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Abstract: The situation of resource utilization and eco-environment protection remains critical
globally. The harmony between eco-environment health and water-energy utilization efficiency
is a strong support for the realization of high-quality development. In this paper, an Assessment-
Decoupling two-stage framework was developed to investigate the relationship between water-energy
resource utilization and ecological security. In detail, an improved input-output indicator system was
constructed to assess the water-energy resource utilization efficiency (WEUE), and its influencing
factors were examined from multiple system perspectives; then, we intended to evaluate the ecological
risk (ER) from a raster-scale perspective based on land-use types; and finally, the decoupling idea
was introduced to quantify the fitness relationship of the above two aspects. The framework was
applied to Henan Province, China. The study found that: (1) the WEUE of Henan Province shows a
“W” pattern of development during 2000–2020; in 2000–2010, the WEUE of South Henan declined,
while in 2010–2020, the WEUE of Henan Province gradually improved, with significant increases in
various districts. (2) The ecological risk index (ERI) in Henan Province generally shows a decreasing
trend, and the spatial difference is more obvious, with the high-risk areas mainly concentrated in the
central, east, and south Henan, and the west of Henan is mainly a low-risk area. (3) There is strong
spatial variation in the decoupling states of WEUE and ERI of the 18 districts in Henan Province, and
the differences become more pronounced over time. The number of districts with a strong negative
decoupling state has been increasing during the entire period, and a total of 14 districts have reached
the above state in 2020. The developed framework offers a new idea for clarifying the relationship
between resource utilization and ecological conditions, and the obtained results can provide data
support for the realization of sustainable development.

Keywords: assessment-decoupling; ecological risk; relationship identification; water-energy resource
utilization efficiency; Henan province

1. Introduction

Water resources and energy are two types of essential resources that are indispensable
for the development of human society. The former, as a primary natural resource, plays a
fundamental role in ensuring the survival of human beings, and the latter, as an important
strategic resource, is vital to guaranteeing the security of the country and the development
of the regional economy [1]. The health of ecosystems is closely linked to the sustainable use
of water and energy resources. Ecosystems provide conditions for the formation and storage
of water resources. For instance, forests, wetlands, and rivers play a role in regulating the
water cycle and protecting water quality [2]. The extraction and utilization of energy can
disturb and damage ecosystems, such as the construction of hydroelectric power plants [3].
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With sustained economic growth and rapid urbanization, the irrational and crude use of
water and energy resources has led to increasingly prominent problems in ecological service
functions. In Australia, for example, large-scale water resource development projects (e.g.,
diversion projects and the construction of reservoirs) have been implemented to meet
agricultural and urban water needs, resulting in the loss of wetlands and the destruction of
watershed ecosystems [4]. Oil field development and oil extraction in countries such as
Saudi Arabia have led to soil contamination, pollution, and depletion of water resources,
with long-term negative impacts on the surrounding terrestrial and marine ecosystems [5].
Therefore, it is crucial to investigate what kind of relationship exists between the utilization
of water and energy resources and ecosystem change for the sustainable development of
countries or regions.

Currently, there are quite a few studies related to water and energy. Research on
water resources focuses on water resource evaluation and management [6], utilization
efficiency [7], and climate change [8], and that of energy focuses on utilization efficiency [9],
system optimization and intelligence [10], and energy transformation [11]. At the same
time, a large number of scholars have also carried out research on the coupling of water and
energy. For example, Okadera et al. [12] studied the water footprint of energy production
and consumption as well as its external dependence in Thailand and Liaoning Province
of China, respectively. Venkates et al. [13] analyzed the energy consumption of urban
water recycling systems in Norway and studied the environmental impacts of their carbon
emissions. In terms of efficiency measurement, numerous studies have been carried out
on both water and energy utilization efficiency. For instance, Shi et al. [14] employed
a data envelopment analysis (DEA) model to assess the efficiency of agricultural water
utilization and explored spatial network correlation characteristics through the social
network analysis (SNA) method. Kadir et al. [15] applied various data analysis models
(i.e., residual augmented least squares, Engel’s coefficient, and quantile autoregressive
distributive lagging technique) to explore the impact of energy use efficiency on economic
growth. It can be found that previous studies on the utilization efficiency of water and
energy have mainly focused on individual systems, but both water and energy are part of
resources, and few scholars have linked the efficiency of the two.

The concept of ecological risk (ER) was first introduced by the U.S. Environmental
Protection Agency (USEPA) in 1990. ER is the likelihood that ecosystems will be negatively
affected by external factors (i.e., the possible effects of accidents or disasters with uncertainty
on ecosystems and their components), which threatens the stability of ecosystems at
some level [16]. Since the emergence of this concept, ER has been instrumental in the
evaluation of ecological quality and management of the ecological environment, and a
structural framework with international leadership has been initially developed in terms
of theory [17] and methodology [18]. Early ER assessment mainly focused on the study
of environmental pollution, which generally includes four parts: heavy metals [19,20],
sediments [21,22], soil [23,24], and polycyclic aromatic chemicals [25,26]. Meanwhile,
the scale of ER assessment is mostly a single risk source and a single risk recipient. In
recent years, studies on ER assessment have paid more attention to the overall impact
of ecosystems and the spatial relevance of ERs, and the scale of assessment has been
extended to regional scales (e.g., watersheds [27], urban agglomerations [28], economic
zones [29]). With the deepening of research on land use and ER, the assessment of ER
from the perspective of land use has gradually become mainstream research [30]. Dynamic
changes in land use distribution patterns directly trigger changes in the regional ecological
environment, and ER assessment with land use change as the starting point can better
characterize the impact of land use change on ecological processes and functions [31].

