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Abstract: The WINDS (Water-Use, Irrigation, Nitrogen, Drainage, and Salinity) model uses the
FAO56 dual crop coefficient and a daily time-step soil–water balance to simulate evapotranspiration
and water content in the soil profile. This research calibrated the WINDS model for simulation of
guayule under full irrigation. Using data from a furrow irrigated two-season guayule experiment in
Arizona, this research developed segmented curves for guayule basal crop coefficient, canopy cover,
crop height and root growth. The two-season guayule basal crop coefficient (Kcb) curve included
first and second season development, midseason, late-season and end-season growth stages. For a
fully irrigated guayule crop, the year one midseason Kcb was 1.14. The second year Kcb development
phase began after the crop was semi-dormant during the first winter. The second year Kcb value was
1.23. The two-season root growth curve included a growth phase during the first season, no growth
during winter, and a second growth phase during the second winter. A table allocated fractions of
total transpiration to soil layers as a function of root depth. With the calibrated tables and curves, the
WINDS model simulated soil moisture content with a root mean squared error (RMSE) of 1- to 3-%
volumetric water content in seven soil layers compared with neutron probe water contents during
the two-year growth cycle. Thus, this research developed growth curves and accurately simulated
evapotranspiration and water content for a two-season guayule crop.

Keywords: irrigation scheduling; model; evapotranspiration; soil water; root activity; cotton

1. Introduction

The WINDS (Water-Use, Irrigation, Nitrogen, Drainage, and Salinity) model currently
evaluates irrigation experiments and will potentially provide decision support for irrigated-
crop management in the U.S. Southwest. This research calibrated the WINDS model for
simulation of guayule irrigation.

Irrigated agriculture in the southwestern U.S. desert is beset by water shortages due to
ongoing drought and reallocation of available water supplies to industrial and municipal
uses [1]. Efficient crop water management practices and alternative low water use and
drought tolerant agricultural crops with economic potential are needed [2]. Guayule
(Parthenium argentatum, A. Gray) is the top alternative crop entering the crop mix in Arizona.
It is a perennial shrub native to the Chihuahuan Desert that produces high-quality natural
rubber, appropriate for manufacturing commercial-grade tires [3]. In addition, it produces
resin, which has many potential applications, and bagasse, which can be converted to
biofuel or high-density composite boards [4]. Guayule is normally grown for two years
before the first harvest. It can be regrown and harvested in two to three-year cycles [5,6].
Guayule is a drought tolerant plant that survives high temperatures and limited amounts
of water. Its acclimation to the arid desert environment gives it great resiliency, where
it can produce rubber yields with as little as 500 mm of applied water per year [7] and
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survive on just a few irrigations per year [8]. Previously, the conventional wisdom was
that guayule rubber productivity was maximized when irrigation applications replace
full crop evapotranspiration (ETc) requirements, which are on the order of about 1500 to
1600 mm per year [9–12]. However, recent research [8] showed that rubber productivity (kg
rubber/kg water) could be optimized with annual applications in the range of 700 mm/year.
This makes it an attractive crop at a time when many farmers face water cutbacks.

Irrigation simulation models based on a soil–water balance (SWB) provide a means to
improve irrigation scheduling decision-making and optimize irrigation water use [13,14].
Many daily SWB irrigation simulation models are available, including AquaCrop [15],
CROPWAT [16], and SIMDualKc [17]. While various methods have been used to estimate
the ETc component of the SWB, current models [14] predominantly use the FAO56 single
crop coefficient method [18] that computes ETc as Kc times ETo, where Kc is the crop coeffi-
cient and ETo is the reference evaporation calculated by the standardized Penmen-Monteith
equation using local weather data. The daily ETc is computed more precisely by using the
FAO56 dual crop coefficient procedures that separates Kc into its basal (Kcb, transpiration)
and soil evaporation (Ke) factors [18]. Pereria et al. [19,20] provide standardized Kc and
Kcb data for major agricultural crops, excluding guayule. Many others have derived crop
coefficients for local environments based on measurements of actual ETc [21–24].

Remote sensing indices can be integrated within the FAO56 dual procedures to provide
real-time estimation of Kcb during the growing season [14]. Remote sensing has been used
to estimate crop coefficients for cotton [25], wheat [26], vegetables [27] and sugar cane [28].
A recent study estimated daily Kcb from satellite data. [29]

Tractor-based systems enable site specific irrigation scheduling. Electrical resistance
tomography was combined with satellite images and an FAO56 ET model to characterize or-
chard evapotranspiration [30]. Multiple sensors were deployed on a tractor to characterize
spatially variable water content and other properties for site-specific irrigation [31].

