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Abstract: The availability of remotely sensed (RS) actual evapotranspiration (ET) provides a possi-
bility for improving runoff prediction in ungauged basins. To develop a general practical method
to improve runoff prediction by directly incorporating RS-ET into rainfall-runoff (RR) models, two
modeling schemes are proposed: (i) using RS-ET as direct input; and (ii) using RS-ET as partial direct
input. The principle is to use RS-ET in cases where the runoff prediction can be improved. The two
schemes are compared in over 200 basins using three RR models (Xinanjiang model, SIMHYD, and
GR4J) and RS-ET inverted from AVHRR, and the modeling results in ungauged basins are assessed
using the spatial proximity method. Results show that: (i) it is beneficial to incorporate RS-ET into the
Xinanjiang model for over 85% of the basins, but this is not the case for SIMHYD and GR4J models;
(ii) further model improvements can be obtained by using RS-ET as partial direct input, and are
achieved in 91.1%, 59.0%, and 53.2% of the basins for Xinanjiang, SIMHYD, and GR4J, respectively;
and (iii) incorporation of RS-ET is more applicable for Xinanjiang while less so for GR4J, and the
efficacy is superior for basins that are relatively arid and were originally poorly simulated. Overall,
using RS-ET as partial direct input is recommended.

Keywords: runoff prediction; RS data; evapotranspiration; RR model; MOPEX

1. Introduction

Improving the accuracy of runoff prediction in ungauged basins is a growing chal-
lenge in hydrological modeling [1,2]. Lack or scarcity of observations makes hydrological
modeling in ungauged basins extremely difficult [3,4]. Recently, the availability of remotely
sensed (RS) data with broad spatial coverage and temporal continuity has provided a
methodology to overcome this issue [5,6]. RS data not only provide hydrological infor-
mation of basins, but also helps establish stronger links between climate characteristics,
topographical features, and basin hydrological processes [7,8]. Moreover, uncertainty
in prediction in ungauged basins can occur due to an incomplete representation of the
ensemble of hydrological processes [7].

Evapotranspiration is a critical input to RR models involving the coupled water and
energy balance. However, the evapotranspiration processes cannot be adequately repre-
sented in many cases, since the parameters of conceptual RR models are largely adjusted
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to optimize runoff performance without realistically considering the evapotranspiration
processes [9,10]. Consequently, the regionalization of evapotranspiration processes with
poor descriptions can weaken runoff prediction in the target ungauged basin. Considering
that RS-ET data contain surface vegetation information specific to the ungauged basin
and reduce the uncertainty of parameter regionalization [11,12], a variety of studies have
incorporated RS-ET data into RR models for calibration and as direct input [10–17]. Several
studies have highlighted [12,18] that modifying the model structure to use RS-ET as direct
input can further improve runoff prediction.

AVHRR (Advanced Very High Resolution Radiometers) [19–21] and MODIS (Mod-
erate Resolution Imaging Spectroradiometer) [22–25] ET datasets have been extensively
used as direct input in RR modeling. Li et al. [18] and Zhou et al. [26] directly incor-
porated MODIS-ET into the Xinanjiang model and improved streamflow simulation.
Zhang et al. [11] and Vervoort et al. [12] modified SIMHYD and IHACRES to use MODIS-
ET, both of which worsened the accuracy of streamflow simulation, but the former im-
proved regionalization. Zhang et al. [27] replaced the ET sub-module of SIMHYD with
AVHRR-ET and Szilagyi [28] replaced the ET sub-module of the Jakeman–Hornberger
model with MODIS-ET, but streamflow simulation and regionalization performances re-
mained practically unchanged.

Table 1 summarizes the relevant literature on RR modeling using RS-ET as direct input.
It can be seen that past studies mostly conducted simulation first and then regionalization
using a variety of RS-ET data and hydrological models. While the incorporation of RS-ET
takes into account the ET term in the water balance, and meanwhile considers surface
vegetation information, the growing body of literature identifies that runoff prediction
cannot be improved with certainty and is actually improved only in some cases. However, it
is unclear under what circumstances RS-ET can improve runoff prediction using RR models.
The efficacy of using RS-ET can be affected by the accuracy of RS-ET data, characteristics
of catchment data, model structure, and parameter optimization. It can be inferred from
Table 1 that the results of using RS-ET are model dependent. For instance, incorporating
RS-ET into the Xinanjiang model improved its performance in all cases, but that was not
true for other models, such as SIMHYD. In addition, some past studies have shown regional
dependency; however, specific geographical analyses have seldom been performed.

Considering that the circumstances under which RS-ET data can be used to improve
runoff prediction have not been addressed in past studies, the objectives of this study are as
follows: (i) propose a general practical method to improve runoff prediction using RS-ET
data as partial direct input; and (ii) reveal the circumstances where RS-ET can be used to
improve runoff prediction. Since it is difficult to consider all these factors together, this study
concentrates on analyzing the effects of different RR models and hydro-meteorological
characteristics of the catchment.

In addition to the original RR models with ET calculated by the respective evapotran-
spiration sub-modules (Scheme 1), two schemes of using RS-ET are proposed: (1) modifying
the original models to use RS-ET data as direct input (Scheme 2), and (2) using RS-ET as
partial direct input provided that the ET simulation in Scheme 1 has an acceptable accuracy
(Scheme 3). These three schemes have been compared in 208 MOPEX (Model Parameter
Estimation Experiment) basins using three RR models and RS-ET data estimated from
AVHRR. Runoff prediction results in ungauged basins are then evaluated using the spatial
proximity method. Finally, to reveal the regional spatial patterns, model performances
are analyzed from a geographical standpoint. The remainder of this article is organized
as follows. Section 2 provides a brief description of the materials used, including the
meteorological data and RS-ET data, and then presents a brief introduction to three RR
models and the three modeling schemes. Following the materials and methods, Section 3
presents the results and discussion. Finally, conclusions are drawn in Section 4.
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Table 1. Summary of relevant literature on RR modeling using RS-ET as direct input (the current paper is added for completeness). Not all papers determined under
what circumstances RS-ET can be used to improve runoff prediction in RR models and performed geographical analyses, and these are denoted with a N/A ‘not
applicable’ in the relevant part of the ‘Key results’ column. In the ‘Key results’ column, the three components are identified by the code: (1) assess the relative
performance of runoff prediction versus the conventional method; (2) determine the circumstances under which RS-ET can be used as direct input in RR models; and
(3) analyze the model performances from a geographical standpoint to reveal the regional pattern. Studies are ordered chronologically then alphabetically.