As research continues, multi-system coupling studies have been carried out by interca-
lating water, energy, and other elements, as well as investigating their nexus. Examples in-
clude water-energy-food [32], water-energy-economy [33], water-land-energy-food [34,35],
and water-energy-food-carbon [36] systems. At this stage, scholars recognize that the
processes of water utilization and energy extraction will inevitably pose a threat to the
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health of the ecosystem. Therefore, scholars have carried out relevant research on the
coupling relationship between water resources, energy, and ecosystems. For example,
Temel et al. [37] used a fuzzy multi-criteria decision-making method to assess the ecological
impacts of runoff and hydropower plants by screening the relevant indicators of their eco-
logical impacts. Mikulcic et al. [38] discussed the developments in energy, water, and the
environment in 2018. Shahzad et al. [39] implemented an overview of the interconnectivity
of energy, water, the environment, and future energy-efficient desalination possibilities to
save energy and protect the environment. Summarily, at present, the relationship between
water-energy-ecosystems has been widely studied in a systematic framework. However,
existing studies have ignored the need to explore the relationship between water-energy
resource utilization efficiency (WEUE) and ER. How to quantify the relationship between
the above two aspects is an issue that requires prompt solutions, which is also of great
significance for social, economic, and eco-environmental sustainability.

With the rapid advancement of economic development and increasing population,
China’s Henan province is increasingly suffering from water shortages, energy woes, and
ecological environmental pollution, which need to be urgently addressed. Through an
extensive literature review, there are currently more studies in Henan Province that address
individual systems or interrelations such as water, energy, and ecology. For instance,
Zuo et al. [40] developed a type-2 fuzzy interval planning method based on scenarios
to effectively plan agricultural water, energy, food, and crop areas in Henan Province.
Zhang et al. [41] proposed a comprehensive diagnostic framework to quantify the spatial
equilibrium state of water resources in Henan Province in terms of the water-economy-
ecology relationship. Luo et al. [42] proposed a new framework to assess the coordinated
development status of socio-economy, water, and ecology in Henan Province. Although
the nexus between water, energy, and ecology in Henan Province has been studied to some
extent, less research has specifically explored the relationship between the use of water and
energy resources and ecological health. Moreover, to the best of our knowledge, there are
no studies analyzing the relationship between WEUE and ER in this region.

Therefore, this paper aims to develop an Assessment-Decoupling two-stage frame-
work to study the relationships between water-energy resource utilization and ecological
security, with the former characterized by WEUE and the latter by ER. In this framework,
firstly, the WEUE is assessed from a systemic perspective by constructing an improved
indicator system, and its driving factors are identified. Secondly, the ER is quantified on a
raster scale based on the land use type. Lastly, the fitness relationship between the WEUE
and ER is explored. Then, the above framework is applied to Henan Province, China,
where water supply and demand are in conflict and energy consumption is extremely
high. Compared to existing studies, our potential contributions are: (1) developing an
Assessment-Decoupling two-stage framework for clarifying the relationship between re-
source utilization and ecological conditions; (2) establishing an integrated evaluation index
system to quantify the WEUE, in which the aspects of water and energy are both considered
from the overall perspective; (3) identifying the relationship between WEUE and ER and
exploring the dynamic correlation features between the two; (4) applying the framework to
Henan Province of China and conducting studies in view of multiple scales, dimensions,
and aspects.

2. Methodology

The Assessment-Decoupling two-stage framework is shown in Figure 1. WEUE was
measured by the Super-SBM model, and the influencing factors of WEUE were comprehen-
sively considered from four aspects with the application of the Tobit regression model. ER
is evaluated based on land-use data from a raster perspective. Then, the Tapio model was
used to identify the fitness relationship between the above two aspects.
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Figure 1. Schematic diagram of the Assessment-Decoupling two-stage framework.

2.1. WEUE Measurement Method
2.1.1. Super-SBM Model

The Super-SBM model solves the slack variable problem as well as compensates for
the shortcomings of previous models in which effective decision-making units could not
be further compared, making the measured efficiency values more realistic and compara-
ble [43]. The Super-SBM model amalgamates the strengths of both the SBM model and the
super-efficiency DEA model, which not only takes into full consideration the slack variables
of the input and output indicators of each decision-making unit (DMU), but also avoids the
problem that multiple DMUs are located in the same production frontier and cannot be
further compared with each other in terms of their efficiency [44]. The Super-SBM model
can be denoted as [45]:
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(2)

where the number of decision-making units is denoted by n; m denotes inputs; s1 denotes
desired outputs; s2 denotes non-desired outputs; a, bd, and bu denote elements in the input
matrix, elements in the desired output matrix, and elements in the non-desired output
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matrix, respectively; and ρ is the WEUE. When ρ ≥ 1, it means that the WEUE of the region
is relatively effective; if ρ < 1, it means the WEUE of the region needs further improvement.

The scientific rationality of the selection of input-output indicators directly affects the
rationality of the final results of the Super-SBM model [46]. The basic idea of WEUE is to
simultaneously satisfy the minimization of resource consumption and the maximization
of production value. Based on this idea, the two indicators of total water consumption
and energy consumption are selected as resource inputs, the investment in fixed assets
is selected as the indicator reflecting capital inputs, the end-of-year area practitioners
are taken as the indicator reflecting labor inputs, and output indicators of production
efficiency are expressed in terms of gross regional product. To assess regional WEUE more
scientifically and comprehensively, it is necessary to consider environmental pollution in the
input-output indicators. Currently, most of the Super-SBM models consider environmental
pollution in the form of non-desired outputs. This study incorporates environmental
pollution into the new input perspective; that is, sewage discharge and CO2 emissions are
included in the model calculations as the indicators reflecting the environmental carrying
inputs. The final input-output indicators system is shown in Table 1.