Inexpensive soil sensors connected to the cloud have enabled automated irrigation
scheduling [32–35]. Several drip irrigation companies offer automated irrigation scheduling
with their proprietary soil sensors and irrigation controllers.

Irrigation scheduling can incorporate economic analysis to optimize water productivity
and profit [36,37].

The WINDS (Water-use, Irrigation, Nitrogen, Drainage, and Salinity) soil–water bal-
ance model [38] is a research tool and irrigation scheduling app. This research was
part of the calibration work for the model in the Sustainable Bioeconomy for Arid Re-
gions (sbar.arizona.edu) guayule irrigation experiments. The data and simulations from
this and other SBAR irrigation experiments are available at the public viz WINDS site
(https://viz.datascience.arizona.edu/WINDS/, 10 September 2023). To view data from
this experiment, click “Select a planting”, and choose “2018 Maricopa Guayule Flood 100%
Average”, or any of the replicates, and chec k “Field Data”.

The WINDS model uses daily time-steps, employing a tipping bucket approach dur-
ing infiltration events and Richards’ equation [39] between infiltration events. Previous
research demonstrated that the Richards’ equation parameters (Mualem-Van Genuchten
soil characteristics) have minimal influence in sandy loam soils, such as the soil in this
research [38]. Almost all the soil flux between layers is accounted for in the tipping bucket
model. The WINDS model calculates crop evapotranspiration with the FAO56 dual crop
coefficient procedure. The WINDS model uses a root activity and root depth table to
estimate soil water depletion as a function of depth and growth phase [38].

The overall goal of this research was to use data from a two-year guayule furrow
irrigation experiment in central Arizona to parameterize the WINDS model for irrigation
prediction and soil water simulation in layers. This research specifically used the Furrow
100 treatment, which was full replacement of ET to field capacity. Experimental methods
are described in detail in [12,40,41]. The robustness of the calibrated curves was evaluated
at six neutron probe access tubes in the F100 treatment.

https://viz.datascience.arizona.edu/WINDS/
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2. Materials and Methods

On 20 April 2018, guayule (USDA AZ-2 germplasm) was directly seeded using a
four-row planter in a 1.0 ha field at the University of Arizona Maricopa Agriculture Center
(MAC) farm in Maricopa, AZ (33.07◦ N lat; 111.97◦ W long; 361 m a.s.l.). The field consisted
of 18 plots, each containing 6 rows spaced 1.02 m apart and 6.1 m wide. After planting, the
field was wetted daily using sprinkler irrigation for two weeks with total applied water
of 284 mm to germinate and establish of the crop. Next, the plots were given a uniform
flood irrigation treatment totaling 600 mm between May and June 2018. Afterwards, the
irrigation study commenced on July 2018, employing differential irrigation treatments.
In the furrow (flood) treatment, which is the subject of this research, there were 68 total
irrigation events with 12 sprinkler germination events and 56 furrow (flood) irrigation
events. Elshikha et al. [12,40] provided a complete description of the experiment.

The irrigation study utilized a split-plot experimental design with field location as the
main plot and the specific irrigation treatments as the split-plots. The field was divided into
three blocks, each containing six randomly assigned treatments. Each block consisted of
five subsurface drip irrigation (SDI) treatments labeled as D50, D75, D100, D125 and D150
and one flood irrigated treatment known as F100. The field map outlining this split-plot
design along with all F100 access tubes marked as R1–R6 are shown in Figure 1. Only the
F100 access tubes are displayed in the map because that was the focus of this research,
which focused on flood irrigation simulation. All other treatments were drip treatments. In
the F100 treatment, water was applied when the soil water depletion reached 55%. Furrow
plots (flood) were irrigated using an overflow rise valve at the end of each plot. The flow
rate and water volume for furrow (flood) irrigations were measured with a calibrated
in-line propeller water meter.

Irrigation timing and depth were based on measured soil water contents in the F100
treatment. Depletion was the product of layer thickness and the difference between field
capacity and measured water content in each layer. Irrigation depth was the sum of
depletions in all layers in the root zone. Procedures outlining the direct calculation of crop
evapotranspiration (ETc) between two soil moisture reading dates using the FAO 56 dual
crop coefficient method [18] are described by [25].

Meteorological data was obtained from the Arizona Meteorological Network (AZMET;
https://cals.arizona.edu/AZMET/index.html, 10 September 2023) [42] located at the MAC
farm site. Weather parameters required for the WINDS model include daily minimum
and maximum air temperatures, minimum relative humidity, wind speed, and daily
precipitation. The AZMET station calculates daily reference evapotranspiration (ETo) based
on the ASCE standardized Penman–Monteith model [43].

