, such as the CDF and
fan plot, which added depth to the accuracy evaluation by accounting for various other
assessment indicators. Beyond just the technical accomplishments, the broader implications
of this research are profound. AI, as demonstrated, can be critical in making desalination
processes more energy-efficient, opening avenues for substantial energy savings. It can
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further guide the development of advanced techniques to treat brine, allowing for resource
extraction and thereby ensuring minimal wastage. In essence, an AI model is not only
reliable promise for enhancing desalination processes but also propels the sector toward
a more sustainable and efficient future. The quantitative summary is presented in the
following points.

• LSTM-M1: this model has an MSE of 0.3168, an RMSE of 0.5628, and an MEA of 0.1468.
Among the models listed, it performs better than LSTM-M2 but is outperformed by
both LSTM-CSA variants in all three metrics, indicating it has good predictive accuracy
and reliability.

• LSTM-M2: This model demonstrates the highest error rates across all three metrics,
with an MSE of 0.4284, RMSE of 0.6545, and MEA of 0.1884, indicating it has the least
predictive accuracy and reliability among the listed models.

• LSTM-CSA-M1: this model outperforms the LSTM models in all metrics with an MSE
of 0.1985, RMSE of 0.4456, and MEA of 0.1985. Its error rates are lower, showcas-
ing enhanced predictive accuracy and reliability, substantiating the effectiveness of
integrating the CSA with LSTM.

• LSTM-CSA-M2: this model reveals error metrics very close to the LSTM-CSA-M1,
with an MSE of 0.1992, RMSE of 0.4463, and an MEA of 0.1292. It has the lowest MEA
among all models, indicating it has the smallest average prediction error, making it
the most reliable model for predictions among the ones listed.
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