Table 1. Input-output indicators system for WEUE assessment.

Category Primary Index Secondary Index Unit

Inputs
Resource inputs Total water consumption 100 million m3

Energy consumption tons of standard coal
Capital inputs Investment in fixed assets CNY 100 million
Labor inputs End-of-year area practitioners person

Outputs
Expected outputs Gross Regional Product CNY 100 million

Undesirable outputs Sewage discharge 10,000 tons
CO2 emissions ton

2.1.2. Tobit Regression Model

In fact, the WEUE is affected by a variety of factors in addition to the selected input
and output indicators [47,48]. The WEUE are all greater than 0, at which point the efficiency
values are left-constrained truncated variables. The direct use of the least squares method
for regression analysis will make the parameter estimation biased. The Tobit model can
better the solve regression analysis of restricted dependent variables and is therefore
considered to examine the influence factor of WEUE [49]. The regression model can
be constructed by taking WEUE measured by the Super-SBM model as an explanatory
variable and the influencing factors as explanatory variables. The model is formulated as
follows [50]:

y∗i = xiβ + εi εi ∼ (0, σ2) (3)

yi =

{
y∗i = xiβ + εi y∗i > 0

0 y∗i 6 0
(4)

where yi is the dependent variable, taking the value of yi* when yi* > 0 and 0 when yi* ≤ 0;
xi represents the independent variable; β denotes the coefficient; and the error term εi is
assumed to be independent and obeys normal distribution.

In this study, the influencing factors affecting WEUE are synthesized from four aspects:
economic development, resource endowment, industrial structure, and ecological envi-
ronment. Regarding economic development, because of the different development levels
among regions, the policies on water conservation and energy utilization will be different,
which affects the WEUE of each region. This study used the gross domestic product and
energy consumption per GDP to measure the socio-economic level of a region [51]. In terms
of the resource endowment aspect, differences in WEUE are primarily due to differences
in resource conditions, and different water resources and energy holdings also affect the
concepts and ways of resource utilization, which would inevitably affect WEUE. This
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study used per capita water resources and per capita energy production to measure the
natural endowment of resources in various areas [52]. In terms of the industrial structure
aspect, agriculture is a significant user of water, and irrigation techniques and facilities in
agriculture affect water use efficiency. The water use and energy consumption of industry
also have a great impact on regional WEUE. Thus, the proportion of agricultural water
consumption and the proportion of secondary industry were selected to represent the
industrial structure [53]. In terms of the ecological environment aspect, human activities
can have negative impacts on the ecological environment, such as chemical oxygen demand
emissions, which pollute the ecological environment, and these negative impacts also
indirectly affect the WEUE. This study used the sewage treatment rate and chemical oxygen
demand emission to represent the ecological environment factors [54]. The indicators of
WEUE influencing factors are shown in Table 2.

Table 2. Influencing factors of WEUE.

Correlation Variable Explanatory Variable Index Abbreviation Unit

Economic development Gross domestic product GDP 100 million Yuan

Energy consumption per GDP ECG tons of standard coal
per 10,000 Yuan

Resource endowment
Per capita water resources PWR m3/person

Per capita energy production PCP ton/person

Industrial structure
The proportion of secondary industry PSI %

The proportion of agricultural
water consumption PAC %

Ecological environment Sewage treatment rate STR %
Chemical oxygen demand emission COD ton

2.2. ER Measurement Method
2.2.1. Land-Use Change Model

(1) A single dynamic index is used to describe the rate and magnitude of change of a
single land-use type over a period, which can characterize land-use change. The formula
for a single motivation is [55]:

LU =
Lb − La

La
× 1

t2 − t1
× 100% (5)

where LU represents the dynamic index corresponding to the land-use type during the spec-
ified study period; La denotes the initial area of a specific land type at the commencement
of the study period, while Lb represents the corresponding area after said period; t2 − t1
signifies the number of study periods in years.

(2) The land-use transfer matrix not only captures the static area data for each land
category in a specific area and time but also provides a more comprehensive depiction of
the transfers out of each land category at the beginning of the period and the transfers into
each land category at the end of the period. It enables a more detailed understanding of
land-use dynamics and transitions [56,57].

Lij =


L11 L12 . . . L1n
L21 L22 . . . L2n
. . . . . . . . . . . .
Ln1 Ln2 . . . Lnn

 (6)

where Lij denotes an n× n matrix, each row and column of the matrix represents a land-use
type, and n is the total land-use types in the study.
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2.2.2. Calculation of the ER

In this study, ER characterization at the raster scale was described by the ecological
risk index (ERI). It is used to characterize the relative magnitude of integrated ER within
a sample site, evaluate the risk of loss of ecological service functions, and compare the
differences in ER in each region with the formulas listed below [58]:

ERIj =
n

∑
i=1

Aji

Ai
Ci (7)

where ERIj is the value of the ERI in the jth evaluation cell; Aji is the area of land-use type i
in the jth evaluation cell; Ci is the lossiness index, which represents the ER parameter of the
land-use type i.

The lossiness index, which is a composite of the disturbance and vulnerability indices
for a given land use type, is calculated as [59]:

Ci =
√

Ii ×Vi (8)

where Ii is the disturbance degree index of land-use type i; and Vi is the vulnerability
degree index of land-use type i.