The soil was a Casa Grande series (Fine-loamy, mixed, superactive, hyperthermic
Typic Natrargids) [44].

Six 2.25 m long by 51 mm diameter galvanized steel access tubes were installed in three
flood irrigation treatment plots. The neutron moisture meter (Campbell Scientific) measured
soil–water content from 0.15 m to 1.95 m below the soil surface in 0.3 m increments. Soil
moisture readings were taken at weekly or biweekly intervals from 7 August 2018 to
3 March 2020 for a total of 59 sampling dates. Volumetric soil water content (θv) is calculated
from NMM standard counts (SC) and readings (C) along with probe slope (m) and intercept
(b). The slope and intercept were derived from soil tests taken at three locations in the
field. Separate slope and intercept values were calculated for the top layer due to its
proximity to the surface. There were seven soil layers of 30 cm depth in the WINDS
model, corresponding with NMM sampling depths. The upper layer was divided into the
evaporation layer (layer eight), which was 0–11.5 cm, and layer seven, from 11.5 to 30 cm.

The WINDS model inputs for this research included irrigation, weather, root character-
istics, canopy growth, crop coefficient and other crop growth parameters, wetted fractions,
soil layers, ET fractions, and neutron probe measurements. Inputs are set up in database
format. For example, a single irrigation page includes irrigation data for all experiments.
For this experiment, the WINDS model had seven soil layers plus an evaporation layer

https://cals.arizona.edu/AZMET/index.html
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corresponding with Neutron Moisture Meter (NMM) water content readings for the soil
profile. Primary soil parameters for this research were field capacity and permanent wilting
point because the primary water transport calculation was with the tipping bucket model.
Weather parameters were from the Arizona Meteorological Network (AZMET), which has
a station within 200 yards of the experiment. Wetted fractions table specifies the fraction
wetted in the horizontal direction, which was 1.0 for all layers with surface irrigation.
The ET fractions table specifies the fractions of ET from each layer as a function of root
depth. This table was parameterized based on observed wetting patterns. Further detail on
WINDS model parameterization is in the Results section.
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Figure 1. Map of guayule irrigation treatments at the MAC with two NMM access tubes per replicate.
The D50–D150, and F100 replicates represent drip and furrow (flood) treatments, respectively. Neu-
tron probe access tubes are represented by white circles. The six neutron probe access tubes in this
research are marked with a red x.

In this research, the WINDS model was initially calibrated against the average of
five neutron probe locations. One access tube was left out of the average because it had
dramatically different soil characteristics in the lower layers. The WINDS model was then
evaluated for each individual neutron probe access tube.

Manual measurements of plant height and canopy cover were conducted for nine
plants per plot once every 30 days from June 2018 through March 2020. The measurements
were used to calibrate the RGB estimations of canopy cover [40]. Figure 2 is an RGB
image of the experiment. The three furrow replicates used in this research are marked.
Two drone systems collected the RS data. The first was a Phantom 4 Pro V2.0 drone (Da-
Jiang Innovations (DJI), Nanshan District, China). It collected RGB images 30–60 m above
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the ground. Canopy cover was calculated from the RGB images through a hue, saturation
and intensity (HIS) color space algorithm [45]. Weekly drone flights generated weekly
averages for the interior of each plot.
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Figure 2. An RGB image of the guayule irrigation experiment at the Maricopa Agricultural Center
with the three fully irrigated flood (F100) treatment plots marked. Two neutron probe access tubes
were in each furrow plot. Image collected August 2019. Note that this figure has a different orientation
than Figure 1, rotated 90 degrees counterclockwise.

The second drone system was an Inspire 2 (DJI, Nanshan District, China) that contained
a multispectral MicaSense Altum sensor, which has five bands (Blue [475 nm], Green
[560 nm], Red [668 nm], Red Edge [717 nm], Near Infrared [842 nm]) and a thermal infrared
(LWIR) band [8000–14,000 nm]. Reflectance from the crop canopy (near infrared [NIR]
and red [R]) allowed for the generation of a Normalized Difference Vegetation Index
(NDVI) [46].
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3. Results

This section presents the unique plant and root growth curves for the two-season
guayule crop. This is followed by the ET fractions table, which specifies water uptake
per layer as a function of root depth. The bimodal guayule evapotranspiration curves
are calculated with the WINDS model, and simulated moisture contents are compared to
NMM water contents in layers.