Study RS-ET or Vegetation Data/RR
Model Used

Location/Climate/Number of
Catchments/Size Range of
Catchment/Length of Time
Series/Time Step

RR Modeling Using RS-ET As
Direct Input/Regionalization
Method

Key Results

1. Zhang et al. [24]
ET estimated from MODIS LAI
with the Penman–Monteith (PM)
equation/SIMHYD

The Murray-Darling Basin in
Australia/N/A/120/50–2000
km2/5 years/annual

Deriving discharge from water
balance estimates
(RRS = P − ERS)/the spatial
proximity method

(1) The simulated RRS in gauged/ungauged basins
had an accuracy similar to that of SIMHYD in the
gauged catchments.
(2) N/A
(3) RS-ET was successfully used to estimate
long-term runoff in semi-humid and
humid regions.

2. Li et al. [18]
ET estimated from MODIS LAI
with the PM equation/
Xinanjiang model

Southeast Australia/semi-arid
and semi-humid/ 210/
50–2000 km2/7 years/ daily

Modification of the Xinanjiang
model to use MODIS LAI
directly/the spatial proximity
method and the physical
similarity method

(1) Incorporation of MODIS LAI into Xinanjiang
model improved both the model calibration and
prediction of runoff in ungauged catchments.
(2) N/A
(3) N/A

3. Zhang et al. [11] ET estimated from MODIS LAI
with the PM equation/SIMHYD

Southeast Australia/N/A/120/
50–2000 km2/5 years/daily

Modification of SIMHYD to use
MODIS-LAI directly/the spatial
proximity method

(1) The runoff simulation results were reduced,
while the regionalization results were
improved significantly.
(2) N/A
(3) N/A

4. Zhang and Chiew [2]
ET estimated from MODIS LAI
with the PM equation/Xinanjiang
and SIMHYD

Southeast Australia /relatively
unimpacted/210/50–2000 km2/
13 years/daily

The two models are revised to
incorporate RS-LAI/the spatial
proximity method, the physical
similarity method, and the
integrated similarity method

(1) The revised models generally perform better
than the original RR models, but the improvements
are marginal.
(2) N/A
(3) The revised models give significantly better
results in the poorer modeled
ungauged catchments.
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Table 1. Cont.

Study RS-ET or Vegetation Data/RR
Model Used

Location/Climate/Number of
Catchments/Size Range of
Catchment/Length of Time
Series/Time Step

RR Modeling Using RS-ET As
Direct Input/Regionalization
Method

Key Results

5. Zhang et al. [27] LAI from AVHRR/SIMHYD Australia/N/A/470/
50–5000 km2/26 years/daily

Modification of SIMHYD to
incorporate RS-LAI directly
(SIMHYD-ET)/the spatial
proximity method

(1) For both model calibration and regionalization,
the runoff modeled by the SIMHYD-ET model are
similar to (or only very marginally better than)
those simulated by the original SIMHYD model.
(2) N/A
(3) The SIMHYD-ET outperformed SIMHYD
especially for poorly simulated catchments with
low NSE of daily runoff and high water
balance errors.

6. Szilagyi [28]

RS-ET estimated with CREMAP
method/a lumped conceptual
model of Jakeman and
Hornberger (JH model)

The Little Nemaha River
in Nebraska,
USA/continental/1/2051 km2/
6 years/daily

Modification of the JH model to
incorporate CREAMP-ET
directly/N/A

(1) The accuracy of runoff simulation remained
practically unchanged.
(2) N/A
(3) N/A

7. Zhou et al. [26] ET estimated from MODIS LAI
with the PM equation/Xinanjiang

Southeast Australian/bushfire
impacted/4/360–900 km2/
28 years/daily

Modification of Xinanjiang model
to incorporate RS-LAI directly
(Xinanjiang-ET model)/N/A

(1) Inclusion of RS-LAI resulted in a slight
improvement of runoff simulation and noticeable
decrease in water balance errors.
(2) N/A
(3) Use of RS-LAI can improve runoff simulation in
three wetter catchments, not in a dry catchment.

8. Willem Vervoort
et al. [12]

MODIS-ET from Montana
University/IHACRES

New South Wales,
Australia/semi-arid/4/
146–2184 km2/12 years/daily

To replace the ET sub-module
directly with RS-ET data/the
spatial proximity method

(1) Using RS-ET reduced runoff
simulation performance.
(2) N/A
(3) N/A

9. Roy et al. [29] ET from GLEAM/HYMOD
The Nyangores River basin in
Kenya and Tanzania/N/A/1/
697 km2/7.5 years/daily

Modification of HYMOD to
simulate ET as by GLEAM/N/A

(1) The modified model can provide improved
simulations of streamflow.
(2) N/A
(3) N/A
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Table 1. Cont.

Study RS-ET or Vegetation Data/RR
Model Used

Location/Climate/Number of
Catchments/Size Range of
Catchment/Length of Time
Series/Time Step

RR Modeling Using RS-ET As
Direct Input/Regionalization
Method

Key Results

10. This study
ET estimated from AVHRR
NDVI/Xinanjiang, GR4J
and SIMHYD

The MOPEX basins in the
continental United States/highly
diverse/401/67–10,329 km2/
21 years/daily

(i) Scheme 2: Using RS-ET as
direct input;
(ii) Scheme 3: Using RS-ET as
partial direct input/the spatial
proximity method

(1) Using RS-ET as direct input improved model
performances for the Xinanjiang model, but
worsened runoff prediction for SIMHYD and GR4J
in most cases; using RS-ET as partial direct input
improved runoff prediction in 91.1%, 59.0%, and
53.2% basins for Xinanjiang, SIMHYD,
and GR4J, respectively.
(2) If the simulated ET from a particular
hydrological model matches the RS-ET data well,
then the RS-ET data may be used as direct input in
this model.
(3) The efficacy of using RS-ET is superior for
relatively arid and originally poorly
simulated basins.
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2. Materials and Methods
2.1. Study Site and Materials
2.1.1. Study Site and Data Sources

The modeling experiments are based on the MOPEX (Model Parameter Estimation
Experiment) basins in the United States [30]. Most relevant studies reported in the literature
are for basins in Australia.