Among them, the disturbance degree index Ii is a combination of fragmentation,
separation, and dominance, and the calculation formula is [60]:

Ii = eBi + f Si + gDi (9)

where Bi is the fragmentation index; Si is the separation index; Di is the dominance index; e, f,
and g are the weights of the fragmentation, separation, and dominance indices, respectively;
combined with the existing research [61,62], the Bi, Si, and Di are assigned weights of 0.5,
0.3, and 0.2, respectively; the formulas for the three indices are detailed in reference [63].

According to the actual condition, arable land is identified as the most susceptible to
vulnerability, with grassland, unused land, and forest land following in terms of suscepti-
bility. In contrast, water land and built-up land demonstrate a higher level of stability. The
six land-use types were assigned values of 6 for arable land, 5 for grass land, 4 for unused
land, 3 for forest land, 2 for more stable water land, and 1 for built-up land. Normalization
needs to be carried out to obtain their respective vulnerability indices Vi.

2.3. Tapio Decoupling Model

Tapio theory can be used to explore the fitness degree of different objects at various
scales, identify fitness relationships, and refine the decoupling states [64,65]. Based on the
Tapio theory, we construct the elastic decoupling models of WEUE and ERI to investigate
the decoupling degree between them. The model is expressed as follows [66]:

M =
∆WEUE

∆ERI
=

(WEUEi −WEUEi−1)/WEUEi−1

(ERIi − ERIi−1)/ERIi−1
(10)

where M is the decoupling index of WEUE and ERI, respectively, which is used to quantify
the degree of decoupling between WEUE and ERI; ∆WEUE and ∆ERI are the change
rates of WEUE and ERI in a certain period; WEUEi−1 and ERIi−1 are WEUE and ERI
at the beginning of the period; WEUEi and ERIi are WEUE and ERI at the end of the
period. Referring to the existing research, the definition criteria of the decoupling states
were determined (Figure 2), in which the strong negative decoupling state (SNDS) is the
best one.
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3. Case Study
3.1. Overview of the Study Area

Henan Province is located at latitudes 31◦23′~36◦22′ N and 110◦21′~116◦39′ E, with a
total area of 16.7 × 104 km2. The average annual precipitation in this area is approximately
771 mm, with a decreasing trend from southeast to northwest and an extremely unbalanced
intra-annual distribution of precipitation [67]. The spatial distribution of water resources is
not compatible with the population, arable land, mineral resources, distribution of cities
and towns, and industrial layout, resulting in conflicts between water supply and demand.
Henan Province is rich in coal resources but has long been overly dependent on coal energy,
leading to more serious environmental pollution [68]. Meanwhile, the large amount of
exhaust gas and wastewater generated during coal-fired power generation and industrial
production has caused some pollution pressure on air and water quality. The location and
administrative division of the study area are illustrated in Figure 3.Water 2023, 15, x FOR PEER REVIEW  9  of  22 
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3.2. Data Source

Taking 2000–2020 as the study period, total water consumption was obtained from
the Water Resources Bulletin of Henan Province (https://slt.henan.gov.cn/bmzl/szygl/
szygb/ (accessed on 24 July 2023)). Land-use data with a spatial resolution of 1 km was
acquired from the Resource and Environment Science and Data Center (https://www.
resdc.cn/ (accessed on 25 July 2023)). Data on energy consumption and per capita energy
production came from the China Energy Statistics Yearbook (http://www.stats.gov.cn/sj/
ndsj/ (accessed on 25 July 2023)). Data on per capita water resources, the proportion of
secondary industry, the proportion of agricultural water consumption, sewage treatment
rate, chemical oxygen demand emission, gross domestic product, and investment in fixed
assets were from the Henan Province Statistical Yearbook (https://tjj.henan.gov.cn/tjfw/
tjcbw/tjnj/ (accessed on 26 July 2023)). Data on indicators such as the end-of-year area
practitioners, regional gross domestic product, sewage discharge, and CO2 emissions for
cities in Henan Province were obtained from the statistical yearbooks of each prefecture-
level administrative region.

4. Results and Discussion
4.1. Analysis of Measured WEUE
4.1.1. Temporal Change of WEUE

The obtained WEUEs of 18 districts in Henan Province from 2000 to 2020 are shown in
Figure 4. From the perspective of time, the WEUE of all districts in Henan Province showed
fluctuating changes from 2000 to 2020, experiencing the process of “decreasing-rising-
decreasing-rising”, and the overall development basically presented a “W”-shaped trend.
The maximum value of WEUE (1.115) occurred in Xuchang in 2014, and the minimum
value (0.615) occurred in Jiyuan in 2004. The top three districts in terms of WEUE are
Zhoukou, Xuchang, and Nanyang, whose 20-year average WEUE are 0.971, 0.939, and
0.915, respectively. The last three districts are Xinxiang, Hebi, and Jiyuan, whose 20-year
average values are 0.707, 0.650, and 0.645, respectively. From the changes in WEUE during
the study period, it could be seen (Figure 5) that there was a significant difference among
districts in the study area. The WEUE of Kaifeng, Anyang, and Zhumadian decreased most
significantly, by 0.262, 0.252, and 0.214, respectively. Pingdingshan, Nanyang, Zhoukou,
and Jiyuan were all lowered to varying degrees, and the WEUE of the remaining districts
were raised to varying degrees, with Luoyang raising the highest (0.207), followed by
Xuchang (0.168).
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4.1.2. Spatial Variation of WEUE

