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Abstract: Underwater creatures play a vital role in maintaining the delicate balance of the ocean
ecosystem. In recent years, machine learning methods have been developed to identify underwater
biologicals in the complex underwater environment. However, the scarcity and poor quality of un-
derwater biological images present significant challenges to the recognition of underwater biological
targets, especially multi-target recognition. To solve these problems, this paper proposed an ensemble
method for underwater biological multi-target recognition. First, the CutMix method was improved
for underwater biological image augmentation. Second, the white balance, multiscale retinal, and
dark channel prior algorithms were combined to enhance the underwater biological image quality,
which could largely improve the performance of underwater biological target recognition. Finally,
an improved model was proposed for underwater biological multi-target recognition by using a
mask region-based convolutional neural network (Mask-RCNN), which was optimized by the soft
non-maximum suppression and attention-guided context feature pyramid network algorithms. We
achieved 4.97 FPS, the mAP was 0.828, and the proposed methods could adapt well to underwater
biological multi-target recognition. The recognition effectiveness of the proposed method was verified
on the URPC2018 dataset by comparing it with current state-of-the-art recognition methods including
you-only-look-once version 5 (YOLOv5) and the original Mask-RCNN model, where the mAP of
the YOLOv5 model was lower. Compared with the original Mask-RCNN model, the mAP of the
improved model increased by 3.2% to 82.8% when the FPS was reduced by only 0.38.

Keywords: underwater biological multi-target recognition; CutMix; image fusion; deep learning;
Mask-RCNN

1. Introduction

Underwater creatures have a strong relationship with the hydrological, life, and
ecology environment and affect the delicate balance of the ocean ecosystem. However, the
scarcity and poor quality of underwater biological images present significant challenges to
the recognition of underwater biological targets [1,2]. For instance, image quality relies on
the underwater vision system, which can execute image processing, feature extraction, and
recognition tasks [3]. However, due to the unique features of underwater environments, the
underwater data acquisition equipment has demanding specifications, and the collected
images may present problems such as distortion, small data scale, and target category
imbalance [4]. Furthermore, the capture and dispersal of light by water molecules and
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many suspended objects lead to blurred images, color distortion, image contrast reduction,
and other issues that make the recognition of underwater targets difficult. Apart from the
aforementioned challenges, the collected single images often contain multiple recognition
targets, which can be problematic due to occlusion, overlap, and other issues. Moreover,
these targets are typically small in size and occupy a relatively small portion of the image.

In recent years, many machine learning methods have been developed to identify
underwater biologicals in complex underwater environments. Traditional methods first
preprocess the image to make the target information more prominent, then classify or
recognize the target to obtain good results [5,6]. For example, Wang et al. [5] investigated a
novel regional saliency model for underwater object detection and obtained good results
under both uniform and uneven illumination conditions. Despite the previous methods
having achieved some advancements in specific scenarios, extracting feature information is
complicated and time-consuming; thus, they are unable to fulfill the demands for real-time
performance. In addition, most conventional approaches are employed for single-target
recognition. Unlike traditional methods, deep learning methods possess greater capacity
for expression and achieve higher accuracy in target recognition but require large-scale
datasets [7–9]. With the rapid development of information technology, the utilization
of deep learning-based target recognition technology has gradually been applied more
to underwater environments. Song et al. [1] believe that the intricate and constantly
changing underwater environment, along with the lack of adequate datasets, contribute to
subpar optical imaging quality, which in turn might result in overfitting issues in target
recognition models. Zhou et al. [2] posited that certain challenges encountered in the
marine environment such as complex backgrounds and low illumination could lead to
subpar picture quality. Additionally, the presence of small targets and multiple targets pose
difficulties for target recognition.

In summary, the challenges of underwater biological multi-target detection arise
from limited datasets, the poor quality of images, and machine learning model selection.
Existing research has struggled to achieve satisfactory recognition accuracy, particularly
for multi-target and multi-class recognition tasks. Consequently, it is vital to enhance,
reconstruct, and augment underwater images, and then select a robust deep learning model
for multi-target detection.

In order to address these issues, this paper proposed an image augmentation, image
enhancement method, and improved Mask-RCNN combined for underwater biological
multi-target detection and used three types of underwater creatures as examples of recog-
nition targets: starfish, sea urchin, and sea cucumber. First, image augmentation and
enhancement algorithms were applied to an original sample set to expand the dataset and
improve image quality. Then, an improved Mask-RCNN model was proposed to effec-
tively realize the underwater biological multi-target recognition. The flow of the proposed
method is presented in Figure 1.