Daily precipitation, climate potential evapotranspiration (ETP), and runoff data are
available from 1948 to 2003 in the MOPEX datasets (ftp://hydrology.nws.noaa.gov, ac-
cessed on 22 July 2022). Daily RS-ET data at the gridded resolution of 8 km are derived by
AVHRR NDVI from 1983 to 2006 [21], and have been spatially averaged to basin scale. The
ET estimates agree well with the observed tower fluxes, with R2 above 0.6 and RMSE below
45 W m−2 for all towers. The ET dataset is demonstrated to be a long-term continuous
global ET record with relatively high accuracy, which has been extensively applied to
research on assessment of regional ET and climatology anomalies, drought monitoring,
and evaluation of global water balance change [31–36].

This study selects the data in the overlapping period of two datasets from 1983 to 2003
and is focused on 208 MOPEX basins, in which the long-term average annual values of
RS-based ET agrees well with that of water-balance-based ET (RMSE = 29.7 mm year−1;
R2 = 0.91).

The 208 MOPEX basins (67 to 10,096 km2) used in this study are located in the conti-
nental United States with a diversity of climate characteristics, from semi-arid to temperate
and tropical humid regions. Figure 1 shows the average annual precipitation (mm) for the
208 selected MOPEX basins, which varies greatly over the geographical region. Specifically,
the precipitation is above 2000 mm on the west coast with temperate maritime climate, but
less than 400 mm in arid regions in the central US with temperate continental climate and
desert climate. Overall, average annual precipitation shows a clear east–west (subtropical
humid climate zone, temperate continental climate zone, plateau mountain climate, and
desert climate zone) gradient with decreasing values toward the west coast, and demon-
strates another north–south (subtropical humid climate zone, temperate continental climate
zone) gradient in the eastern U.S with increasing values toward the south coast.
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2.1.2. Data Implementation

This study utilizes daily precipitation, ETP, runoff, and RS-ET data from 1983 to 2003
in the selected 208 MOPEX basins. Specifically, the calibration period is from 1983 to 1996
and the validation period is from 1997 to 2003. Data in the first 60 days are sacrificed for
model warming-up.

ftp://hydrology.nws.noaa.gov
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2.2. Methodology

The schematic diagram of the methodology is shown in Figure 2. Three modeling
schemes are implemented: (i) the original hydrological model with ET calculated by the
respective evapotranspiration sub-module (Scheme 1); (ii) modification of the original
models to use RS-ET data as direct input (Scheme 2); and (iii) modification of Scheme 2 to
use RS-ET as partial direct input (Scheme 3) as it was later noted that using RS-ET as direct
input could only improve the modeling results in some cases. Using the three RR models,
these three schemes are compared to investigate a general practical method to improve
runoff prediction in ungauged basins by using RS-ET data as direct input.
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2.2.1. RR Models

As shown in Table 1, most past studies used only one RR model, but the results
were model dependent to some extent. To investigate the impact of model choice on
RR modeling, several RR models are applied. RR models in this study are selected on
the basis of several criteria. Firstly, lumped conceptual RR models are required because
they have relatively simple structures and few parameters, and therefore can be easily
regionalized to ungauged basins [18,27,37,38]. Secondly, RR models are required to be
representative (i.e., have different model structures, different numbers of parameters,
and different emphases on physical processes) and widely used for runoff prediction
over different climatic areas. Finally, it is expected that inputs to the RR models are
daily precipitation and ETP considering the availability of data materials in the study.
Considering the above factors, three lumped conceptual RR models are selected, namely,
Xinanjiang, GR4J, and SIMHYD. A schematic overview of the three RR models is presented
in Figure 3.



Water 2023, 15, 3307 8 of 25

Water 2023, 15, x FOR PEER REVIEW 7 of 26 
 

 

ungauged basins [18,27,37,38]. Secondly, RR models are required to be representative (i.e., 
have different model structures, different numbers of parameters, and different emphases 
on physical processes) and widely used for runoff prediction over different climatic areas. 
Finally, it is expected that inputs to the RR models are daily precipitation and ETP consid-
ering the availability of data materials in the study. Considering the above factors, three 
lumped conceptual RR models are selected, namely, Xinanjiang, GR4J, and SIMHYD. A 
schematic overview of the three RR models is presented in Figure 3.  

 
(a) Xinanjiang 

 
(b) SIMHYD 

Figure 3. Cont.



Water 2023, 15, 3307 9 of 25

Water 2023, 15, x FOR PEER REVIEW 8 of 26 
 

 

 
(c) GR4J 

Figure 3. Schematic overview of the Xinanjiang [39], SIMHYD [40], and GR4J [41] models. 

(1) Xinanjiang model 
The Xinanjiang hydrological model is a conceptual RR model developed in 1995 [39] 

and has been widely used for hydrological forecasts since the 1980s. The Xinanjiang model 
has much emphasis on physical processes and relatively more parameters. A schematic 
diagram of the model structure is described in Figure 3a, which consists of four main sub-
modules: (i) evapotranspiration, (ii) runoff production, (iii) runoff separation, and (iv) 
flow routing. 

A three-layer soil moisture model is used to determine the actual evapotranspiration 
ET in the Xinanjiang model [42]. The evaporation of the upper layer EU occurs at the po-
tential rate EP until the storage of the upper layer WU is exhausted. 

( )min ,EU EP P WU= +  (1)

Evapotranspiration of the lower layer EL is modeled as a multiplication function of 
the remaining potential evapotranspiration on exhaustion of the upper layer (EP − EU) 
and the actual storage WL of the lower layer. 