In this study, the natural discontinuity grading method was used to classify the WEUE
of districts in Henan Province into five levels from low to high: low efficiency, relatively
low efficiency, medium efficiency, relatively high efficiency, and high efficiency. The levels
of WEUE were spatially visualized with a time step of 5 years and a time cross-section of
the years 2000, 2005, 2010, 2015, and 2020, as shown in Figure 6.
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The spatial development of the WEUE level in each region of Henan Province was
uneven, and the difference was prominent, with obvious spatial distribution characteristics.
In 2000, there were five districts with WEUEs of high efficiency, mainly distributed in
the southwest of Henan. By 2005, the WEUE levels in Henan Province were reduced to
different degrees, with Pingdingshan experiencing the most significant reduction, from
high efficiency to low efficiency. Low efficiency was predominant during this period and
was distributed in the central as well as the eastern parts of Henan. Until 2010, the over-
all WEUE level of Henan Province increased, and the period was mainly relatively low
efficiency, which was distributed in central Henan, and only Puyang was high efficiency.
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Compared with 2010, the WEUE level in 2015 began to decrease, and it was mainly low
efficiency and relatively low efficiency. Up to 2020, the WEUE level in Henan Province
had improved dramatically. However, Jiyuan and Kaifeng were still low-efficiency, with
Nanyang realizing a substantial breakthrough from relatively low efficiency to high effi-
ciency, spanning a total of three ratings. After calculating the multi-year average values
of WEUE in the five subdivisions and major districts of Henan, the values were 0.844,
0.835, 0.826, 0.813, and 0.696 for central, eastern, southern, western, and northern Henan,
respectively, with the highest in central Henan and the lowest in western Henan.

In 2000, the WEUE of Henan Province was generally higher than the rest of the time
cross-section. However, during the period of 2000–2005, the WEUE decreased significantly.
It was because the economy of Henan Province developed rapidly from 2000 to 2005, and
the process of urbanization was accelerated. In terms of energy consumption, the increase
was slow before 2002, but coal consumption rose sharply after 2002, resulting in a failure
to keep up with the corresponding energy-saving measures and technologies. Moreover,
agriculture was one of the main areas of water resource utilization in Henan Province, and
agricultural irrigation systems and technologies were relatively unsound, with problems
of water wastage and inefficient water use. As a result, there was a significant decrease
in WEUE during this period. During the period 2005–2010, Henan Province’s WEUE
improved to a certain extent. It can be attributed to the implementation of a system
combining total water consumption control and quota management, improvement of the
water abstraction licensing system, refinement of the technical equipment and management
of resource extraction, elimination of outdated extraction methods, and an increase in
the rate of energy resource recovery. During the 2010–2015 period, the WEUE of Henan
Province reached its lowest. Under the environment of the financial crisis, a series of
high-consumption and high-pollution practices had a serious impact on the WEUE as a
result of the over-pursuit of economic benefits and the neglect of environmental issues in
the recovery of economic development. From 2015 to 2020, the WEUE of Henan Province
as a whole had a significant increase, which was due to the implementation of the new
development concept, the optimization and upgrading of innovative technology and
industrial structures, and the water-saving technology. Meanwhile, the public’s awareness
of water conservation has improved, and a revision of the law on the prevention and control
of water pollution was released in 2017. They led to a shift toward the intensification of
crude water consumption in Henan Province, and the province began to focus on the
development of environmental protection and vigorously promote the construction of
ecological civilization. Under the leadership of this environment, Henan Province began to
change the mode of economic development, focusing on ecological benefits, which finally
led to the improvement of WEUE.

4.1.3. Analysis of Influencing Factors in WEUE

Table 3 displays the calculated results from a Tobit regression analysis that was per-
formed to analyze the factors influencing the WEUE in 18 districts of Henan Province.

Table 3. Calculation results of the Tobit regression model.

Correlation
Variable

Explanatory
Variable

Regression
Coefficient Standard Error p

Economic
development

GDP 1.5110 *** 0.1983 0.002
ECG −0.0358 *** 0.0031 0.001

Resource
endowment

PWR 0.0004 *** 0.0001 0.001
PCP 0.0396 *** 0.0074 0.006

Industrial
structure

PSI −3.3799 *** 0.4027 0.001
PAC 1.3998 *** 0.2835 0.008

Ecological
environment

STR 0.0107 *** 0.0017 0.003
COD −0.0003 ** 0.0001 0.010

Note: The superscripts ** and *** indicate 5% and 1% significance levels, respectively.
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(1) Economic development: GDP had a positive effect on the increase of WEUE. The
regression coefficient was 1.511, with a significance level of 1%. As socio-economic devel-
opment continues to evolve, people’s awareness of resource utilization and management
increases, and technological advances and innovations could also contribute to a more
efficient use of water resources. The regression coefficient of ECG was -0.0358 with a signif-
icance level of 1%. With economic development and technological progress, the utilization
of water resources in the production process would increase, and the ECG would gradually
decrease. The results showed a decrease in ECG and an increase in WEUE.

(2) Resource endowment: PWR and PCP had a positive effect on WEUE enhancement.
The regression coefficients are 0.0004 and 0.0396, which are at a 1% significance level.
Higher PWR and PCP indicated that each person could have more water and energy
available for use, which could meet the needs of people’s production and living and reduce
waste or overutilization due to the shortage of water and energy.

