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Abstract: Runoff from the high-cold mountains area (HCMA) is the most important water resource
in the arid zone, and its accurate forecasting is key to the scientific management of water resources
downstream of the basin. Constrained by the scarcity of meteorological and hydrological stations in
the HCMA and the inconsistency of the observed time series, the simulation and reconstruction of
mountain runoff have always been a focus of cold region hydrological research. Based on the runoff
observations of the Yurungkash and Kalakash Rivers, the upstream tributaries of the Hotan River on
the northern slope of the Kunlun Mountains at different time periods, and the meteorological and
atmospheric circulation indices, we used feature analysis and machine learning methods to select
the input elements, train, simulate, and select the preferences of the machine learning models of
the runoffs of the two watersheds, and reconstruct the missing time series runoff of the Kalakash
River. The results show the following. (1) Air temperature is the most important driver of runoff
variability in mountainous areas upstream of the Hotan River, and had the strongest performance
in terms of the Pearson correlation coefficient (ρXY) and random forest feature importance (FI)
(ρXY = 0.63, FI = 0.723), followed by soil temperature (ρXY = 0.63, FI = 0.043), precipitation, hours
of sunshine, wind speed, relative humidity, and atmospheric circulation were weakly correlated.
A total of 12 elements were selected as the machine learning input data. (2) Comparing the results
of the Yurungkash River runoff simulated by eight machine learning methods, we found that the
gradient boosting and random forest methods performed best, followed by the AdaBoost and Bagging
methods, with Nash–Sutcliffe efficiency coefficients (NSE) of 0.84, 0.82, 0.78, and 0.78, while the
support vector regression (NSE = 0.68), ridge (NSE = 0.53), K-nearest neighbor (NSE = 0.56), and
linear regression (NSE = 0.51) were simulated poorly. (3) The application of four machine learning
methods, gradient boosting, random forest, AdaBoost, and bagging, to simulate the runoff of the
Kalakash River for 1978–1998 was generally outstanding, with the NSE exceeding 0.75, and the
results of reconstructing the runoff data for the missing period (1999–2019) could well reflect the
characteristics of the intra-annual and inter-annual changes in runoff.

Keywords: feature analysis; Hotan River Basin; high-cold mountains area; machine learning; runoff
simulation and reconstruction

1. Introduction

Global warming and increased human activity have led to changes in water re-
sources, with significant ecological, environmental, and socio-economic impacts that are
of widespread concern to the international community [1]. Glaciers are abundant in the
high-cold mountains area (HCMA), which are the main source of freshwater resources in
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the arid and semi-arid downstream areas [2,3]. Glaciers in many of the world’s HCMAs
have been observed to be melting significantly, and river runoff has increased such as the
Kumalak River and Tuoshikan River, typical watersheds in the Tianshan Mountains of
China, where runoff has increased by 1.5 × 108 m3 and 3.3 × 108 m3, respectively, over the
past 50 years, leading to greater flooding [4–6]. Arid and semi-arid mountainous areas in
northwest China are highly vulnerable to glacial snowmelt flooding under extreme climate
change [7]. Floods can cause damage to local transportation facilities, downstream river
runoff processes, and related hydrological forecasting systems such as the bursting of the
Kayagil glacial dam in the Kunlun Mountains of Xinjiang [8,9]. Achieving sustainable
use and scientific management of water resources in the HCMA is directly linked to the
green and high quality development of the region downstream [10]. Runoff simulation and
reconstruction can provide a rational decision-making basis for optimizing the allocation
and use of water resources in the HCMA, thus reducing and preventing the occurrence of
natural disasters such as floods, which is of great importance for ensuring downstream
ecological security and promoting economic and social development [11,12].