( )( )min WL/ WLM,EL EP EU WL= − ×
 (2)

Evapotranspiration of the deepest layer ED is modeled as a proportion C of the re-
maining potential evapotranspiration on exhaustion of the upper layer (EP − EU), and 
subtracting EL. 

( )( )min ,ED EP EU C ELWD= − × −
 (3)

Figure 3. Schematic overview of the Xinanjiang [39], SIMHYD [40], and GR4J [41] models.

(1) Xinanjiang model

The Xinanjiang hydrological model is a conceptual RR model developed in 1995 [39]
and has been widely used for hydrological forecasts since the 1980s. The Xinanjiang model
has much emphasis on physical processes and relatively more parameters. A schematic
diagram of the model structure is described in Figure 3a, which consists of four main
sub-modules: (i) evapotranspiration, (ii) runoff production, (iii) runoff separation, and
(iv) flow routing.

A three-layer soil moisture model is used to determine the actual evapotranspiration
ET in the Xinanjiang model [42]. The evaporation of the upper layer EU occurs at the
potential rate EP until the storage of the upper layer WU is exhausted.

EU = min(EP, P + WU) (1)

Evapotranspiration of the lower layer EL is modeled as a multiplication function of
the remaining potential evapotranspiration on exhaustion of the upper layer (EP − EU)
and the actual storage WL of the lower layer.

EL = min((EP − EU)× WL/WLM, WL) (2)
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Evapotranspiration of the deepest layer ED is modeled as a proportion C of the
remaining potential evapotranspiration on exhaustion of the upper layer (EP − EU), and
subtracting EL.

ED = min((EP − EU)× C − EL, WD) (3)

The total actual evapotranspiration ET is the sum of evapotranspiration from the three
soil layers, i.e., ET = EU + EL + ED, where WU, WL, and WD are the areal mean tension
water storage of the upper, lower, and deepest layer, and WUM, WLM, and WDM are the
areal storage capacity of the upper, lower, and deepest layer, respectively.

(2) SIMHYD

SIMHYD is a seven-parameter lumped conceptual daily RR model developed in
2002 [40]. The model represents physical processes by conceptual equations, and therefore
consists of separate components for interception, infiltration excess runoff, saturation excess
runoff/interflow, and baseflow. The structure of SIMHYD is presented in Figure 3b.

The total actual evapotranspiration ET in SIMHYD consists of interception evaporation
and soil evapotranspiration. The former occurs at the potential rate ETP, and the latter is
calculated as a linear function of the actual storage SMS.

ET = min(10 × (SMS/SMSC), ETP) (4)

(3) GR4J

GR4J is a compact lumped RR model with four parameters [41,43]. The model structure
is shown in Figure 3c, which was determined by the empirical match of multiple candidate
structures with calibration data and therefore has less emphasis on physical processes.

The total actual evapotranspiration in GR4J model is calculated as a function of net
evapotranspiration capacity (En) and the level S in the production storage. En is determined
by subtracting ETP from precipitation.

ES =
S
(

2 − S
x1

)
tanh

(
En
x1

)
1 +

(
1 − S

x1

)
tanh

(
En
x1

) (5)

where x1 (mm) is the maximum capacity of the production store.

2.2.2. Model Calibration, Regionalization, and Evaluation

(1) Model calibration

Model parameters are estimated using the genetic algorithm [44], Rosenbrock method [45],
and downhill simplex method [46] successively. Similar to other algorithms [47,48], such as
the shuffled complex evolution method and estimation of distribution algorithm, the com-
bined application of these three algorithms is sufficient to find the near-optimal parameters.

In each of the three schemes, model parameters are calibrated to match simulated
streamflow to observed data following Equation (6). The objective function F is the mul-
tiplication of the mean square error (MSE) and the relative volume error between the
observed and simulated streamflow. MSE is used to minimizes the simulation error of the
discharge hydrographs, and the relative volume error ensures the overall balance of the
total runoff volume.

min F =

n
∑

i=1
(Qobs,i − Qsim,i)

2

n
×

1 +

∣∣∣∣ n
∑

i=1
Qsim,i −

n
∑

i=1
Qobs,i

∣∣∣∣
n
∑

i=1
Qobs,i

 (6)

where Qobs,i and Qsim,i are the observed and simulated discharges (m3 s−1) on the ith day,
respectively; and n is the number of days.
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(2) Parameter regionalization

Parameter regionalization is conducted in 208 basins to evaluate runoff prediction in
ungauged basins. Specifically, each basin is regarded as ‘ungauged’ in turn, and the runoff
is modeled using the optimized parameter values from the ‘donor’ basin [3,49–53]. Runoff
prediction results in ungauged basins are then evaluated using the spatial proximity method.

For each targeted ‘ungauged’ basin, the corresponding ‘donor’ basin is determined by
the spatial proximity method, i.e., the geographically nearest gauged basin is selected as
the ‘donor’ basin. The spatial proximity method [37,38] is based on geographical distance
similarity. It has been demonstrated that the spatial proximity method can yield similar
or even better results [2,11] compared with the more complex physical similarity method,
which is based on physical attribute similarity [38,54].

(3) Model evaluation

Two indicators are used to evaluate the modeling performance: Nash–Sutcliffe effi-
ciency (NSE) [55], and the water balance index (WBI).

NSE measures how well the residual variance agrees with the observed variance. In
this study, NSEQ and NSEE refer to the NSE value of discharge and ET, respectively:

NSEQ =

1 −

n
∑

i=1
(Qobs,i − Qsim,i)

2

n
∑

i=1
(Qobs,i − Qobs)

2

× 100% (7)

NSEE =

1 −

n
∑

i=1
(ETRS,i − ETsim,i)

2

n
∑

i=1
(ETRS,i − ETRS)

2

× 100% (8)

where Qobs is the average observed discharge (m3 s−1); ETRS,i and ETsim,i are the RS and
the simulated ET values (mm) on the ith day, respectively; ETRS is the average RS-ET (mm);
n is the number of days. NSE ranges from −∞ to 1. The value of NSE should be positive,
and higher values indicate better performance [56]. A value of zero for NSE indicates that
the observed mean Qobs is as good as the model-simulated Qsim,i result, while negative
values indicate that the observed mean is a better predictor than the model. Note that since
the evapotranspiration sub-module is replaced directly by RS-ET data in Scheme 2 and
Scheme 3, NSEE is calculated only in Scheme 1 to evaluate the ET simulation efficiency of
the original RR models.