(3) Industrial structure: There was a contribution of PAC to WEUE enhancement with
a regression coefficient of 1.3998 and a 1% significance level. Henan is one of China’s
major agricultural provinces, and agriculture is an important area of water and energy
use. With the development of modern agriculture, the gradual popularization of water-
saving and energy-reducing facilities has led to a gradual increase in resource efficiency,
thus promoting the enhancement of WEUE. PSI inhibited the WEUE enhancement with a
regression coefficient of −3.3799, a 1% significance level, and included many high water
and energy-consuming industries, such as manufacturing and construction, which also
inhibited WEUE as a result.

(4) Ecological environment: STR had a positive effect on WEUE enhancement, and
COD had an inhibitory effect. The regression coefficients were 0.0107 and −0.0003, respec-
tively. In terms of inputs, the reduction of pollutant emissions was effective in reducing
ecosystem damage and improving environmental quality in order to increase water re-
sources, energy availability, and economic output. In terms of outputs, pollutants as
non-desired outputs, cleaner production, emission standards, and a series of other policies
for reducing pollutant emissions and improving pollution prevention play an important
role in enhancing the improvement of WEUE.

4.2. Analysis of Changes in ERI
4.2.1. Analysis of Land-Use Change

By referring to Table 4, it became evident that during the period from 2000 to 2020,
there were notable variations in the areas of different land-use types within Henan Province.
The consistent structure throughout this period was characterized by arable land, with it
being the largest, followed by forest land, built-up land, grass land, water land, and unused
land. Arable land and forest land were the primary land-use categories in Henan Province,
making up approximately 80% of the total land area. Conversely, the extent of unused land
was found to be less than 0.1%. During the study period, the largest change in the area was
arable land, which decreased by 4990 km2. With a time window width of 5 years, arable
land decreased by 2942 km2 during 2015–2020, accounting for 59% of the total decrease in
arable land. Followed by built-up land, which increased by 4821 km2 from 2000 to 2020,
and built-up land increased by 3191 km2 during 2015–2020, accounting for 66% of the total
increase in built-up area of land use. The maximum value of the dynamic index for the
six land use types occurred in the period of 2015–2020 in the case of build-up land with
3.43%, followed by water land with 2.66% for the period of 2000–2005. Forest land had the
smallest value of change in the dynamic index, with a minimum value of 0.01%, followed
by water land with a minimum value of 2.66%, and grass land with 0.02%. Land use
transfers by phase from 2000–2020 are shown in Figure 7. It could be noticed that during
the period of the study, the main focus was on the transfer of arable land and built-up land.
Between 2000 and 2015, the interconversion of different land uses was relatively negligible.
However, the most substantial change in land use occurred from 2015 to 2020, particularly
with a substantial conversion of arable land into built-up land. Simultaneously, there was a
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notable conversion of arable land to forest land, grass land, water land, and unused land.
Additionally, there was a transfer of built-up land back to arable land, although the extent
of this transfer was considerably smaller compared to the conversion from arable land to
built-up land.

Table 4. Changes in land use dynamics in Henan Province.

Land-Use Type
Area (km2) Dynamic Index (%)

2000 2005 2010 2015 2020 2000–2005 2005–2010 2010–2015 2015–2020

Arable Land 108,516 107,536 107,187 106,468 103,526 −0.18% −0.06% −0.13% −0.55%
Forest Land 27,061 27,010 27,073 27,053 27,076 −0.04% 0.05% −0.01% 0.02%
Grass Land 9447 9387 9374 9365 8952 −0.13% −0.03% −0.02% −0.88%
Water Land 3511 3978 4026 4047 4250 2.66% 0.24% 0.10% 1.00%

Built-up Land 16,992 17,644 17,896 18,622 21,813 0.77% 0.29% 0.81% 3.43%
Unused Land 88 80 75 73 72 −1.82% −1.25% −0.53% −0.27%
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4.2.2. Characterization of Spatial Variation in the ERI

Utilizing the Ordinary Kriging approach, the spatial interpolation of the ERI was
conducted for the 8417 evaluation grid cells within the designated study area. Through
ArcGIS data processing, it was found that the range of the ERI for the five periods was
all within 0–0.326. In order to facilitate the comparison of the spatial distribution of ER in
five periods in the study area, the ERI for each period was divided into five classes based on
the relative index method. The divisions were as follows: high ER (>0.25), relatively high ER
(0.2–0.25), medium ER (0.15–0.2), relatively low ER (0.1–0.15), and low ER (<0.1). Figure 8
displays the mapping of spatial and temporal variations in ER across the five-time periods.

From 2000 to 2020, notable spatial disparities in the ER were evident across Henan
Province. As a general trend, the ER exhibited a consistent decrease during this period.
During the period 2000–2010, the ER in the study area changed less markedly and was
dominated by high and relatively high ER levels. It was mainly distributed in the central
Henan district, which was dominated by arable land, including Nanyang, Zhumadian,
Zhoukou, Luohe, and other districts dominated by arable land area. The medium ER areas,
on the other hand, were mainly concentrated in Sanmenxia, southwest of Luoyang, and
northwest of Nanyang, which are mainly forested areas. Until the period of 2010–2020,
the ER of the study area changed considerably, mainly from high ER and relatively high
ER to medium and relatively low ER. During this period, the most obvious change was
in the ER level of western Henan, which changed from the previous medium ER area to
the low ER area. It is followed by central Henan, which was characterized by high and
relatively high ER, changing to mainly relatively high and medium ER. During the period
of 2000–2020, the low ER areas were primarily concentrated in the central region, which
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was dominated by built-up land. Following two decades of rapid economic growth and
the expansion of built-up land, areas with low ER were predominantly concentrated in the
central and northern districts of Henan Province. In general, the ER of the entire study area
exhibited a declining trend. According to the results of the previous land use changes, it
could be seen that the large reduction in the area of arable land indicated that the high ER
land use types were reduced and transformed into low ER arable land. Especially from
2010 to 2020, there was a significant change in the ER level.