To perform runoff simulation and reconstruction, commonly used methods include the
Mann–Kendall trend test [13], wavelet reconstruction analysis [14], Pettitt mutation test [15],
empirical orthogonal function analysis [16], bidirectional limit learning machines [17], and
the traditional physical models SWAT [18] and Liuxihe [19], among others. Unfortunately,
hydrological modeling is relatively difficult in HCMA regions of China where only sparse
hydrometeorological data are available [20]. The spatial heterogeneity of the basin and
the variable hydrological characteristics and morphology of the HCMA result in runoff
time series that are nonlinear and nonstationary, making it difficult to accurately predict
runoff and capture the characteristics of runoff changes [21,22]. The above methods re-
quire parameterization with sufficient data to achieve the best prediction and simulation
results, and are not robust and cumbersome, making it difficult to provide scientifically
accurate advice [23,24]. Therefore, there is an urgent need to explore a methodology that
can accurately predict runoff in data scarce areas in a climate change environment. ML
excels at dealing with nonlinear and nonsmooth data and has a strong ability to gener-
alize, learn, and process high-dimensional data, which is widely used in hydrological
forecasting [25,26]. For example, Rizeei et al. [27] used a random forest model to predict
the runoff preventive flooding in the Damansara catchment in Malaysia; Langhammer [28]
modeled different types of flood runoff in the upper Vydra Basin based on support vector
machines (SVM) combined with hydrometeorological wireless sensor networks. Typical
methods include random forest [29], gradient boosting [30], support vector machines [31],
among others. Random forests independently and randomly select a subset of samples to
construct multiple decision trees for prediction that can handle high-dimensional, nonlinear
regression problems [32]. Gradient boosting uses the iterative principle to integrate a set of
poor learners to learn and predict, dealing with nonlinear data with high interpretability
and accuracy [33]. Support vector machines are based on statistical theory and the principle
of minimum structural risk, and can solve problems such as nonlinearity and indivisibility
in low-dimensional spaces [34]. In contrast to traditional models, machine learning models
form a memory language based on their own black-box model training data, without con-
sidering the complex and variable physical processes in the catchment, which significantly
improves the medium and long-term prediction performance of high-latitude nonlinear
time series. However, there is no absolutely optimal machine learning model for the simu-
lation of runoff, and it is necessary to predict runoff using multiple models such as random
forest and gradient boosting and compare their performance. The Hotan River is one of the
three remaining sources of the Tarim River, a representative inland river in the arid and
semi-arid regions of northwest China [35]. The Yurungkash and Kalakash Rivers are tribu-
taries of the Hotan River Basin, and their runoff is an important factor in providing water
for downstream industry and agriculture, maintaining ecological balance, and limiting the
extent of economic development in the region [36,37]. The scarcity of hydrological and
meteorological stations in the HCMA makes it difficult to accurately predict runoff [38].
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Runoff modeling can optimize the management of water resources in the Hotan River Basin
and reduce losses due to droughts and floods. The third Xinjiang scientific team, tasked
with exploring scientific models and methods of sustainable development of large inland
river basins, carried out an assessment of the ecological and environmental quality of the
Tarim River Basin. However, they found that the amount of water increased by glacial
ablation on the north slope of the Kunlun Mountains was insufficient to explain the reasons
for the significant increase in lakes in the basin, and that there were some shortcomings in
the research on the mechanism of water area change and runoff change in mountainous
areas. For this purpose, we used the Pearson correlation coefficient and random forest
feature importance ranking methods to explore the correlation and degree of influence of
different environmental factors on runoff in the Hotan River Basin on the northern slope of
the Kunlun Mountains. Based on models from eight typical machine learning regression
domains, random forest, gradient boosting, AdaBoost, bagging, support vector regression,
ridge, K-nearest neighbor, and linear regression, and combining long time series data of
temperature, precipitation, humidity, sunshine hours, and typical atmospheric circulation,
the runoff simulation and reconstruction were performed, and the aim was to make up
for the lack of data and to explore trends in runoff. The main objectives of this study were
as follows. (1) Accomplish preferences for input parameters such as air temperature and
precipitation in the Hotan River Basin and determine the influence of environmental factors
on runoff in the basin. (2) Realization of the runoff simulation of the Yurungkash River for
1999–2019 and the evaluation of the model quality and simulation accuracy. (3) Simulation
of the runoff of the Kalakash River for the years 1978–1998 and reconstruction of the runoff
for the years 1999–2019 for the years with missing data were implemented, and the results
of the simulation and reconstruction were analyzed. This study will provide methodolog-
ical references to bridge the gaps of the Third Xinjiang Scientific Expedition and realize
water resource management in arid and semi-arid regions.