WBI indicates the relative volume error between the simulated and observed stream-
flow, which is calculated as in Equation (9). A value of zero for WBI means no bias, and
a positive value indicates an overestimation of the total runoff volume and vice versa.
Therefore, values closer to zero indicate better performance.

WBI =

n
∑

i=1
Qsim,i −

n
∑

i=1
Qobs,i

n
∑

i=1
Qobs,i

(9)

2.2.3. Modeling Scheme

Three modeling schemes are used here: Scheme 1 represents the conventional RR
modeling method, while Scheme 2 and Scheme 3 use RS-ET as complete and partial direct
input of RR models, respectively. All these three schemes are carried out for streamflow
modeling in gauged basins and prediction in ungauged basins.
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(1) Scheme 1

Scheme 1 is the benchmark scheme, i.e., the conventional modeling method in which
ET is simulated by the evapotranspiration sub-module of the original hydrological models.
Consequently, streamflow and ET simulation are evaluated by NSEQ and NSEE, respectively.

(2) Scheme 2

Scheme 2 is the method of using RS-ET as direct input in past studies (see Table 1).
This scheme provides a second benchmark with no premise set about the utilization of
RS-ET data. RS-ET is used to replace the evapotranspiration sub-module directly so that
three RR models are slightly modified to accommodate RS-ET as direct input. Specifically,
in the Xinanjiang model, the original three-layer evapotranspiration sub-module is sim-
plified to a single layer and uses RS-ET directly, removing Equation (1) to Equation (3)
and the four evapotranspiration parameters, WUM, WLM, KE, and C. Consequently, the
modified Xinanjiang model has 11 parameters to be optimized. In SIMHYD and GR4J,
the ET calculated by Equations (4) and (5) is replaced directly with RS-ET, and the model
parameters remain the same as those in the original models.

(3) Scheme 3

Scheme 3 is designed to use RS-ET data as partial direct input. The principle is to use
RS-ET in cases where runoff prediction can be improved, i.e., where Scheme 2 outperforms
Scheme 1.

The key of Scheme 3 is to identify the characteristics of cases where Scheme 2 surpasses
Scheme 1. As shown in Table 1, although past studies implemented Scheme 2 over a variety
of RS-ET data and lumped conceptual hydrological models, only a minority of these studies
had improved streamflow modeling in gauged/ungauged basins [2,11,18,26]. The results
of Scheme 2 can be attributed to the accuracy of RS-ET data, characteristics of catchment
data, model structure, parameter optimization, etc. The hypothesis is that NSEE of Scheme
1 not only indicates the ET simulation efficiency of the original models, but also reflects the
compatibility of model structure with RS-ET data and therefore affects the efficacy of using
RS-ET. Accordingly, Scheme 3 utilizes RS-ET as direct input on the premise that NSEE of
Scheme 1 exceeds the respective threshold values (NSEthr) of three RR models. Otherwise,
on the condition that NSEE of Scheme 1 is below the NSEthr, RS-ET is not used and ET is
modeled in the same way as in Scheme 1.

3. Results and Discussion
3.1. Conventional Streamflow Prediction

Table 2 presents the modeling and prediction performances of Scheme 1 over 208 MOPEX
basins. For both model simulation in gauged basins and prediction in ungauged basins,
the Xinanjiang model simulates both streamflow and ET efficiently, with the 50th per-
centile NSEE above 0.48. GR4J performs well for streamflow but poor for ET, with the
75th percentile NSEE below 0.2 and 50th percentile below 0.1, which results in a lower
NSEE threshold of GR4J than that of Xinanjiang and SIMHYD models. For SIMHYD,
the streamflow performance is the worst of three models, but the ET performance is be-
tween that of the above two models. Generally, SIMHYD simulates both streamflow
and ET poorly, with the 75th percentile NSEQ below 0.5 and NSEE below 0.4. Generally,
the relative performance of NSEQ is GR4J > Xinanjiang > SIMHYD, while in terms of
NSEE, Xinanjiang > SIMHYD > GR4J. For all three models, the regionalization results in
ungauged basins are worse than simulation results in gauged basins.

The efficient performances of both streamflow and ET simulation for the Xinanjiang
model indicate its emphasis on both of these two processes. The three-layer soil moisture
model has more flexibility than the one-layer sub-module in the SIMHYD and GR4J models,
and may explain the favorable ET result. However, GR4J performs well for streamflow
but poorly for ET simulation, probably because the parsimonious GR4J model is primarily
designed for streamflow simulation [41]. In almost all cases, the accuracy of streamflow
simulation is higher than that of ET. The RR models put the main emphasis on estimating
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runoff while having less emphasis on evapotranspiration processes [57]. Although ET is
calculated to account for soil water balance, quantifying surface energy fluxes is not a focus
in RR models.

Table 2. Statistical summary (percentiles) of streamflow and ET simulation and prediction perfor-
mances for Scheme 1 over 208 MOPEX basins.

Model Model Performance (%)
Calibration Validation Regionalization

25 50 75 25 50 75 25 50 75

Xinanjiang NSEQ 52.22 64.67 74.05 46.85 59.39 70.15 29.01 45.84 59.27
NSEE 36.59 50.86 56.92 39.87 51.30 57.69 33.19 48.21 56.38

SIMHYD
NSEQ 32.70 42.01 49.64 28.55 39.93 47.81 18.27 32.96 41.90
NSEE 20.18 28.30 37.43 16.12 23.40 30.92 15.51 26.25 33.27

GR4J
NSEQ 57.22 65.79 72.68 50.73 63.44 73.22 25.91 46.53 62.06
NSEE −10.61 2.69 14.65 −12.47 4.88 16.67 −9.50 3.12 14.13

3.2. Selection of RS-ET Utilization Threshold

The value of NSEthr is selected, considering two factors: (i) the relative superiority
level (superior basin percent) of Scheme 2 over Scheme 1, and (ii) the number of basins
for analysis (basins with NSEE values exceeding NSEthr). The former factor is determined
by the representation of evapotranspiration processes in the RR model, and the latter is
affected by the overall ET simulation performances of the model.