The primary contributions of this research include:

(1) A commonly used image augmentation method and improved CutMix algorithm
were applied to expand dataset samples and solve the overfitting problem in deep
learning training due to the class imbalance that occurs in multi-target recognition.

(2) A novel method for underwater image enhancement based on simple weighted fusion
was proposed to enhance the image quality in complex underwater environments.

(3) The Mask-RCNN model was improved to prevent problems such as missed and false
detections, thereby improving the identification accuracy of the model. The results
revealed that the proposed model exhibited superior performance in comparison to
the other models.

The subsequent sections of this paper are structured as follows. Section 2 briefly
reviews the related works, and Section 3 proposes the processes and fundamental structure
of the proposed method. The data used in the study are described in Section 4, and the
results of the different methods are presented in Section 4. Section 5 discusses the findings
of the study and offers our conclusions.
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2. Related Works

Current research in underwater target recognition primarily focuses on three aspects:
image augmentation, image enhancement, and target recognition. Related works are briefly
reviewed in this section.

2.1. Underwater Image Augmentation

Image augmentation is a strategy used for increasing the quantity and diversity of
images in a limited dataset and to extract more information from images [10]. Common
image augmentation methods include (1) geometric transformation [11], which changes the
perspective of the original dataset and improves the robustness and recognition accuracy
of the model, (2) optics-based transformation augmentation [12], which involves two
main processes of illumination transformation and color space transformation, and (3) the
generation of new samples without changing the position of the original data to promote the
robustness of the model by adding noise, changing the image illumination, and applying
sharpness transformation.

Unlike the commonly used image augmentation methods, underwater image aug-
mentation methods are generally effective in various scenarios, but may lose efficacy for
underwater biological datasets due to the complex underwater environment, and labeling
a large number of underwater images is both expensive and time-consuming. For instance,
Huang et al. [13] proposed three data augmentation methods designed for underwater
imaging that validated the effectiveness of marine organism detection and recognition.
Noh et al. [14] developed a data augmentation method that used the unique properties of
light to improve the accuracy of object detection in underwater environments and thus
reduced the training effort. Despite these methods performing well in underwater image
augmentation, it should be noted that labeling numerous underwater images is costly and
time-consuming. Currently, the CutMix augmentation strategy has been applied for image
augmentation in other fields and has obtained good effects. For example, Yun et al. [15]
put forward the CutMix augmentation strategy, where patches were cut and pasted into
training images. In their strategy, ground truth labels were mixed in proportion to the
patched areas. Through the efficient utilization of training pixels and the retention of the
regularization effect from regional dropout, the CutMix augmentation strategy consistently
demonstrated superior performance compared to other state-of-the-art augmentation strate-
gies on tasks. With respect to the unique underwater environment, this study introduced
the CutMix augmentation strategy for marine underwater biological image augmentation.
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2.2. Underwater Image Enhancement

Existing methods used in underwater image enhancement can be divided into the
spatial domain- [16,17], transformation domain- [18,19], color constancy- [20], and deep
learning-based [21]. Spatial domain-based techniques include logarithmic transformation,
contrast stretching, histogram equalization, and sharpening. Transformation domain-based
methods transform the original image to the frequency domain through wavelet, Fourier,
and color space transforms. Color constancy-based methods employ the idea that when
the color of light on the surface of the object changes within a certain range, the perception
of the surface color of the object basically remains unchanged. Finally, deep learning
techniques employ deep neural networks to learn features for image enhancement.

For instance, Ghani et al. [16] integrated a color model with Rayleigh distribution to
improve underwater image quality, and the results revealed that the proposed model ex-
hibited superior performance in comparison to other models in terms of contrast and noise
reduction. Vasamsetti et al. [17] proposed a wavelet-based variational enhancement method
for underwater image enhancement, which might be useful in boosting the development of
underwater detection. Iqbal et al. [18] introduced the Laplace decomposition method for
underwater image enhancement and obtained good enhancement results. Jobson et al. [19]
introduced a solution called the multiscale retinex method to address the disparity between
color images and the human perception of scenes. Their approach successfully achieved si-
multaneous enhancements in dynamic range compression, color consistency, and lightness
rendition. Li et al. [20] proposed the WaterGAN method for real-time color correction of
monocular underwater images, which had been successfully applied to underwater image
enhancement. Li et al. [21] introduced a CNN model trained using the UIEB to enhance
underwater images, and the results showcased the versatility of the constructed UIEB.