3.1. Plant Height and Fractional Canopy Cover Curves for Two-Season Guayule

Segmented plant growth and canopy cover curves were developed for guayule (Figure 3).
The plant height curve was based on weekly plant height measurements (Figure 3). The
canopy cover curve (fc) was based on weekly drone RGB measurements (Figure 3). Canopy
cover for guayule has three stages: initial (I), development (D) and endseason (E). The sim-
ulated fc and plant height curves are used for the calculation of the evaporation coefficient
(Ke). Unlike most crops which have exponential canopy cover curves, the guayule canopy
cover increases linearly. The canopy cover has a longer development phase (D) than root
depth and plant height. There was complete canopy cover (100% fc) by the end of the first
growing season (180 days). A linear regression equation that represents canopy cover for
guayule from RGB measurements was developed by Elshikha et al. [40].
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Figure 3. Plant growth curves for crop height and canopy cover (Fc %) for the F100 average treatment.
The solid lines are the estimated WINDS height and canopy curves used in the model. The points are
the manual plant height measurements and the remote sensing (RS) measurements (RGB (red green
blue)). Fc [I = Initial, D = Development, E = Endseason]: Crop Height [I = Initial, D1 = Development
year one, M1 = Midseason year one, D2 = Development year two, M2 = Midseason year two]. Day of
Year (DOY) refers to days after 1 January 2018.

Plant height and root growth curves have similar two-year growth curves, which
consist of an initial stage (I), and two development (D1 & D2) and midseason (M1 & M2)
stages (years 1 and 2). Plant height started at 0.10 m at the initial stage and then increased
steadily during the first development stage (D1) until it reached a height of 0.73 m by
November of 2018. It then remained constant during the first-year midseason (M1) stage
during fall and winter seasons. Growth resumed (D2) in March of 2019. It then remained
constant after July 2020 (M2). The M1 and M2 plant heights were 0.71 and 0.90, respectively.
Specific data for all plant growth and Kcb curves are available in Supplemental data in the
“Guayule WINDS furrow input” workbook, “Plantings” worksheet.
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3.2. Root Growth Curve and Evaporation Fractions per Layer

Guayule has a two-phase root growth pattern (Figure 4). The growth curve was based
on observed soil moisture depletion patterns. Roots grew to 1.55 m depth during the first
growing season (D1). Root depth remained constant during the winter dormancy period
(M1). During the second development phase (D2), roots grew from 1.55 to 2.00 m, which
was the lower limit of soil measurements from the NMM. Roots might have grown beyond
2.00 m; however, there was minimal soil water extraction in the lower layers so neglecting
root uptake below 2.00 m had minimal effect on the overall simulation. This might not be
the case in deficit treatments where roots might pull more water from lower layers.
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Figure 4. Root growth curves for the F100 average treatment. I = Initial growth stage. D1a = year one
development stage part one, D1b = year one development stage part two, M1 = year one midseason
stage, D2 = year two development stage, M2 = year two midseason stage. Day of Year (DOY) refers
to days after 1 January 2018.

Correlation between the WINDS model soil moisture curves and NMM readings
during D1 for the middle layers required a change in slope in root growth during D1. This
created two separate D1 development periods (D1a and D1b). During D1a, root depth
increased from 0.10 to 0.50 m during the first 75 days (5 mm d−1). During the second part
of the first development stage (D1b), root growth rate increased, increasing from 0.50 m to
1.55 m during the next 100 days (10 mm d−1). During the development (D2) phase in year
two, depth increased from 1.55 to 2.00 m in 120 days (4 mm d−1).

The ET fractions table (Table 1) assigns fractions of transpiration to layers as a function
of root depth. As with root growth, the parameterization of layers for each root growth
depth (columns) was based on comparison of the WINDS simulation to observed soil mois-
ture depletion patterns. Most of the transpiration was allocated to the two layers below the
evaporation layer (layers 6 and 7). Higher ET fractions in upper layers corresponded with
greater fluctuations of water content in the WINDS simulation and in the NMM readings.
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Table 1. ET Fraction table for F100 (flood) treatment for different phases of the growing season. Left
column is bottom depth of layers. Fractions represent the fraction of total crop transpiration from
each layer.