Water 2023, 15, x FOR PEER REVIEW  15  of  22 
 

 

 

Figure 8. Changes in the spatial pattern of ER between 2000 and 2020. 

4.2.3. Temporal Change of ERI 

The ERI of each district in Henan Province is shown in Figure 9a, and the change in 

ERI from 2000 to 2020 is shown  in Figure 9b. From 2000 through 2020, the ERI of each 

district showed a decreasing trend. Among them, Jiyuan had the most negligible change 

in ERI,  from 0.188  in 2000  to 0.180  in 2020, with a change value of −0.008;  followed by 

Anyang, from 0.252 in 2000 to 0.233 in 2020, with a change value of −0.019. It was worth 

mentioning  that  the ERI of  Jiyuan, Anyang, and Xinyang  increased  from 2000  to 2005, 

whose change values were 0.017, 0.028, and 0.001, respectively. Apart from this, Anyang 

increased its ERI by 0.002 during 2015–2020. Hebi had the largest change in the value of 

the ERI, from 0.297 in 2000 to 0.173 in 2020, a decrease of 0.124; followed by Jiaozuo, which 

changed from 0.268 in 2000 to 0.161 in 2020, a decrease of 0.107. 

 

Figure 9. Changes in ERI during 2000–2020 ((a) represents the value of the ERI for each district, and 

(b) shows the change in the ERI for each district over the period 2000–2020). 

Through the analysis, it could be found that the ER of Henan Province decreased in 

recent years, which was related to its decreasing area of arable land and increasing area 

of build-up  land. Over  the past  two decades, urbanization  in Henan Province has pro-

gressed  significantly,  leading  to  a  continuous  increase  in  the  urban  population. 

Figure 8. Changes in the spatial pattern of ER between 2000 and 2020.

4.2.3. Temporal Change of ERI

The ERI of each district in Henan Province is shown in Figure 9a, and the change in
ERI from 2000 to 2020 is shown in Figure 9b. From 2000 through 2020, the ERI of each
district showed a decreasing trend. Among them, Jiyuan had the most negligible change in
ERI, from 0.188 in 2000 to 0.180 in 2020, with a change value of−0.008; followed by Anyang,
from 0.252 in 2000 to 0.233 in 2020, with a change value of −0.019. It was worth mentioning
that the ERI of Jiyuan, Anyang, and Xinyang increased from 2000 to 2005, whose change
values were 0.017, 0.028, and 0.001, respectively. Apart from this, Anyang increased its
ERI by 0.002 during 2015–2020. Hebi had the largest change in the value of the ERI, from
0.297 in 2000 to 0.173 in 2020, a decrease of 0.124; followed by Jiaozuo, which changed from
0.268 in 2000 to 0.161 in 2020, a decrease of 0.107.
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Through the analysis, it could be found that the ER of Henan Province decreased in
recent years, which was related to its decreasing area of arable land and increasing area of
build-up land. Over the past two decades, urbanization in Henan Province has progressed
significantly, leading to a continuous increase in the urban population. Consequently, there
had been a rising demand for land in various districts within the province. The urbanization
rate of the permanent population in Henan Province in 2020 (54.2%) increased by 1 percent
compared to the urbanization rate in 2019 (53.2%). The increase in the urbanization rate
and the acceleration of the urbanization process contributed to the expansion of built-up
land, which led to an increase in the area of built-up land. Particularly after 2010, the
spatial and temporal transformations of built-up land and arable land across the study
area became notably evident. The above phenomenon should be attributed to multiple
aspects. On the one hand, it was due to the increased demand for built-up land as a result
of urban expansion, and more and more arable land was developed into built-up land to
meet the needs of urban development and road transportation expansion. On the other
hand, people’s awareness of ecological environmental protection had gradually increased
in recent years, so they began to pay more attention to the development and utilization of
land resources according to local conditions and protection, so part of the built-up land was
converted into arable land. However, the ecology of arable land was more fragile than that
of built-up land. At the same time, the transformation of the arable land area was caused
by human activities, which threatened the stability of the ecosystem at a certain level. This
is the main reason for reducing ER in Henan Province.

4.3. Relationship between WEUE and ERI
4.3.1. Decoupling Analysis of the WEUE and ERI

Considering that the land-use data have a period of 5 years, in order to reflect the real
state of the study period as much as possible, the calculation of the decoupling index was
carried out with a window width of 5 years (except for the first and last years). Then, the
decoupling state of the whole study period was studied.

The decoupling state with a window width of 5 years is shown in Figure 10. It could
be found that the decoupling state between WEUE and ERI in Henan Province had more
obvious distributional characteristics. In the period of 2000–2005, there were two main
states of SNDS and RDS, as well as three other states of decoupling: SDS, WNDS, and RCS.
The areas of SNDS were mainly distributed in central and western Henan, and the areas of
RDS were mainly distributed in northern and eastern Henan. In the period of 2005–2010,
the districts with SNDS increased significantly, mainly distributed in the central and eastern
Henan areas, and the areas with RDS shifted to the western and southern Henan areas. In
the 2010–2015 time breadth, the number of districts with SNDS declined and shifted mainly
to the north and south of Henan, and the districts with RDS were mainly concentrated in
the districts of central Henan and east Henan. In the 2015–2020 time broadcast, decoupling
states were divided into three main states: SNDS, ENDS, and WNDS, which were primarily
dominated by SNDS, with a total of 14 districts. The district with WNDS was Sanmenxia,
and the districts with ENDS were Anyang, Xinxiang, and Shangqiu. The spatial distribution
of the decoupling states of WEUE and ERI for the whole study period is shown in Figure 11.
It mainly showed three kinds of decoupling states: SNDS, WNDS, and RDS. Xinyang,
Puyang, Kaifeng, Luoyang, and Zhumadian were RDS; Zhengzhou and Pingdingshan
were WNDS; and the other districts were SNDS.