2.3. Underwater Target Recognition

The aforementioned traditional recognition methods are complicated and time-consuming,
thereby hardly meeting the requirements of underwater target recognition. Thus, deep
learning models such as convolutional neural networks have been developed for target
recognition. Existing deep learning-based target detection methods can be divided into two
main categories: candidate window-based for higher detection accuracy and end-to-end
target detection for better real-time performance. Because convolutional neural networks
and deep learning techniques have exhibited impressive performance on datasets such
as Pascal VOC [3] and ImageNet [22], these methods and their improved versions are
increasingly being applied to underwater target recognition. Mittal et al. [23] presented
a survey of deep learning techniques for performing underwater image classification
to identify their similarities and differences. Chen et al. [24] proposed a modified you-
only-look-once version 4 (YOLOv4) neural network for underwater target recognition that
improved the target accuracy and recognition speed. Yeh et al. [25] introduced a deep model
that combined the learning of color conversion and object detection for underwater images,
where the image color conversion module transformed color images to corresponding
grayscale images to solve the problem of underwater color absorption. This method
improved the object detection performance while reducing computational complexity.

In conclusion, deep learning has strong generalization capabilities [26,27] and is effec-
tive in fish target recognition, benefitting from clear and rich underwater datasets [28–31].
For instance, Shi et al. [28] introduced an improved Faster-RCNN algorithm for underwater
biological detection, and the proposed model performed better than the YOLOv4 and
Faster-RCNN models. Li et al. [29] designed an underwater biological detection algorithm
that integrated the channel attention mechanism, and the proposed model was superior to
the original YOLOv4 algorithm. However, for multiple targets, realizing target recognition
under complex underwater environments is difficult because of the small datasets, uneven
sample categories, and poor underwater image quality. Few existing methods can achieve
high recognition accuracy, particularly for multiple targets. For example, Li et al. [32]
proposed an improved CME-YOLOv5 network to detect fish in dense groups and small
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targets, and the proposed algorithm exhibited good detection performance when applied
to densely spaced fish and small targets.

3. Proposed Method

In order to address the issues above-mentioned, this study proposed a novel approach
for underwater biological multi-target recognition. First, an improved CutMix-based image
augmentation method was proposed to expand the dataset. Second, a fusion-based under-
water image enhancement algorithm was presented to enhance the image quality. Finally, a
Mask-RCNN model was developed to realize underwater biological multi-target recognition.

3.1. Improved CutMix Based Underwater Image Augmentation

We first introduce the idea of CutMix, which enables the background to be converted
into an underwater background color before filling the sample in the cropped area to
achieve a better fusion effect. The flow of the improved CutMix algorithm is presented
in Figure 2. This study used starfish image augmentation as an example, and the specific
steps are as follows:

(1) Select the images of starfish with good clarity from the dataset and use the image
segmentation techniques to segment the starfishes, resulting in dataset X where the
background is black and only the main body of the starfish is retained.

(2) Select images with fewer organisms in the dataset to obtain dataset Y, in order to
avoid or reduce overlap with other types of organisms when expanding the number
of starfish in the dataset.

(3) Randomly select images from dataset Y without putting them back, calculating the
color channel components of the image background R, G, and B. Based on the require-
ments, add a certain number of starfish, randomly select multiple starfish images from
dataset X, and convert their black background into the calculated color components
to achieve a better fusion effect.

(4) Resize the selected starfish images and adopt the image fusion algorithm to fuse the
starfish images into the images selected from dataset Y in step 3, thus completing the
image segmentation of the starfish samples.

(5) Repeat steps 3 and 4 until there are no more images in dataset Y.

3.2. Image Fusion-Based Underwater Image Enhancement

Underwater images often present color decay, low contrast, and blurred details. In
order to address these issues and improve the accuracy of multi-target recognition, this
study combined the white balance algorithm (WBA), multiscale retinal with color restora-
tion (MSRCR), and dark channel prior (DCP) algorithms to enhance the underwater image
quality. The flow of image fusion-based underwater image enhancement is illustrated
in Figure 3.

3.2.1. White Balance Algorithm

The white balance algorithm (WBA) can effectively solve the color bias problem.
Common WBAs include the gray world (GW) and perfect reflector (PR) algorithms [33].
The GW algorithm performs very fast calculations, but often fails when the image color
transformation is not obvious. The PR algorithm also performs fast calculations, but the
selection of ratio parameters significantly affects the effectiveness of image processing. The
white balance processing results using the two algorithms are shown in Figure 4. This
study used the GW algorithm for underwater image enhancement, where the mean values
of the Ravg, Gavg, and Bavg channels were calculated as follows [24]:

Ravg = 1
mnumber

∑mnumber−1
0 R

Gavg = 1
mnumber

∑mnumber−1
0 G

Bavg = 1
mnumber

∑mnumber−1
0 B

(1)
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where the R, G, and B values denote the red, green, and blue components of each pixel,
respectively, Ravg, Gavg, and Bavg are the respective averages of all pixels, and mnumber is
the quantity of pixels in the image. Based on Equation (1), the mean value of RGB can be
obtained as

P = (Ravg + Gavg + Bavg)/3 (2)
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Next, the relative gain of each channel with respect to P can be determined in the
following manner: 

PR = P/Ravg
PG = P/Gavg
PB = P/Bavg

(3)

The pixel values are subsequently modified individually based on the calculated gains:
Rupdate = PR ∗ R
Gupdate = PG ∗ G
Bupdate = PB ∗ B

(4)

where Rupdate, Gupdate, and Bupdate represent the new values for each pixel.
The PR algorithm: Assume that there exists a pure white pixel in the image, and then

use this as a reference to perform automatic white balance on the image. As a result, the
pure white pixel is defined as the maximum values of R, G, and B. The algorithm for this
process is as follows:

(1) Calculate the sum of the R, G, and B values for each pixel and save the coordinates of
the brightest point in the image.

(2) Calculate the threshold T from the top 10% of the sum of R, G, and B or other ratio
reference points.

(3) Traverse through each point in the image and calculate the cumulative sum and
average of the R, G, and B components for all points where the sum of R, G, and B is
greater than the threshold T.

(4) Calculate the gain coefficients of each channel in the image according to the brightest
point value and the average calculated results in the previous step.

(5) Quantize each pixel to [0, 255] according to the gain coefficients.

3.2.2. Multiscale Retinal with Color Restoration

Jobson et al. [19] presented the retinex theory for image enhancement. The MSRCR
algorithm is a development of the retinex algorithm, making it suitable for a wide range of
applications. This approach utilizes the principle of color constancy and its mathematical
model, which can be solved through calculations [34]. The underlying assumption is that
an optimal image can be represented as

I(a, b) = R(a, b) · L(a, b) (5)

where L represents the luminance component, which is independent of the scene and
determines the dynamic range of the image, while R denotes the reflection component,
which remains independent of scene lighting. In their study, Jobson et al. [19] put forward
the single-scale retinex (SSR) algorithm, which relied on the principles of homomorphic
filtering. Nonetheless, this approach failed to address both the dynamic range and tonal
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contrast. In order to address these challenges, Rahman et al. [35] introduced the multi-scale
retinex (MSR) and MSRCR algorithms.

To address the limitations of the SSR algorithm, the MSR algorithm was developed
by incorporating various weighted scales of the SSR. The MSR algorithm strikes a balance
between image dynamic range and color fidelity and can be expressed as

RMSRi (a, b) =
N

∑
n=1

ωn · (ln Ii(a, b)− ln(G(a, b) · Ii(a, b))) (6)

G(a, b) =
1

2πσ2 e−
a2+b2

2σ2 (7)

where RMSRi represents the resulting transformed image of the ith component image I
(a, b) by employing the MSR algorithm. The wrap supporting function G (a, b) is utilized
in N different scales, where N denotes the number of dimensions or scales. For practical
purposes and improved calculation efficiency, it is common to employ three dimensions
(N = 3) in real-world applications. Typically, small, medium, and large scales are σ < 50,

50 ≤ σ < 100, and σ ≥ 100, respectively. Finally, ωn denotes the weights, where
N
∑

n=1
ωn = 1

in practical applications.
Note that the resulting images generated by the MSR algorithm may suffer from

significant color distortions. In order to address this issue, MSRCR is proposed, which can
be formulated as follows:

RMSRCRi (a, b) = Ci(a, b) · RMSRi (a, b) (8)

where Ci(a, b) represents the color restoration function employed to adjust the proportions
of the three color channels. Since we employed single-color channel imaging in MSRCR,
we redefined Ci(a, b) as

Ci(a, b) = ln(
Ii(a, b)

1
M ∑(a,b)∈Ω Ii(a, b)

) (9)

where M represents the overall number of pixels within the input image. We considered
the dynamic range of the hazy image in the transmittance estimation because it can provide
insights into the haze concentration and aids in accurate transmittance estimation. In
addition, this prevents oversaturation in the recovered image when the transmittance and
hazy image are too closely related. The results of different retinex algorithms are shown
in Figure 5.