Depth of Layer Root Penetration Level

Layer 7 Layer 6 Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

Fraction of Transpiration Per Layer

Evap layer (0–0.11 m) 0.5 0.05 0.05 0.05 0.05 0.05 0.05
Layer 7 (0.11–0.3 m) 0.5 0.49 0.48 0.46 0.42 0.34 0.3
Layer 6 (0.3–0.6 m) 0 0.46 0.43 0.4 0.36 0.34 0.3
Layer 5 (0.6–0.9 m) 0 0 0.04 0.06 0.07 0.09 0.13
Layer 4 (0.9–1.2 m) 0 0 0 0.04 0.05 0.06 0.06
Layer 3 (1.2–1.5 m) 0 0 0 0 0.05 0.0 0.06
Layer 2 (1.5–1.8 m) 0 0 0 0 0 0.06 0.06
Layer 1 (1.8–2.1 m) 0 0 0 0 0 0 0.04

3.3. Basal Crop Coefficient (Kcb) Curve

Table 2 lists the Kcb stages for guayule. Weekly Kcb crop coefficient values were
calculated from NDVI values provided by El Shikha et al. (2022). The remote sensing
NDVI-Kcb relationship was calibrated with data from the same experiment. Then, the
segmented Kcb curve used in the WINDS model was estimated based on the weekly Kcb
values (Figure 5).
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Figure 5. The basal crop coefficient from remote sensing (RS Kcb) and WINDS (WINDS Kcb) for the
guayule flood irrigation treatment. Day of Year (DOY) refers to days after 1 January 2018.

The two seasons had similar development, midseason, and endseason growth periods
for this two-year crop (Table 1). The second-year growth stages (D2, M2, L2, E2) had
periods that were 1.5 to 2.0 times longer than the first-year growth stages (D1, M1, L1,
E1). The first development period, D1, lasted from June to August of 2018. The second
season development (D2) went from March to June of 2019. This analysis is based on the
typical planting date in April of the first year, but the crop resumes growth from March
of the second year; however, commercial guayule production might incorporate different
planting and harvest dates due to the possible need to deliver a constant feedstock to the
production plant. The Kcb for the second summer, M2, was 1.23, which was larger than
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the first summer, M1, Kcb value of 1.14. This segmented Kcb curve resulted in accurate
simulation of soil moisture in layers.

Table 2. Basal crop coefficient with nine growth stages of two-season guayule. Day of Year (DOY)
refers to days after 1 January 2018.

Name of Growth Stage DOY Periods Kcb Value(s) Duration (Days) Calendar Date Periods

Initial 110–155 0.2 45 April–June 2018
Year One Development (D1) 156–230 0.2–1.1 75 June–August 2018

Year One Midseason (M1) 231–325 1.1 95 August–November 2018
Year One Lateseason (L1) 326–360 1.1–0.53 35 November–December 2018
Year One Endseason (E1) 361–440 0.53 80 January–March 2019

Year Two Development (D2) 441–530 0.53–1.23 90 March–June 2019
Year Two Midseason (M2) 531–650 1.23 120 June–October 2019
Year Two Lateseason (L2) 651–745 1.23–0.45 95 October 2019–January 2020
Year Two Endseason (E2) 746–800 0.45 55 January–March 2020

Although the durations of second year growth stages are larger than the first year, the
shapes of the curves are the same. In general, the linear regression equations relating Kcb
values to NDVI readings (El-Shikha et al., 2021) led to accurate WINDS model simulations.
These equations are shown in Figure 6. They represent the development year 1 (D1) and
year 2 (D2) growth stages as well as the lateseason year 1 (L1). The NDVI readings taken
during these periods represent the range of Kcb values throughout the experiment. Most of
these Kcb numbers take place during the development and lateseason growth stages. The
midseason and endseason periods had constant Kcb values and thus were not correlated
with NDVI.
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Figure 6. Calibrated basal Kcb curves and equations for the development phase of year 1 (D1)
and year 2 (D2) as well as the first lateseason (L1) phase, represented as functions of measured
NDVI during the time periods (DOY) during 2018–2019. Day of Year (DOY) refers to days after 1
January 2018.

3.4. Evapotranspiration and Irrigation

As a two-season crop, guayule has a bimodal growth and evapotranspiration cycle.
Figure 7 shows the reference ETo, from the weather station, and the WINDS simulation
of the two cycles of evaporation, transpiration and crop ETc. Evaporation was the major
component of evapotranspiration in the first several months (Figure 7) and was a function
of surface wetting cycles. Thereafter, ETc was mainly transpiration. During the first winter
to mid-summer of the second year, ETc fell below ETo. During the second summer, ETc
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fluctuated above and below ETo, depending on irrigation timing. The ETc rose above ETo
during the second summer, rising to 13 to 16 mm/day. Thus, the crop coefficient rose to 1.3.
Crop ETc also fell below ETo during the second winter.
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Figure 7. Reference evapotranspiration, crop ETc, evaporation, and transpiration for the F100 (flood
irrigated with 100% replacement of soil water deficit) treatment where Day of Year (DOY) refers to
days after 1 January 2018.