2. Research Area and Data
2.1. Research Area

In this study area, the Yurungkash and Kalakash Rivers are two tributaries in the
middle and upper reaches of the Hotan River Basin (Figure 1). The Yurungkash River
is geographically located between 81◦41′~79◦22′ E longitude and 38◦15′~35◦25′ N lati-
tude, originating from the northern foothills of the Kunlun Mountains, the total length
is 513 km, the area is 1.98 × 104 km3, the average air temperature of the basin is 10.6 ◦C,
the precipitation is 38.4 mm, and the average runoff of the Tongguziluoke Hydrological
Station is 21.95 × 108 m3. There are more than 1300 glaciers in the Yurungkash River Basin,
with a total area of 2958.31 km2, total coverage of 20.30%, and the glacier reserves are
410.32 km [39]. The geographical location of the Kalakash River is between 77◦25′~80◦ E
and 34◦52′~38◦04′ N, originating from the Tuanjie Peak in the Karakoram Mountains,
the total length of 808 km, the source of the highest mountain elevation of 6662 m, the
average temperature for many years 11.3 ◦C, the annual precipitation of 36.5 mm, Wu-
luwati Hydrological Station cross-section of the measured multi-year average runoff of
21.51 × 108 m3. For the Kalakash River Basin, there are more than 1900 glaciers with a total
area of 2163.17 km2, total coverage of 10.83%, glacier reserves 156.09 km3 (Table 1) [40].
The two tributaries pass through the oasis plains of Hotan, Karakax and Lop Counties,
connect with the Hotan River at Kuoshilashi, then flow for 319 km and join the Tarim River
at Xiaojiake [41]. The simulation and reconstruction of runoff in the Hotan River Basin can
provide recommendations for future water resources planning and management in the
mountainous basin, which is of great significance for safeguarding the ecological balance
of the green corridor zone of the Hotan River as well as promoting the socio-economic
development of arid and semi-arid regions in China [42,43].
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Figure 1. The locations of the Xinjiang Uygur Autonomous Region (A) and the Hotan River Basin
(B) in China are shown. The Hotan River Basin (C) includes the Hotan (HT) Meteorological Station,
Tongguzilouke (TGZLK), and Wuluwati (WLWT) Hydrological Stations.

Table 1. Parameters of the study area.

River Basin Lengths
(km) Area (×104 km3)

Temperature
(◦C)

Precipitation
(mm)

Runoff
(×108 m3)

Glacier Area
(km2)

Yurungkash 513 1.98 10.6 38.4 21.95 2958.31
Kalakash 808 2.66 11.3 36.5 21.51 2163.17

2.2. Data

Important drivers of runoff change are temperature and precipitation [44,45]. Humid-
ity and sunshine hours affect the effects of evapotranspiration, and wind speed accelerates
glacial snowmelt, leading to changes in runoff [46]. Atmospheric circulation is linked to
global climate change [47]. The input data used in this study were as follows (Table 2): the
monthly meteorological observations were obtained from the Hotan Meteorological Station
of the Xinjiang Uygur Autonomous Region of the National Center for Meteorological Data
and Science (NCDC) of China, hydrological data were obtained from the Tongguzilok
Hydrological Station (TGZLK) and the Wuluwati Hydrological Station (WLWT), and at-
mospheric circulation data were downloaded from the Global Climate Observing System
(GCOS) (https://www.psl.noaa.gov/gcos_wgsp/, (accessed on 5 July 2023)). Specifically,
it includes the monthly temperature (average air temperature, average soil temperature),
total precipitation, average relative humidity, total sunshine hours, and average wind speed
from 1958 to 2019; monthly runoff data of the Yurungkash River from 1958 to 2019; monthly
runoff data of the Kalakash River from 1958 to 1998 (the runoff data from 1999 to 2019 are
missing); monthly runoff data of the Yurungkash River from 1958 to 2019 El Niño-Southern
Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), Atlantic
Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), and Western Pacific
Subtropical High Pressure Intensity (WPSHI) on a monthly scale. A time series plot of the
dataset is shown in Figure 2.

https://www.psl.noaa.gov/gcos_wgsp/
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Table 2. Type of data.