Figure 4 presents the results of streamflow simulation improvement using RS-ET as
complete direct input over 208 gauged basins, and depicts the relationship of the relative
performances between Scheme 2 and Scheme 1 (∆NSEQ2-1 = NSEQ2 − NSEQ1) versus NSEE
of Scheme 1 in the calibration period (the result in the validation period is similar and is
therefore not presented here).

As shown in Figure 4a, for the Xinanjiang model, Scheme 2 outperforms Scheme 1
(∆NSEQ2-1 > 0) in 85.1% of the total 208 basins. The NSEE of Scheme 1 exceeds the NSEthr
values of 0.2, 0.3, and 0.4 in 174, 169, and 142 basins, respectively. It can be seen that
Scheme 2 outperforms Scheme 1 in 92.0%, 92.3%, and 95.8% of the corresponding 174,
169, and 142 basins, respectively. Similar analysis is conducted for SIMHYD in Figure 4b,
which shows that Scheme 2 outperforms Scheme 1 in 51.9% of the total 208 basins and the
superiority is actually marginal. The NSEE of Scheme 1 exceeds the NSEthr values of 0.2, 0.25,
and 0.3 in 120, 183, and 49 basins, of which the corresponding basin proportion of Scheme
2 surpassing Scheme 1 is 63.3%, 67.7%, and 69.4%, respectively. Similarly, for GR4J in
Figure 4c, Scheme 2 outperforms Scheme 1 only in 42.3% of the total 208 basins, indicating
that using RS-ET as direct input fails to improve model performance in most basins.
However, Scheme 2 surpasses Scheme 1 in 61.7%, 67.7%, and 84.6% of the basins where
the NSEE of Scheme 1 exceeds 0.05, 0.1, and 0.2, respectively. Generally, the superiority of
using RS-ET over the conventional method is more significant with higher NSEthr values.
In this vein, NSEE of Scheme 1 could be used as a measurement for acceptability of RS-ET
data as direct input.

As shown in Figure 4, the relative performances of Scheme 2 versus Scheme 1 are
different among three RR models. For Xinanjiang, NSEE of Scheme 1 exceeds 0.3 in
169 basins and Scheme 2 surpasses Scheme 1 for 92.3% of these basins. For SIMHYD, NSEE
of Scheme 1 exceeds 0.25 in 83 basins and Scheme 2 surpasses Scheme 1 for 67.5% of these
basins. For GR4J, NSEE of Scheme 1 exceeds 0.1 in 62 basins and Scheme 2 surpasses
Scheme 1 for 67.7% of the basins. However, the relative superiority can be modest with
lower NSEthr, and the number of basins (especially for GR4J) can be insufficient for analysis
with higher NSEthr. Taking into account both the relative superiority level and the basin
numbers for analysis, NSEE values of 0.3, 0.25, and 0.1 are eventually chosen as the NSEthr
for the Xinanjiang, SIMHYD, and GR4J models, respectively.
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3.3. Streamflow Prediction Using RS-ET

Figure 5 compares streamflow simulation performances of the three schemes for both
the simulation and regionalization over 208 basins. It is clear that for all three modeling
schemes, Xinanjiang and GR4J models perform better than SIMHYD. Compared with the
results of simulation, the performances of all three RR models are worse in regionalization,
with the median NSEQ values decreasing by approximately 0.1 compared with the results
of validation. Moreover, the inter-quartile range (the spacing between edges of the box)
is wider in regionalization, showing larger variability of NSEQ results. As for modeling
schemes, Scheme 3 performs the best for both the simulation and regionalization. Specifi-
cally, Scheme 2 surpasses Scheme 1 significantly for the Xinanjiang model, but performs
only slightly better or even worse than Scheme 1 for SIMHYD and GR4J models. The re-
sults indicate that using RS-ET data as direct input may not definitely improve streamflow
simulation performances, which is consistent with the results of most past studies [12,58].
However, Scheme 3 outperformed both Scheme 1 and Scheme 2 almost in all cases, though
more significantly for the Xinanjiang model than for the other two models. Generally, the
performance differences between Scheme 2 and Scheme 3 are marginal, as inferred from
Figure 5.
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Figure 5. Comparison of the NSEQ values among the three schemes for three RR models computed on
208 basins. The red line in the boxplots represents the median value, the ends of the boxes represent
the 1st and 3rd quartiles, the whiskers represent the values at 1.5 standard deviations, and outliers
(more than 1.5 standard deviations from the mean) are shown as red crosses.

To further clarify the improvement/reduction in model performances by using RS-ET
data, the average relative performances (∆NSEQ) of Scheme 2 and Scheme 3 versus Scheme
1 are presented in Figure 6. For the Xinanjiang model, the magnitude of the NSEQ increase
exceeds that of the NSEQ decline in all cases, i.e., the performance improvement dominates
for both Scheme 2 and Scheme 3. For SIMHYD and GR4J, the improvement dominates in
all cases for Scheme 3, but the net ∆NSEQ is relatively marginal. For all three RR models,
the net performance improvement of Scheme 3 is more significant than that of Scheme 2,
demonstrating the superiority of Scheme 3.
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Furthermore, the frequency with which Scheme 2 and Scheme 3 surpass Scheme 1 is
presented in Table 3. A comparison between Scheme 1 and Scheme 2 is conducted over
all the 208 MOPEX basins. However, in Scheme 3, RS-ET data are used only if the NSEE
of Scheme 1 exceeds the respective NSEthr. Accordingly, Scheme 3 using the Xinanjiang,
SIMHYD, and GR4J models are compared with Scheme 1 over 169, 83, and 62 MOPEX
basins, respectively. Results show that for all these models, Scheme 3 surpasses Scheme
2 for both simulation and regionalization. Note that Scheme 3 outperforms Scheme 1 in
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91.1%, 59.0%, and 53.2% basins in regionalization for the Xinanjiang, SIMHYD and GR4J
models, respectively, which indicates that using RS-ET data as partial direct input can
improve streamflow prediction in most ungauged basins.