3.2.3. Dark Channel Prior Algorithm

He et al. [36] proposed the DCP algorithm. Given an arbitrary image J, its dark channel
Jdark is given by

Jdark(a) = min
y∈Ω(a)

( min
c∈{rcolar ,gcolar ,bcolar}

Jc(b)) (10)

where Jc is a color channel of J, and Ω(a) is a local patch centered at a.
In computer vision, a main model for foggy images can be expressed as

I(a) = J(a) · t(a) + A · (1− t(a)) (11)

where I(a) is the brightness of the observed image, J(a) is the clear image, t(a) is the
transmittance, and A is the ambient light.
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The transmittance is given by

t = 1−min
Ω

(min
c

Ic

Ac ) (12)
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According to the transmittance and estimated atmospheric ambient light, a clear image
can be derived from

J(a) =
I(a)− A

t(a)
+ A (13)

The result of using the DCP algorithm is shown in Figure 6.
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3.2.4. Image Fusion-Based Underwater Image Enhancement

Due to complex and variable underwater environments, the underwater image en-
hancement algorithm cannot easily adapt to different scenes. To solve this problem, a novel
method for underwater image enhancement was designed to enhance the robustness of
the algorithm. First, the GW algorithm was applied to the original image to improve the
color deviation of the underwater image, and then the MSRCR and DCP algorithms were
applied to enhance the image. Finally, the resulting image was generated by weighted
fusion and contrast enhancement.

The image-weighted fusion formula is expressed as

img = img1 · p + img2 · (1− p) (14)

where img1 and img2 denote the first and second images to be fused, respectively, and p
is the weight coefficient. In weight fusion, the weight coefficient is mainly set by human
experience, which diminishes the effect of image fusion. Therefore, this study designed a
method for image fusion based on the sum of modulus of gray difference (SMD) to adjust
the weight coefficients to achieve better fusion results. SMD [37,38] is expressed as

SMD(k) = ∑
a

∑
b
| fk(a, b)− fk(a + 1, b)| · | fk(a, b)− fk(a, b + 1)|; k = 1, 2, 3, · · · (15)

where fk(a, b) represents the gray value of the kth pixel at point (a, b). SMD(k) represents the
result of the pixel traversal calculation for the entire image.

The MSRCR algorithm is first applied to an image to generate Image A, followed by
the GW and DCP algorithms to generate Image B. Then, the sharpness values qA and qB of
the two images are obtained by calculating them with the SMD. Finally, the fusion weight
coefficients are calculated according to the sharpness of the image fusion.

The weight coefficient p is expressed as

p =
qA

qA + qB
(16)

A sample of the results of our underwater image enhancement is shown in Figure 7.
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3.3. Underwater Biological Multi-Target Recognition Based on the Improved Mask-RCNN

To address the problems of target occlusion and overlap, this study used the soft
non-maximum suppression (soft-NMS) algorithm to enable the model to more effectively
detect and recognize occluded objects, and then used the attention-guided context feature
pyramid network (AC-FPN) to enable its application to small targets.
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3.3.1. Non-Maximum Suppression Algorithm

(1) NMS Algorithm

The NMS algorithm is a post-processing technique widely used in computer vision
applications [39–41]. The flow of the NMS algorithm can be described as follows:

Step 1: Arrange all of the bounding boxes in set B in descending order according to their
confidence scores.

Step 2: Calculate the intersection-over-union (iou) of the first bounding box M, which has
the highest confidence score, and the sequenced bounding boxes bi. The iou is
generally set manually. If iou (M, bi) exceeds the rigid threshold Nt, the confidence
score of bi will be set to zero.

Step 3: Move the proposal m, with bounding box M, into the set F, which is initialized with
an empty set.

Step 4: Repeat the above three steps for the remaining bounding boxes in B until complete traversal.

Set F represents the final prediction results. The NMS algorithm is given by

si =
{

si ,iou(M,bi)<Nt
si ,iou(M,bi)≥Nt

(17)

where si and bi represent the confidence score and bounding box of the ith proposal, and
Nt is a constant rigid threshold that ranges between 0 and 1.

However, NMS has two problems. First, all frames are sorted by confidence, but
the detection frame with the highest classification confidence is not necessarily the most
accurate position. Then, when the two objects are close to each other, the intersection
of the two objects and iou are higher than the threshold, and the phenomenon of false
filtering occurs.

(2) Soft-NMS

To solve the aforementioned problems, Bodla et al. [42] proposed an improved NMS
algorithm (soft-NMS) that reduces the confidence by replacing the deleted box with an
iou greater than the threshold. It is evident that the scores for detection boxes with a
higher overlap with M should decrease more significantly as they are more likely to
be false positives. In this study, the pruning step could be modified according to the
following guideline [42]:

si =
{

si ,iou(M,bi)<Nt
si(1−iou(M,bi)),iou(M,bi)≥Nt

(18)

This function reduces the scores of detections that surpass a threshold Nt based on
the extent of their overlap with M, using a linear equation. As a result, detection boxes
that are distant from M remain unaffected, while those in close proximity receive a more
significant penalty.