Figure 8 shows observed rainfall and irrigation depths. Based on these inputs, the
WINDS model calculated daily (Figure 8). Leaching was significant during crop estab-
lishment with sprinkler irrigation. There was almost no leaching after crop establishment
because the irrigation schedule was based on the level of depletion below field capacity.
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Figure 8. Rainfall, irrigation and leaching (deep percolation below the root zone) events for the F100
irrigation treatment.

After the establishment period, irrigation events were 1 to 2 weeks apart. They were
larger and less frequent during the second year because of a deeper root zone. Irrigation
events were generally in the range of 70 to 90 mm. Irrigation was cut off during winters.
Precipitation was minimal in comparison to irrigation. There were large rainfall events
during the first fall seasons, but only a few precipitation events were greater than 10 mm
during the second year and a half.
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3.5. WINDS Simulation of Soil Moisture

In the WINDS model, field capacity (FC) and permanent wilting point (WP) were
based on observed neutron probe readings of soil moisture in layers. Neutron probe
readings were collected one to two days after irrigation events, which allowed time for
drainage to field capacity prior to the readings in sandy loam soils. Thus, FC was the
maximum neutron probe moisture content in each layer. Guayule removes water almost
to the permanent wilting point during winter dormancy. Thus, the low neutron probe
moisture content in each layer was assumed to be WP. An example of FC and WP levels
is shown in Figure 9 for the sixth layer. The upper black line in the figures represents
the FC while the lower line is the WP. In this case, layer 6 had an FC of 25% and a WP
of 14%. Table 1 shows the average FC and WP in all layers. The field was over irrigated
during germination and crop establishment, so the initial water content in all layers for the
simulation was field capacity.
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Figure 9. Assignment of Field Capacity (FC) and Permanent Wilting Point (WP) in layer 6 (30–60 cm
depth) based on observed maximum and minimum NMM water content readings, respectively.

During days with no infiltration (irrigation or precipitation) events, the WINDS model
uses Richards equation to calculate water flux between layers based on energy gradients.
The Richards equation uses the Van Genuchten-Mualem (VG-M) relationships between
water content, matric potential, and hydraulic conductivity. The VG m coefficients were
assigned with the Rosetta model [47] based on sand, silt, and clay percentages in the upper
30 cm. They were close to the default values for sandy loam soils. On days with infiltration
events (irrigation or precipitation), the tipping bucket model distributes downward moving
water based on field capacity and antecedent depletion. Because almost all water flux in
sandy loam soils takes place on the irrigation day, the WINDS model is insensitive to the
Richards equation and VG m parameters in the sandy loam soils at Maricopa Agricultural
Center [38]. While upward movement from lower layers might have a low rate of water
flux, this was a minor part of the total water balance. Thus, the most important parameters
in the simulation were FC and PWP (Table 3).

After calibration of soil, root, and crop parameters, the WINDS model was closely
correlated with the observed NMM water content readings during the entire experiment
(August 2018 to March 2020). Figure 10 shows WINDS model soil moisture simulations
and NMM water content readings for the soil profile, consisting of seven soil layers plus an
evaporation layer. The NMM readings in Figure 10 represent averages of the five of the six
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access tube locations in the flood irrigation treatment. One access tube was left out of the
average because it had different soil characteristics in the lower layers.

Table 3. Field capacity (FC) and permanent wilting point (PWP), and initial water content (IW),
average for the flood treatment (F100).

Layer
Number

Lower
Boundary (m) IW (%) FC (%) WP (%)

8 0.1 27.5 27.5 10.0
7 0.3 27.5 27.5 10.0
6 0.6 25.0 25.0 14.0
5 0.9 28.0 28.0 17.0
4 1.2 28.0 28.0 17.0
3 1.5 22.5 22.5 14.0
2 1.8 20.0 20.0 13.5
1 2.1 20.5 20.5 15.0
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Figure 10. The F100 (flood irrigated) average water content curve simulations and neutron probe
(NMM) measurements for all soil layers and evaporation layer.