Table 3. Comparison among the streamflow performance of Scheme 2 and Scheme 3 versus Scheme 1
by basin percent.

Model Periods
Percent (Basin Numbers)

Scheme 2 > Scheme 1 Scheme 3 > Scheme 1

Xinanjiang model
Calibration 85.1% (177/208) 92.3% (156/169)
Validation 86.1% (179/208) 93.5% (158/169)

Regionalization 85.1% (177/208) 91.1% (154/169)

SIMHYD
Calibration 51.9% (108/208) 67.5% (56/83)
Validation 40.4% (84/208) 56.6% (47/83)

Regionalization 50.5% (105/208) 59.0% (49/83)

GR4J
Calibration 42.3% (88/208) 67.7% (42/62)
Validation 32.2% (67/208) 45.2% (28/62)

Regionalization 38.0% (79/208) 53.2% (33/62)

To verify the validity of the screening premise applied in Scheme 3 (NSEE of Scheme 1
is above the NSEthr) for streamflow prediction, Figure 7 compares simulated streamflow
hydrographs between Scheme 1 and Scheme 2 in regionalization for the representative
basins with NSEE > NSEthr and NSEE < NSEthr. It can be seen that for all three models,
Scheme 2 simulates streamflow better than Scheme 1 in the basins with NSEE > NSEthr,
but performs worse than Scheme 1 in the basins with NSEE < NSEthr. Specifically, in
the basins with NSEE > NSEthr, both high flows and low flows are matched better in
Scheme 2 than in Scheme 1. In the basins with NSEE < 0.3 for the Xinanjiang model, these
two schemes perform similarly for high flows, but low flows are more overestimated in
Scheme 2. In the basin with NSEE < 0.25 for the SIMHYD model, high flows are extremely
underestimated in Scheme 2. In the basins with NSEE < 0.1 for the GR4J model, high
flows are underestimated overall and are matched better in Scheme 1 than in Scheme 2.
Therefore, Scheme 3, which uses RS-ET data provided that the NSEE of Scheme 1 exceeds
the respective NSEthr, outperforms Scheme 1.

Generally, results show that using RS-ET for the improvement of streamflow predic-
tion is most applicable and effective for the Xinanjiang model, which agrees with past
studies [18,26]. The Xinanjiang emphasizes both streamflow and evapotranspiration pro-
cesses and the evapotranspiration sub-module is relatively sophisticated, and may explain
the favorable ET results and the efficacy of using RS-ET.

The GR4J model has the worst representation of the evapotranspiration process among
the three models, which means the greatest incompatibility of the model structure with
the RS-ET data. The SIMHYD model has a relatively better representation of evapo-
transpiration processes. However, the ET sub-module in SIMHYD is relatively simple.
Consequently, SIMHYD is average in terms of performance and efficacy when using RS-ET.
Furthermore, to replace the evapotranspiration sub-module with RS-ET data directly, all
three RR models should be slightly modified. While the parameters in the SIMHYD and
GR4J models remain the same as those of the original models, the four evapotranspiration
parameters in the Xinanjiang model are removed, which therefore reduces parameter uncer-
tainty. This may also contribute to the superiority of the Xinanjiang model for streamflow
simulation improvement.

3.4. Water Balance Condition

WBI is a basic factor for ensuring the water balance for hydrological simulation.
Figure 8 compares the WBI values of the three schemes for both the simulation and region-
alization over 208 basins. In all cases except Scheme 2 in the SIYHYD model, the median
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values of WBI range within ±0.1, which shows that the water balance condition is generally
satisfactory. It is clear that the water balances of three models are similar for Scheme 1,
while the Xinanjiang and GR4J models outperform the SIMHYD model for Scheme 2
and Scheme 3. Compared with the results of the simulation, the inter-quartile range of
regionalization is wider, indicating a larger variability of WBI values in regionalization.
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transpiration processes. However, the ET sub-module in SIMHYD is relatively simple. 
Consequently, SIMHYD is average in terms of performance and efficacy when using RS-
ET. Furthermore, to replace the evapotranspiration sub-module with RS-ET data directly, 
all three RR models should be slightly modified. While the parameters in the SIMHYD 
and GR4J models remain the same as those of the original models, the four evapotranspi-
ration parameters in the Xinanjiang model are removed, which therefore reduces param-
eter uncertainty. This may also contribute to the superiority of the Xinanjiang model for 
streamflow simulation improvement. 

3.4. Water Balance Condition 
WBI is a basic factor for ensuring the water balance for hydrological simulation. Fig-

ure 8 compares the WBI values of the three schemes for both the simulation and regional-
ization over 208 basins. In all cases except Scheme 2 in the SIYHYD model, the median 
values of WBI range within ±0.1, which shows that the water balance condition is gener-
ally satisfactory. It is clear that the water balances of three models are similar for Scheme 
1, while the Xinanjiang and GR4J models outperform the SIMHYD model for Scheme 2 
and Scheme 3. Compared with the results of the simulation, the inter-quartile range of 
regionalization is wider, indicating a larger variability of WBI values in regionalization. 

Figure 7. Comparison of simulated streamflow hydrographs between Scheme 1 and Scheme 2 in
regionalization for the representative basins with NSEE > NSEthr and NSEE < NSEthr for three RR
models. Only a representative segment from the whole simulation period is shown here.
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208 basins. The red line in the boxplots represents the median value, the ends of the boxes represent
the 1st and 3rd quartiles, the whiskers represent the values at 1.5 standard deviations, and outliers
(more than 1.5 standard deviations from the mean) are shown as red crosses.