Data Types Input Data Name Time Span Obtaining Sources

Meteorological data

Air temperature (T_mean)

1958–2019
Hotan Meteorological

Station (HT)

Soil temperature (DT_mean)
Total precipitation (P20_20)

Relative humidity (RH)
Sunshine hours (Sun)
Wind speed (Wind)

Hydrological data
Yurungkash River runoff 1958–2019 Tongguziluoke Hydrographic

Station (TGZLK)

Kalakash River runoff 1958–1998 Wuluwati Hydrographic
Station (WLWT)

Atmospheric circulation data

El Niño-Southern Oscillation (ENSO)

1958–2019
Global Climate Observing

System (GCOS) https://www.
psl.noaa.gov/gcos_wgsp/
(accessed on 5 July 2023)

Pacific Decadal Oscillation (PDO)
Arctic Oscillation (AO)

Atlantic Multidecadal Oscillation (AMO)
North Atlantic Oscillation (NAO)
Western Pacific Subtropical High

Pressure Intensity (WPSHI)
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3. Research Methods

The flow of the study is shown in Figure 3. Firstly, the basic variables are selected
as the model input set including the general circulation index, meteorological data, and
runoff data; secondly, the model construction is carried out where the input parameters of
the model are used to perform feature selection using the Pearson correlation coefficient
and random forest feature importance ranking to judge the influence of the parameters
on the model simulation, in the meantime, the input data are normalized to transform
nonstationary data into stationary series and remove outliers, where 70% of the input data
are divided as the training data and 30% as the simulation data, and then predicted based
on eight ML models; finally, the runoff simulation and reconstruction results are obtained
and evaluated (NSE, PBIAS, RMSE, MAE). In the subsequent subsections, we describe each
step in more detail.
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3.1. Runoff Simulation and Reconstruction Modelling

We used eight machine learning (ML) regression models for runoff simulation and re-
construction including random forest, gradient boost, support vector regression, AdaBoost,
KNN, bagging, ridge, and linear regression. The application relies on Python 3.9 and the
“Scikit-Learn” package. The methods are described in Table 3.
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Table 3. Principles of eight machine learning (ML) methods and their strengths and weaknesses.

ML Models The Core Idea Strengths and Weaknesses Reference

Random Forest (RF)

Randomly and independently select
a subset of samples to construct
multiple decision trees for training,
input unknown data, predict each
decision tree, and use voting or
averaging to obtain the final
regression results.

It can better prevent the overfitting
phenomenon and overcome the problem of
too large a feature dimension, with simple
model structure, short training time, high
efficiency, strong generalization ability, and
good robustness. However, for the sample
set with too much data noise, it is easy to
produce the overfitting phenomenon.

[48–50]

Gradient
Boosting

The training process first finds a model
with weak prediction accuracy,
gradually reduces the residuals by
adding a predictor, and calculates the
residual value between the predicted
and actual values of the model to
achieve the purpose of improving
accuracy, using the iterative principle to
use the appropriate loss function,
develops a strong learner based on the
weak learner, and performs
prediction simulation.

The training effect is better, not easy to
produce overfitting, with the advantages of
high interpretability, high learning
efficiency, minimal prediction error, and
high stability. However, it requires careful
parameter tuning and longer training time.

[51,52]

Support Vector
Regression (SVR)

Using support vector machines to fit
curves for regression analysis, finding
a plane to which all the data in the set
are closest, minimizing the risk to the
expected value, is a machine learning
regression algorithm based on support
vector machines.

It can effectively solve the regression
problem of high-dimensional features, only
needing to use part of the support vector to
do the decision of the hyperplane, with
high accuracy and resolution. However, it
is very sensitive to missing data and not
very applicable when the sample size is
very large.

[53,54]

AdaBoost

Multiple weakly learned classifiers are
learned by changing the weights of the
training samples, and then these
weakly learned classifiers are
assembled to form a strongest learner
for linear fitting to achieve the purpose
of predictive simulation.

It can solve multi-class single-label and
multi-label problems with high accuracy,
highly flexible in use, and fully considers
the weight of each classifier. However, the
number of classifiers is not well set, and the
imbalance of experimental data will lead to
a decrease in prediction accuracy and
a longer training time.