There were frequent and large soil moisture cycles in the upper soil layers (layers 6
and 7). Moisture cycles decreased in frequency and intensity with depth because most
transpiration takes place in the upper layers. These levels of transpiration are reflected in
the high values in the upper rows of the ET Fraction worksheet (Table 2). The evaporation
layer, gray line in upper figure, is not represented by neutron probe measurements, which
do not accurately measure evaporation layer water content.
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The middle layers, which are at the boundary of infiltration, had inconsistent behavior;
thus, characterizing the responses of the middle layers to irrigation events was challenging.
Layer four did not respond to any irrigation events in the observed moisture contents but
had two responses in the WINDS model; thus, there was a discrepancy between the WINDS
model and the observed NMM readings at the end of the experiment in layer 4, which
demonstrates the difficulty of simulating layers at the boundary of infiltration. The period
with the least accurate simulation was the last 150 days.

Neither the WINDS model, nor the observed data showed any responses to infiltration
events in the lower three layers. After soil moisture was brought to FC in the entire soil
profile during establishment, the lower layers gradually decreased in soil moisture over
the two years. The lowest layers were the last to reach minimum soil moisture. To simulate
this pattern in the WINDS model, roots reached the lowest layers during the second year;
however, the fraction of total ET from these layers (Table 1) remained low.

3.6. WINDS Response to Soil Variability

This section evaluates the ability of the WINDS model to simulate water contents
for varying soil properties in replicates. The six NMM readings along with the average
WINDS model soil moisture simulations are shown in Figures A1–A7 in the Appendix A.
The different replicates (R1–R6) exhibit similar trends in moisture content although they
have different values of FC and WP. The previous adjustments of crop, root growth and
uptake parameters for the average of the replicates resulted in accurate simulations in
replicates with changes in WINDS FC and WP values for each replicate. One replicate
(R5, Figures A3–A5) had much lower soil moisture content readings in layers three to five
than the other replicates. Thus, the replicate was not included in the average, nor did the
calibrated WINDS model accurate simulate these layers. The lower water contents might
have been due to a sandy lens or another discontinuity. In general, the upper layers had
similar soil properties between access tubes, which is probably due to long-term cultivation
practices and associated soil mixing.

The fact that adjustment of parameters for the average resulted in accurate simulations
of the individual replicates implies that once the WINDS model ET fraction and crop
parameters are adjusted for a certain crop, soil type, and climate, it can be transferred to
other fields with similar but not the same soil characteristics.

The correlation between all WINDS model soil moisture curves and the NMM readings
was tested statistically with a root mean square error (RMSE) analysis. The results of this
analysis are shown in Table 4. The majority of the RMSE values were well below 5%,
usually in the range of 1–3% (Table 4). Only layer seven had RMSEs larger than 5% along
with layer one for the R2 replicate. They were high for layer seven because it includes the
evaporation layer which behaves differently than the layer below it.

Table 4. Volumetric water content root mean square error for different soil layers (1–7). Where layer
seven is the layer below the evaporation layer in the WINDS model, but the NMM reading represents
both layers. The values represent the percent water content difference between the WINDS model
and the measured water content. Each replicate refers to an access tube.

Layer
F100 R1
RMSE

(% WC)

F100 R2
RMSE

(% WC)

F100 R3
RMSE

(% WC)

F100 R4
RMSE

(% WC)

F100 R5
RMSE

(% WC)

F100 R6
RMSE

(% WC)

F100 AVE
RMSE

(% WC)

7 6.93 7.83 6.95 5.88 6.74 6.84 6.20
6 2.54 3.77 2.40 2.65 2.82 2.40 2.51
5 2.40 2.46 2.18 2.33 3.49 2.68 2.19
4 2.26 2.41 2.28 2.39 2.80 2.32 2.39
3 1.66 2.55 2.40 2.89 3.31 1.50 0.75
2 1.45 1.42 0.90 0.97 2.32 2.09 1.00
1 1.50 5.37 1.19 1.14 1.63 1.11 0.73



Water 2023, 15, 3500 14 of 22

4. Discussion

This research evaluated the ability of the WINDS model to simulate a guayule crop in
sandy loam soils in central Arizona. It developed guayule crop and root growth curves
that enable WINDS model simulation of guayule irrigation, crop water use, and moisture
content in research experiments and production agriculture.

Elshikha et al. [40] developed equations for plant cover and basal crop coefficient (Kcb)
based on multispectral and RGB indices, as well as measured irrigation application and
water use. This research built on the results of [40] and developed segmented canopy cover
and basal crop coefficient (Kcb) curves (Figures 3 and 5) for the entire two-year growth
cycle. The segmented curves were used as input data for the WINDS model.

By comparing NMM data and WINDS simulations, a six-phase segmented root growth
curve was developed for the two-season guayule crop (Figure 4). The same comparisons
were used to develop the ET fractions table (Table 1), specifying fractions of transpiration
removed from each soil layer as a function of total root depth.