In all cases except the Xinanjiang model in regionalization, Scheme 1 performs the best
for the water balance condition, whereas Scheme 2 performs the worst. Generally, using
RS-ET as direct input weakens the estimation of the basin water balance, because the ET
simulation is now fixed and cannot be used to correct the water balance error. In addition,
the water balance of Scheme 3 is better than that of Scheme 2 in all cases, which could be
attributed to the screening premise applied in Scheme 3 (NSEE of Scheme 1 is above the
respective threshold). Figure 9a analyzes the relationship between WBI of Scheme 2 and
NSEE of Scheme 1 in the validation period. Results demonstrate that the water balance
based on RS-ET data is relatively better with the higher NSEE of Scheme 1, which explains
the better WBI results of Scheme 3 compared to Scheme 2 in Figure 8. Furthermore, as
inferred from the relationship between WBI and NSEQ results of Scheme 2 in Figure 9b, the
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NSEQ values of Scheme 2 are relatively higher, with better water balance results, which is
consistent with the better streamflow performance of Scheme 3 compared to that of Scheme
2 in Figure 4.
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Note that in regionalization, the water balance of Scheme 2 and Scheme 3 is better than
that of Scheme 1 for the Xinanjiang model, but worse than that of Scheme 1 for SIMHYD
and GR4J models, which indicates that using RS-ET only improves the water balance
condition in the Xinanjiang model. The results can be attributed to the larger number of
parameters in the Xinanjiang model, compared to the other models, to compensate for
water balance errors.

3.5. Regional Spatial Patterns

It can be inferred from the above results that both complete and partial incorporation
of RS-ET is more applicable for the Xinanjiang model. However, the performance of the
SIMHYD model is relatively unsatisfactory, with the median NSEQ being below 0.45 for
simulation and below 0.35 in regionalization, and the efficacy of using RS-ET is actually
marginal for the GR4J model. Considering the heterogeneity in hydro-meteorological
characteristics and evapotranspiration magnitudes over 208 study basins, the modeling
results of the Xinanjiang model are analyzed from a geographical standpoint to reveal the
regional spatial patterns.

By comparing the NSEQ results of Scheme 3 with the average annual precipitation
(mm) over 208 basins (Figure 1), there is a correlation between low precipitation values
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and poor model performances. The regional spatial pattern of Scheme 3 can be connected
with the spatial pattern of the original Scheme 1 and the geographical characteristic of
performance improvements by using RS-ET data. Figure 10 shows NSEQ in Scheme 3 and
Scheme 1 versus the average annual precipitation (mm). It can be seen that there is a definite
low-performance zone (NSEQ is below 0.5 in validation and below 0.4 in regionalization
for Scheme 3, and NSEQ is below 0.4 in validation and below 0.3 in regionalization for
Scheme 1) with annual precipitation below 1200 mm.
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Figure 10. Relationship between (a) the NSEQ values of Scheme 1 and (b) the NSEQ values of
Scheme 3 versus the average annual precipitation (mm) in validation and regionalization.

To further reveal the correlation between performance improvements and climatic
regions, Figure 11 shows the relative performances between Scheme 3 and Scheme 1
(∆NSEQ3-1 = NSEQ3 − NSEQ1) versus the average annual precipitation (mm). Positive
∆NSEQ3-1 indicates that Scheme 3 outperforms Scheme 1, and negative values indicate the
opposite. It is noteworthy that higher ∆NSEQ3-1 values appear in basins that receive less
than 1200 mm of annual precipitation. Results indicate that the performance-improved



Water 2023, 15, 3307 22 of 25

zone shown in Figure 11 coincides with the low-performance zone inferred from Figure 10.
Accordingly, the correlation between the relative performances and the original perfor-
mance of Scheme 1 is also analyzed in Figure 11, which demonstrates that the performance
improvement is more significant in the originally poorly simulated basins.
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Figure 11. Relationship between ∆NSEQ3−1 (NSEQ3 − NSEQ1) versus the (a) average annual precipi-
tation (mm) and (b) NSEQ of Scheme 1 in validation and regionalization.

In general, using RS-ET data improves runoff prediction in relatively arid and orig-
inally poorly simulated regions. The regional patterns are consistent with the results in
Zhang et al. [27] and Kunnath-Poovakka et al. [13]. Basins in arid regions are water limited,
where ET is constrained mainly by, and sensitive to, water supply. On the contrary, basins
in humid regions are energy limited, where ET is constrained mainly by radiation and
temperature [59,60]. The fact that in drier regions ET is more sensitive and exerts a more
significant influence on water balance [61] could explain the success of schemes using RS-
ET data in relatively arid areas. While some studies have shown streamflow improvement
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in humid regions [26], the regional patterns could also be related with the uncertainties of
RS-ET data. Past studies demonstrated that the uncertainties of RS-ET in Zhang et al. [21]
were larger in wet basins than in dry basins [62].

4. Conclusions

This study aims to develop a general practical method to improve runoff prediction
in ungauged basins by using RS-ET data as a partial direct model input. Accordingly, in
addition to the original RR models with ET calculated by the respective evapotranspiration
sub-modules (Scheme 1), two methods of RS-ET inclusion are implemented: (1) modifying
the original models to use RS-ET data as direct input (Scheme 2), and (2) using RS-ET as
partial direct input provided that the ET simulation in Scheme 1 has acceptable accuracy
(Scheme 3). These three schemes are compared in 208 MOPEX basins using three RR models
and RS-ET data estimated from AVHRR. Runoff prediction results in ungauged basins are
then evaluated by the spatial proximity method. By comparing the results of three schemes,
conclusions and implications are drawn as follows:

(i) Using RS-ET as direct input improved model performances for the Xinanjiang
model in over 85% basins, while worsening runoff prediction in most cases for the SIMHYD
and GR4J models.

(ii) Further model improvements are obtained by using RS-ET as partial direct input,
and are achieved in 91.1%, 59.0%, and 53.2% of basins for Xinanjiang, SIMHYD, and GR4J
models, respectively.

(iii) Incorporation of RS-ET is more applicable for the Xinanjiang model, while less
so for the GR4J model, and the efficacy is superior for basins that are relatively arid and
originally poorly simulated.

Overall, using RS-ET as partial direct input is recommended, i.e., to test first whether
the simulated ET from a particular hydrological model matches the RS-ET data well. If this
is true, then the RS-ET data may be used as direct input in the model. It should be noted
that the model performance is affected by the accuracy of RS-ET data and the variety of
available RS data. Therefore, further development of RS technology and application of
multi-source RS data can contribute to more efficient runoff prediction.
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