[55,56]

K-Nearest
Neighbor (KNN)

KNN scans the set of training samples
to find the training sample that is most
like the test sample, and then votes to
determine the class of the test sample
based on the class of the most similar
training sample, or votes weighted by
the degree of similarity between each
sample and the test sample to obtain
the result.

KNN is the simplest model in the learner.
Based on the KNN regression algorithm,
there is no need to consider boundary
instances. However, using KNN is more
computationally intensive, has low
prediction accuracy when the samples are
unbalanced, slow to predict, and not very
interpretable.

[57–59]

Ridge

An improvement on the method of
least squares estimation. The core idea
is to determine the value of the regular
term coefficient parameter K. It is
dedicated to solving the covariance
data partitioning problem and is
a regularized regression model.

Enough to effectively reduce the data
overfitting phenomenon, the prediction of
unknown data is more robust and the
obtained regression coefficients are more in
line with the mathematical reality, but its
fitting ability is easily limited and the
underfitting phenomenon may occur.

[60,61]
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Table 3. Cont.

ML Models The Core Idea Strengths and Weaknesses Reference

Bagging

The input randomized uniformly
selected dataset is trained in multiple
rounds to construct weak learners with
differences and parallel relationships,
which are combined to obtain the final
strong learner.

Bagging can be used directly to solve
multi-classification and regression
problems; by reducing the variance of the
classifier, it improves the flourish error and
can effectively prevent overfitting.
However, underfitting can occur.

[62,63]

Linear
Regression

Based on regression analysis in
mathematics, a straight line is used to
describe the relationship more
accurately between one or more
independent variables and the
dependent data. The input data are
trained and processed in an algorithmic
language to produce a simple
prediction value.

The algorithm is simple, fast, and
interpretable; however, it can only be used
for regression problems, lacks some logic,
has a low accuracy of predicted value, and
is prone to overfitting.

[64]

3.2. Feature Selection

The selection of input features affects the accuracy of the results of machine learning
(ML) model training. Feature selection is the process of selecting a subset of features with
strong discriminative power according to a given criterion and feature in each feature
dataset, which is critical to the accuracy of the model training results. By selecting from all
the features those that are beneficial to the machine learning algorithm, and determining
which influence of the features is valid or unknown, the training efficiency of the machine
learning model can be improved [65]. In this study, we determined the effect of feature
parameters on runoff based on the Pearson correlation coefficient and random forest feature
importance ranking method to make an excellent selection of input features. The principle
is as follows.

The Pearson correlation coefficient is applicable to the correlation analysis of continu-
ous variables, it can characterize the degree of linear correlation between the data, the range
of values is [–1, 1], the value greater than 0 indicates that the two vectors are positively
correlated, less than 0 is negatively correlated, the value equal to 0, then the two vectors are
not correlated, and the closer the absolute value is to 1, the stronger the correlation [66].
The specific formula is as follows:

ρXY =
Cov(X, Y)√

D(X)×
√

D(Y)
=

E(X− EX)× E(Y− EY)√
D(X)×

√
D(Y)

(1)

where X and Y refer to two independent characteristics, E is the mathematical expectation,
D is the variance,

√
D(X),

√
D(Y) is the standard deviation, Cov(X, Y) is the covariance of

the sum of the random variables, and ρXY is the correlation coefficient of X and Y.
The key idea of random forest feature importance selection is to transform feature

parameters into random numbers, calculate their impact on model accuracy, and measure
the importance of the feature parameter based on the average reduced accuracy value
obtained from multiple calculations, the degree of contribution of quantitative descriptive
features to classification or regression, where the higher the value, the higher the importance
of the corresponding features [67]. The selected features are used to make a decision in the
internal node, and it divides the dataset into two separate sets with similar responses [68].
The calculation starts by using the corresponding out-of-bag (OOB) data for each decision
tree in the random forest to calculate the out-of-bag error, detected ErrOOB1, then randomly
adds noise interference to the features of all the samples of the out-of-bag data OOB,
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computes its out-of-bag data again, detected ErrOOB2. Suppose there are N decision trees
in the random forest, the formula is as follows [69]:

FI (Feature importance) =∑ (ErrOOB2− ErrOOB1)
N

(2)