For the average and in each replicate, field capacity (FC) and permanent wilting point
(WP) were specified in each layer (Table 3) based on observed maximum and minimum
NMM moisture contents.

With the average FC and WP for each layer, the WINDS model accurately simulated
of soil moisture content changes for the average NMM moisture contents over the two-year
growth cycle (Figure 10). The RMSE was in the range of 1% to 3% moisture content for all
layers except the evaporation layer. There was no moisture measurement in the evaporation
layer. Next, the WINDS model was evaluated for its ability to simulate moisture content
in the replicates (Appendix A Figures A1–A6), which had slightly different FC and PWP
values. Again, the RMSE values were in the range of 1% to 3% moisture content. Thus,
once the WINDS model was parameterized for one soil, it can accurately simulate moisture
content in similar soils with slightly varying FC and WP values.

We are not aware of other daily time-step models that can provide an accurate repre-
sentation of water contents within layers throughout the entire soil profile. The ultimate
goal is to use WINDS in tandem with soil moisture sensors and remote sensing in order to
optimize irrigation, which requires accurate simulation of water content in layers.

The online WINDS app (https://viz.datascience.arizona.edu/WINDS/, 10 September
2023) is designed for irrigation management of guayule and other crops in the arid south-
western United States. The posted app allows selection of the many SBAR experiments
and treatments, as well as past experiments in cotton [38]. The online app replicates the
calculations shown in Figure 10. It also allows the selection of any layer for both WINDS
simulation and neutron probe readings. In Figure A8 (Appendix A), the F100 Ave treatment
was selected, as well as the Layer 6 WINDS simulation, season view. The neutron probe
box was checked to add the neutron probe readings to the graph. The user can select any
or all WINDS simulation layers as well as any or all neutron probe readings. In this case,
only layer 6 WINDS simulation and neutron probe readings are shown in Figure A8. The
user can select Day of year, days after planting, or date as the time scale.

The WINDS model also has a daily view mode that shows water content as a function
of depth in the soil profile and estimates the date of the next irrigation based on the WINDS
model simulation (Figures A8 and A9), This view shows the height of the plant and the
percent canopy cover by the height and proximity of the plants. It also shows the depth of
the root zone. The scroll bar allows the user to scroll to any day during the growing season.
The soil profile on the left is color-coded with the range below WP in red, between WP and
MAD in yellow, between MAD and FC in green, and between FC and saturation in blue.
The irrigation scheduler on the right uses the same colors to represent water content in the
entire soil profile. Blue represents the range from FC to saturation. Green represents the
range from MAD to FC. Yellow represents the range from WP to MAD, and red represents
the range from WP to MAD. The scroll bar allows selection of any day after planting.
Figure A9 shows the day after planting 131, which is during the first summer when the
roots had only extended into layer 6. The irrigation scheduler sums the water depletion

https://viz.datascience.arizona.edu/WINDS/
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in the layers within the root zone. The fraction depletion in each layer is the difference
between field capacity and water content. The total depletion for the root zone is the sum
of (fraction depletion) (layer depth) for all layers in the root zone. This total depletion is
reported in the graphic on the right side of the irrigation scheduler (Figure A10). The model
also calculates the expected ET for the subsequent days and recommends the number of
days before the next irrigation. Figure A10 shows day 549, which is during the second
winter. At this time the crop is semi dormant and has extracted the water in almost all
layers to the WP. The plant canopy is completely closed and plants are at their full height.

5. Conclusions

Based on remote sensing and water balance observation from [40], the WINDS model
was calibrated for a two-year guayule crop by developing the following two-year seg-
mented curves.

1. Two-year segmented basal crop coefficient curve
2. Canopy cover curve
3. Two-year crop height curve
4. Two-year six-phase segmented root growth curve

Based on comparison of WINDS simulations with NMM water contents, root activity
in layers was delineated, as tabulated in the ET fractions table, which specifies transpiration
fractions from soil layers as a function of root depth.

With crop and root curves, as well as reference ET from the AZMET weather station,
the WINDS model accurately simulated the average soil moisture content of furrow (flood)
irrigated guayule during the two-year (2018–2020) guayule growth cycle for the average
of five replicate NMM water contents in layers. The RMSE ranged from 1% to 3% water
content for all layers below the evaporation layer. The individual NMM access tubes had
varying FC and WP values. Nevertheless, the WINDS model accurately simulated the
individual NMM water content observations, with adjusted FC and WP values, also with
RMSE in the range of 1% to 3%.
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