However, this function exhibits a lack of continuity in terms of overlap, resulting in
an abrupt imposition of penalties when the non-maximum suppression threshold of Nt is
reached. Ideally, the penalty function should be continuous; otherwise, abrupt changes
to the ranked list of detections could occur. A continuous penalty function should have
no penalty when no overlap occurs, and a very high penalty when there is a high overlap.
In addition, when the overlap is low, the penalty should be increased as M should not
affect the scores of boxes that have a very low overlap with it. However, when the overlap
of a box bi with M becomes close to 1, bi should be severely penalized. Accordingly, this
study adopted updating the pruning step with a Gaussian penalty function. The steps of
Algorithm 1 are as follows [42]:
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Algorithm 1: soft-NMS

Water 2023, 15, x FOR PEER REVIEW 12 of 21 
 

 

 

( )( ) ( )
( ) , ,

1 , , ,

i i t

i i i t

s iou M b N

i s iou M b iou M b N
s



− 
=

 
(18) 

This function reduces the scores of detections that surpass a threshold Nt based on 

the extent of their overlap with M, using a linear equation. As a result, detection boxes 

that are distant from M remain unaffected, while those in close proximity receive a more 

significant penalty. 

However, this function exhibits a lack of continuity in terms of overlap, resulting in 

an abrupt imposition of penalties when the non-maximum suppression threshold of Nt is 

reached. Ideally, the penalty function should be continuous; otherwise, abrupt changes to 

the ranked list of detections could occur. A continuous penalty function should have no 

penalty when no overlap occurs, and a very high penalty when there is a high overlap. In 

addition, when the overlap is low, the penalty should be increased as M should not affect 

the scores of boxes that have a very low overlap with it. However, when the overlap of a 

box bi with M becomes close to 1, bi should be severely penalized. Accordingly, this study 

adopted updating the pruning step with a Gaussian penalty function. The steps of Algo-

rithm 1 are as follows [42]: 

Algorithm 1: soft-NMS  

Input: B = {b1, …, bn}, S = {s1, …, sn}, Nt 

B is the list of initial detection boxes 

S contains corresponding detection scores 

Nt is the NMS threshold 

begin 

D←{} 

While B ≠ empty do 

m ← argmax S 

M ← bm 

D ← D ⋃ M; B ← B ‒ M 

for bi in B do 

if iou (M, bi) ≥ Nt then 

B ← B ‒ bi; S ← S ‒ si 

end                               NMS 

 

si ← si f(iou (M, bi)) 

                                 soft-NMS 

end 

end 

return D, S 

end 

3.3.2. Improved Feature Pyramid Network 

(1) FPN 

FPN was introduced to harness the inherent multiscale feature representation of deep 

convolutional networks. In particular, by incorporating a top–down pathway, FPN inte-

grates low-resolution large-receptive-field features with high-resolution small-receptive-

field features to effectively detect objects across various scales. Thus, the FPN alleviates 

the conflicting requirements of the feature map resolution and receptive fields. However, 

the following problems remain in current FPN-based approaches: 

(i). The nearest neighbor interpolation method is adopted for the process of upsampling, 

but the high-level semantic information may not be transmitted effectively. 

(ii). A lack of effective communication exists among multi-size receptive fields. 

3.3.2. Improved Feature Pyramid Network

(1) FPN

FPN was introduced to harness the inherent multiscale feature representation of
deep convolutional networks. In particular, by incorporating a top–down pathway, FPN
integrates low-resolution large-receptive-field features with high-resolution small-receptive-
field features to effectively detect objects across various scales. Thus, the FPN alleviates the
conflicting requirements of the feature map resolution and receptive fields. However, the
following problems remain in current FPN-based approaches:

(i). The nearest neighbor interpolation method is adopted for the process of upsampling,
but the high-level semantic information may not be transmitted effectively.

(ii). A lack of effective communication exists among multi-size receptive fields.
(iii). The FPN network applies four stages of backbone network output, which may not be

sufficient for output multi-scale information.

(2) AC-FPN

To tackle these problems, Cao et al. [43] proposed the adaptive context feature pyramid
network (AC-FPN) architecture, which takes advantage of distinctive data from different
extensive receptive fields by combining features guided by attention across multiple paths.
The model comprises two modules: a context extraction module (CEM) that investigates ex-
tensive contextual information from multiple receptive fields and an attention-guided mod-
ule (AM) that intelligently captures the significant dependencies among objects through
the implementation of the attention mechanism. The AM is introduced to address the
issue of misleading localization and recognition caused by redundant contextual relations.
It is composed of two submodules: the context attention (CxAM) and the content atten-
tion (CnAM) modules. These submodules are responsible for capturing discriminative
semantics and locating precise positions, respectively. Notably, the AC-FPN can be easily
integrated into existing FPN-based models, offering enhanced performance and flexibility.
The architecture of the AC-FPN model is shown in Figure 8.
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Figure 8. Architecture of the AC-FPN model.