3.3. Evaluation Parameters

Evaluating model performance is a key step in judging the success or failure of runoff
simulations [70]. The Nash–Sutcliffe efficiency coefficients (NSE) are calculated from the
time series of the runoff simulation results and real observations of runoff (Equations (3)),
and are commonly used to evaluate the quality of hydrological models. The value of NSE
ranges from negative infinity to 1. The closer it is to 1, the closer the model simulation
results are to the true value and the better the model quality [71]. The NSE mathematical
formula is as follows [72]:

NSE = 1− ∑T
t=1

(
Qt

0 −Qt
m)

2

∑T
t=1

(
Qt

0 −Q0
)2 (3)

In addition to assessing the model quality using the Nash coefficients, a quantitative
assessment of model performance is required by assessing the average tendency of the
model simulated data to be greater or less than the actual observed data using the percent-
age bias (PBIAS). The optimum value of PBIAS is 0, and the closer to 0, the smaller the
deviation of the model results. A hydrological runoff simulation with a PBIAS less than
±10% is excellent, the results in the range of ±10~±15% are well, and the model results
are reliable in the range of less than ±25% [73,74]. PBIAS mathematical formulae [75]:

PBIAS =

[
∑T

t=1

(
Qt

0 −Qt
m
)2

∑n
t=1Qt

0

]
× 100 (4)

Root mean square error (RMSE) is used to reflect the overall deviation between the
model predictions and actual observations; the smaller the RMSE value, the more accurate
and precise the model simulation [76]. The RMSE mathematical formula is:

RMSE =

√
1
T ∑T

t=1
(
Qt

0 −Qt
m
)2 (5)

Mean absolute error (MAE) is used to describe the average degree of deviation of the
model’s simulated predictions from the actual observed values, which can accurately reflect
the true magnitude of the prediction error. The smaller the MAE, the better the model
prediction, and the closer the result is to the real value [77]. Equation (6) is used to calculate
the MAE:

MAE =
1
T ∑T

t=1
(
Qt

0 −Qt
m
)2 (6)

In Equations (3)–(6), Q0 refers to the actual observed runoff, Qm refers to the runoff sim-
ulated by the model, Q0 represents the mean of the actual observed value, the t superscript
represents the moment t, and T represents the total number of time series.

4. Results and Analyses
4.1. Feature Analysis

Patro et al. [78] showed that wind speed and humidity can accelerate glacial snow melt.
Taylor et al. [79] showed that atmospheric circulation effects have an impact on global air
temperature and precipitation. The air temperature and precipitation are the main factors
directly responsible for changes in runoff in most rivers around the globe [80]. Therefore,
we considered introducing parameters such as meteorological factors (air temperature
(T_mean), soil temperature (DT_mean), precipitation (P20_20), wind speed (Wind), relative
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humidity (RH), sunshine hours (Sunshine)) and atmospheric circulation effects (ENSO, AO,
AMO, NAO, PDO, WPSHI) in the Hotan River Basin for characterization and optimization.

4.1.1. Pearson Correlation Coefficient

The Pearson correlation coefficients between the two variables were calculated (Figure 4).
We found some correlations between some variables such as the correlation between
the T_mean and RH, Sunshine, and Wind reached 0.48, 0.58, and 0.57, respectively; the
correlation between RH and Wind reached 0.53; the correlation between WSPHI and
AMO reached 0.49; the correlation between PDO and ENSO reached 0.42. There are
two ways to solve the multiple covariate problem (i.e., direct exclusion of variables and
increasing the sample size). We used the former method to simulate the runoff and
found that the NSE decreased by 0.1–0.15, which further proved that the existence of
multicollinearity between the variables did not affect the runoff simulation results of this
study. Comparison of the Pearson correlations between different input features and runoff
is shown in Figure 5a. For a more intuitive analysis, the Pearson correlation coefficient
values were absolute. The meteorological factors DT_mean (ρXY = 0.63) and T_mean
(ρXY = 0.63) were strongly correlated with runoff, P20_20 (ρXY = 0.18), Wind (ρXY = 0.21),
and Sunshine (ρXY = 0.22) were moderately correlated, and RH (ρXY = 0.02) was weakly
correlated. The Hotan River Basin belongs to the HCMA, with less clouds, more glaciers
and snow, scarce precipitation, and runoff mainly from glaciers and snowmelt recharge [81].
Therefore, the T_mean and DT_mean are more important for runoff than precipitation and
had the strongest correlation. Wind speed and sunshine hours influenced the temperature
changes and indirectly contributed to glacier snowmelt, with a slightly higher correlation
than P20_20. RH had less of an effect on runoff due to the dry and cold climate in the
HCMA. The atmospheric circulation effects of WPSHI (ρXY = 0.24) and AMO (ρXY = 0.13)
were nearly moderately correlated with runoff, and PDO (ρXY = 0.06), ENSO (ρXY = 0.04),
NAO (ρXY = 0.03), and AO (ρXY = 0.01) were weakly correlated with runoff. Atmospheric
circulation can influence global climate change and had a non-negligible influence on the
formation and generation of runoff in the HCMA, but the correlation was small and can be
used as an input feature to improve the credibility of runoff predictions.
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4.1.2. Random Forest Feature Importance