During the 2000–2005 period, the spatial distribution of the decoupling states in
Henan Province was uneven. Henan’s economy was in the stage of rough development,
and there were problems of the overconsumption of resources (e.g., water and energy) and
ecological damage, so a variety of decoupling states of WEUE and ERI appeared. During
the 2005–2010 period, the SNDS was mainly distributed in the faster and more developed
districts of central and eastern Henan. Along with rapid economic development, they
had begun to shift the focus of development in the direction of sustainable development.
For instance, Zhengzhou had introduced a water resources tax system, implemented
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energy-saving and emission reduction targets, and promoted the strengthening of energy
management in various industries, as well as enterprises and public institutions. During the
2010–2015 period, the two districts of northern and southern Henan actively strengthened
their water resource management, water conservancy project construction, and other efforts
to improve the utilization efficiency of water resources. Simultaneously, they actively
pursued energy restructuring measures to enhance energy efficiency and minimize reliance
on traditional energy sources. During the 2015–2020 period, districts actively practiced the
Environmental Protection Law, improved the way water-energy resources were utilized,
and guided the development of the eco-industry and green economy, promoting regional
ecological environment status and the fitness relationship between WEUE and ERI.
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4.3.2. Policy Implication

Currently, the scarcity of water resources and excessive energy consumption have
emerged as significant constraints that impact the high-quality development of Henan
Province’s economy and hinder ecologically sustainable growth. Based on the above-
obtained results, the following relevant recommendations are put forward:

(1) There are regional differences in WEUE, which should be adapted to local con-
ditions. During the journey towards high-quality economic development, it becomes
imperative to consider the limits of water resources and energy while simultaneously striv-
ing for an approach that promotes intensive, cost-effective, and sustainable development
and utilization. All districts should improve the utilization efficiency of water resources
and energy, rationally control the degree of exploitation and utilization, and promote the
virtuous cycle of water resources and energy to achieve the coordinated development of
the two;

(2) Although the ER of Henan Province has been decreasing year over year, there
is still a gap between the realization of sustainable development. There is a need to
strengthen resource conservation and recycling, promote the development of environmental
protection industries, facilitate the transformation of the low-carbon economy, and reduce
the excessive development and consumption of natural resources. At the same time, it
is necessary to strengthen education and publicity on ecological security, advocate green
lifestyles, promote the concept of green consumption, and form a consensus among the
whole society to maintain ecological security;

(3) Based on the WEUE and ERI decoupling states, improvements should be made in
two ways. Firstly, districts that are in a state of WNDS and RDS at the present stage should
integrate resource utilization and ecological security and pursue a development path in
which exploitation, utilization, and protection are carried out simultaneously. Secondly,
giving full play to the demonstration and positive guidance role of the areas with the best
decoupling state (i.e., Xuchang, Zhoukou), they should integrate the high-quality resources,
synergize their development, and optimize the development pattern of water resources,
energy, and ecological protection.

5. Conclusions

In this study, the relationship between water-energy resource utilization and ecological
security was investigated with an Assessment-Decoupling two-stage framework, and a real
case of Henan Province, China, was conducted. Specifically, the WEUE was assessed by
constructing an improved input-output indicator system and using the Super-SBM model,
and the Tobit model was used to analyze the influencing factors of the WEUE. Then, the
raster-scale ER was evaluated based on the land-use type. Ultimately, the Tapio model was
employed to quantitatively assess the fitness relationship between WEUE and ER. Some
valuable conclusions are as follows:

1. The WEUE of the study area showed a fluctuating trend, with a decreasing trend
during 2000–2015 and a significant increase during 2015–2020, which was more
pronounced in the central, western, and northern districts of Henan. However, the
WEUE of Puyang, Nanyang, and Sanmenxia decreased as a whole, with Kaifeng
experiencing the largest decrease at 0.262, followed by Anyang at 0.252;

2. The spatial differences in ER in Henan Province are quite obvious, with high-risk
areas mainly concentrated in central, eastern, and southern Henan and low-risk
areas mainly in western Henan. Between 2000 and 2020, the ERI generally showed
a decreasing trend. By 2020, most of the cities were at higher risk levels, with Hebei
having the largest change in ERI at 0.124, followed by Jiaozuo, and Jiyuan having the
smallest change of 0.08;

3. There is significant spatial variation in the decoupling states of WEUE and ERI of the
18 districts in Henan Province, and the differences became more pronounced over
the study period. The spatial distribution of districts with SNDS was inconsistent
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in each time window, while overall, the number of districts with SNDS increased
continuously. A total of 14 districts reached SDNS in 2020.

However, there are still several limitations that need to be further addressed. The
interaction between resource utilization and ecological security and the potential effects
of numerous factors are all very complex. How to clarify the action mechanisms of the
two systems can be the focus of future research. Meanwhile, the WEUE has a vast number
of influences, and their driving mechanisms are complex, manifesting that the selection
of indicators is significant for the obtained results. This study constructed a generalized
indicator system; although it has some applicability, the indicators should be dynamically
adjusted when applying the method to other areas.
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