As shown in Figure 8, the CEM can obtain a considerable amount of context infor-
mation from multiple experience fields and capture large receptive field information with
different expansion rates of the multipath convolution layer by increasing the amount of
calculation. The CEM takes the F5 of FPN as the input and retains the high-resolution
information of input features. However, the redundant context of the CEM module may
have adverse effects on localization and recognition.

Because the context extraction module has excess receptive field information, the
AM adopts the attention mechanism to adapt to the saliency dependence of the captured
object. The AM consists of the CxAM, as shown in Figure 9, and CnAM, as shown in
Figure 10, which play the roles of capturing discriminative semantics and locating precise
positions, respectively [43].
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4. Experimental Results and Analysis

The proposed approach for underwater biological multi-target recognition was applied
and included developing an underwater dataset, configuring parameters, and establish-
ing evaluation criteria. Underwater biological multi-target recognition results were then
obtained. The performance of the proposed method was demonstrated by experimen-
tal comparison with other methods of underwater biological multi-target recognition to
demonstrate the superiority of using the common criteria.

4.1. Development of the Underwater Dataset

The dataset used in this study was obtained from the 2018 Underwater Robot Picking
Contest (URPC2018) provided by the organizing committee of the National Underwater
Robot Competition (http://www.urpc.org.cn/index.html# (accessed on 15 January 2022)).
The dataset was first screened to remove blurred and bio-dense underwater images, and
a new dataset was then constructed using image augmentation and annotation. The
construction process is presented in Figure 11.

4.2. Selection of Underwater Dataset

The dataset used in this study for real underwater environments (which included
underwater reef and sediment environments) was derived from the Dalian Zhangzidao
Marine Ranch. The marine ranch is one of the first national marine ranch demonstration
areas in China and is rich in sea cucumbers, urchins, starfish, and other marine animals. The
shooting data are real and representative. Some partial representative images are shown
in Figure 12. The sizes of the images were different (Figure 12a), and the environments
complex (Figure 12a,b). As the red parts of Figure 12a,b shows, the color of sea cucumbers
approximates that of sediment or rocks at the sea bottom, which is more difficult to identify
in multi-aquatic environments.

To ensure the quality of the model training images, blurred and dense images were
cleaned. The results are shown in Figure 13. The initial dataset had 400 underwater
images including 644 sea urchins, 375 sea stars, 543 sea cucumbers, and 1562 marine organ-
isms. The dataset had an imbalanced number of sea stars and sea urchins represented in
the images.

http://www.urpc.org.cn/index.html#
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4.3. Parameter Configuration and Evaluation Criteria

This study used the Ubuntu operating system as the working platform and the Ten-
sorFlow GPU 1.13.1 as the deep learning framework for dataset training. In addition, the
Mask-RCNN model was designed for underwater biological multi-target recognition, and
the parameter settings were as follows. ResNet101 was selected as the backbone network,
and the initial learning rate was 0.001. Because only one GPU was required for acceler-
ated training in the experiments, images_per_gpu = 1, and each epoch included 100 steps
(Steps_per_epoch = 100), with a total number of epochs = 120.

To estimate the performance of the convolutional neural network model, the evaluation
criteria included the precision, recall, average precision (AP), and mean AP (mAP) [31].

4.4. Underwater Image Augmentation Results

The initial dataset contained 400 images. The image augmentation method based
on CutMix expanded the dataset to 1000 images, where the numbers of sea urchins,
starfish, and sea cucumbers shown in these 1000 images were 1367, 1298, and 1326, respec-
tively, totaling 3991 sea creatures. The augmented dataset was then divided based on a
6:2:2 ratio; that is, the training, validation, and test sets contained 600, 200, and 200 images,
respectively. The augmented images based on the improved CutMix method are shown in
Figure 14. The number of organisms to be identified between the initial and augmented
datasets is listed in Table 1.

Table 1. Number of organisms to be identified.

Category Sea Urchins Sea Cucumbers Starfish

Initial number of creatures 644 543 375
Number of creatures after augmentation 1367 1326 1298
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Figure 14. Image augmentation results based on the improved CutMix method: (a) original image A;
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To verify the generalization ability of the improved CutMix method, this study used
the original and augmented datasets for training in conjunction with the Mask-RCNN
model, and the comparison results are listed in Table 2.