Random forest feature importance ranking was used for 12 input parameters
(Figure 4). The order was T_mean > RH > DT_mean > Wind > WSPHI > PDO > Sunshine
> NAO > P20_20 > AO > ENSO > AMO. This shows that among the meteorological factors,
T_mean (FI = 0.723) ranked much higher than DT_mean (FI = 0.043) with the strongest
importance, RH (FI = 0.067) ranked second, Wind (FI = 0.041) and Sunshine (FI = 0.023)
ranked moderately, and P20_20 (FI = 0.009) ranked low. In the atmospheric circulation
index, the features of WPSHI (FI = 0.035) and PDO (FI = 0.025) were moderately ranked, and
the importance of the features of AMO (FI = 0.007), NAO (FI = 0.009), ENSO (FI = 0.008),
and AO (FI = 0.009) was weak. The results show that air temperature is still the most
important parameter contributing to the runoff process simulated in the random forest and
had a much greater influence on the model simulation results than surface temperature
and precipitation. The atmospheric circulation factors ranked lower, but were still of some
importance, which is also consistent with the results of the Pearson’s correlation.

Both the Pearson correlation coefficient and the random forest feature importance
ranking indicate that temperature is the most important parameter influencing runoff,
which is closely related to the climatic conditions of the Hotan River Basin as a general
trend of global warming. The Hotan River Basin is arid and has low rainfall, so precipi-
tation is weakly correlated. Wind, RH, and Sunshine showed a better correlation in the
feature, which could increase the credibility of the model simulation results. Atmospheric
circulation was weakly correlated with runoff and had a low order of influence on the
runoff modeling performance. Twelve factors were selected as machine learning input
data for the runoff prediction study including air temperature, precipitation, sunshine, and
atmospheric circulation.

4.2. Runoff Simulation of the Yurungkash River

Eight ML regression methods including random forest, gradient boosting, support
vector regression (SVR), AdaBoost, KNN, bagging, ridge, and linear regression were used
to simulate the runoff from 1999 to 2019 using the monthly average meteorological data,
atmospheric circulation data, and runoff data of the Yurungkash River from 1958 to 1999 as
training samples, and were then combined with the actual observed runoff data to calculate
the evaluation parameters and validate the results.

Time series curves of the runoff simulation and actual observation data were plotted
(Figure 6). The predicted and actual time series curves between different machine learning
methods had a certain fit, but there were differences in the degree of coincidence. The
simulated runoff curves of the random forest, gradient boosting, AdaBoost, and bagging
models had a high degree of fit with the measured curves, which could clearly reflect the
intra-annual and inter-annual trends of the Yurungkash River runoff. The runoff peaks all
occurred at the same time and the modeled values were slightly lower than the measured
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values. Comparing the box plots of the simulated and measured runoff from different
models (Figure 7A), it can be seen that the difference in box width between the simulated
runoff from random forest (RF), gradient boosting (GB), bagging, and AdaBoost (Ada)
and the measured runoff data (Real) was small, This indicates that the simulated data of
the four models had a similar degree of fluctuation with the measured runoff, and the
simulated values were close to the real values and the simulation quality was well done.
The degree of fluctuation was similar to that of the measured runoff, and the simulated
values were close to the real values, with good simulation quality. The simulated runoff
values of KNN, SVR, ridge and linear regression (LR) were less than 0, and the end lines as
well as the width of the box were longer, which deteriorated the simulation effect.
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Figure 6. Comparison of the time series curves of the simulation results and actual observations of
runoff in the Yurungkash River from 1999 to 2019.