Table 2. Comparison of the image augmentation results.

Image Augmentation Sea Urchins (AP) Sea Cucumbers (AP) Starfish (AP) mAP

No 0.759 0.733 0.691 0.728
Yes 0.804 0.794 0.791 0.796

As shown in Table 2, the identification accuracy for starfish with a small number was
relatively low due to the imbalanced number of creatures in the original dataset, which
was 0.037 less than the mAP. Under the image augmentation approach, the identification
accuracy of sea cucumbers, starfish, and sea urchins increased by 0.061, 0.10, and 0.045,
respectively. In addition, the mAP was 0.796, which was 0.068 greater than that of the initial
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dataset. The number of starfish was approximately balanced with the other categories of
creatures after image augmentation, and the recognition accuracy was the most significantly
improved compared with other methods. Compared with the other two types of organisms,
the AP value for sea cucumbers was the lowest because sea cucumbers have a similar color
to sediment or rock, making them more difficult to distinguish.

In summary, the image augmentation method improved the recognition accuracy, and
the augmented dataset could be used for training in subsequent comparison experiments.

4.5. Underwater Image Enhancement Results

To verify the effectiveness of the underwater image enhancement method based on
image fusion, the unenhanced and enhanced datasets were trained using the Mask-RCNN
model based on the augmented image dataset. The comparison results are listed in Table 3.

Table 3. Comparison of the image enhancement results.

Image Enhancement Recall Precision mAP

No 0.809 0.791 0.796
Yes 0.817 0.823 0.812

The recall, accuracy, and mAP were improved after the image enhancement method
was applied, revealing that the appropriate enhancement algorithm could improve the
identification accuracy of the model. In addition, the mAP improvement was relatively
minimal because more feature information is learned after the dataset is augmented, and
further improving the accuracy is difficult.

4.6. Underwater Biological Multi-Target Recognition Results

To address the problems of occlusion and overlap, this study adopted the soft-NMS
algorithm to improve the model’s ability to detect and recognize occluded objects. An
improved FPN (AC-FPN) was then designed to ensure that the model was suitable for
small targets. To sufficiently demonstrate the superiority of the proposed improved Mask-
RCNN model for underwater biological multi-target recognition, current state-of-the-art
deep learning models including YOLOv5 and the original Mask-RCNN were compared.
YOLOv5 (Ultralytics) is an end-to-end single-stage algorithm, but no studies have reviewed
YOLOv5. The comparison results are listed in Table 4.

Table 4. Comparison of the recognition results.

Model mAP FPS

YOLOv5 0.661 26.72
Mask-RCNN 0.796 5.35

Proposed 0.828 4.97

It can be seen that the mAP of YOLOv5 was lower, but the detection speed was the
fastest. Compared with the original Mask-RCNN model, the mAP of the proposed model
increased by 3.2% to 82.8%, while the speed was reduced by only 0.38, proving the effective-
ness of the improved method. The recognition and instance segmentation results finished
by the proposed method are shown in Figure 15. As can be seen from Figure 15, the detec-
tion and instance segmentation results finished by the proposed improved Mask-RCNN
model were satisfactory, and different underwater creatures were labeled by different
color boxes.
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5. Conclusions

The scarcity and poor quality of underwater images present significant challenges to
underwater target recognition. To solve these problems, this paper proposed an image
augmentation, image enhancement method, and improved Mask-RCNN combined for
underwater biological multi-target detection. Image augmentation and enhancement
algorithms were applied to the original sample set to expand it and improve the image
quality. An improved Mask-RCNN model was further proposed to realize underwater
biological multi-target recognition. The novelty of our proposed method is in its use
of image augmentation based on the improved CutMix, image enhancement based on
image fusion, and multi-target recognition based on the improved Mask-RCNN. Instance
segmentations of three underwater creatures (sea cucumbers, urchins, and starfish) were
used to evaluate the proposed methods, and the results showed that the proposed methods
could perform underwater biological multi-target recognition effectively, obtaining highly
accurate and reliable recognition results.

This article provides a viable solution to underwater biological multi-target recog-
nition. We acknowledge that the practical application of the proposed method remains
difficult because of the poor quality of underwater images, the limited datasets, and
scarcity of computing resources. Furthermore, like most underwater biological multi-target
recognition systems, this method is not suitable for long-distance underwater biological
multi-target recognition. In future research, we will improve the quality of underwater
images and expand our database. In addition, future studies will include investigating a
greater number of deep learning models and their parameter-optimization algorithms.
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