Calculation of the model simulation evaluation parameters was as follows (Table 4).
All eight methods showed Nash–Sutcliffe efficiency coefficients (NSE) between 0 and 1. The
closest to 1 was gradient boosting (NSE = 0.84), followed by the random forest (NSE = 0.82),
AdaBoost (NSE = 0.78), bagging (NSE = 0.78), ridge (NSE = 0.530), and linear regression
(NSE = 0.51) models, which had low NSE and were not as credible as the other method.
Random forest (PBIAS = 4.89%) and gradient boost (PBIAS = 9.44%) regression models with
PBIAS less than±10% performed well, random forest was the closest to 0 with the best trend
in model simulation, bagging (PBIAS = 11.07%), AdaBoost (PBIAS = −14.42%), and KNN
(PBIAS = 13.94%) performed well with a PBIAS between ±15%, SVR (PBIAS = 24.95%),
linear regression (PBIAS = 39.99%), and ridge (PBIAS = 34.13%) had larger PBIAS. The
smaller the value of the RMSE and MAE, the closer the model prediction result is to the
real value, so the higher the model accuracy. Gradient boosted regression (RMSE = 1.24,
MAE = 0.65) had the smallest value, random forest (RMSE = 1.32, MAE = 0.70), AdaBoost
(RMSE = 1.38, MAE = 0.81), and bagging (RMSE = 1.42, MAE = 0.75) had smaller errors and
performed better with higher confidence. The maximum values of RMSE and MAE were
seen for the linear regression model (RMSE = 2.14, MAE = 1.48), which increased the linear
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regression RMSE and MAE values by 0.90 and 0.83, respectively, with a large difference
compared to the gradient boosting method, and ridge (RMSE = 2.11 and MAE = 1.42) was
like the linear regression with poor model performance. Plotting the Taylor diagram of the
model simulation evaluation parameters (Figure 7B) showed that gradient boosting was the
best performing model, random forest, AdaBoost, and bagging regression models showed
excellent performance, and the four remaining simulated methods performed poorly.
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Figure 7. Box plot (A) of the eight ML models simulating runoff from the YurungKash River versus
the measured runoff and the Taylor diagram (B) of the evaluation parameters (NSE, RMSE, MAE) for
the eight ML models.

Table 4. Accuracy of the simulated runoff by ML in the Yurungkash River.

ML Methods NSE PBIAS (%) RMSE MAE

Random Forest 0.82 4.89 1.32 0.70
Gradient Boosting 0.84 9.44 1.24 0.65

SVR 0.68 24.95 1.74 1.11
AdaBoost 0.78 −14.42 1.38 0.81

KNN 0.56 13.94 2.03 1.10
Bagging 0.78 11.07 1.42 0.75

Ridge 0.53 34.13 2.11 1.42
Linear Regression 0.51 39.99 2.14 1.48

ML regression methods could effectively simulate the river runoff of the Yurungkash
River from 1999 to 2019, with differences in accuracy and quality between the different
models. According to the runoff simulation curve and evaluation parameter calculation
results synthesis, it was found that gradient boosting was the best performing model,
random forest performed second best, and then AdaBoost and the bagging model; these
four models for runoff simulation had high quality, precision, accuracy. The NSE of SVR
was lower than the bagging regression model, the prediction was underestimated, and the
performance was average. The NSE of KNN, ridge, and linear regression was poor, the
prediction curve fit was minor, the percentage deviation was huge, the model prediction
value was overall credible, but for the other several methods, the model quality was poor.

4.3. Runoff Simulation and Reconstruction of the Kalakash River

The simulation results of the Yurungkash River runoff found that the gradient boosting,
random forest, AdaBoost, and bagging regression model simulation quality and accuracy
were higher, and the simulation results were more accurate. Therefore, the above four
methods were used to simulate and reconstruct the missing data of the Kalakash River
runoff. For the Kalakash River, only the monthly mean meteorological data from 1958
to 2019 and the atmospheric circulation data and the runoff data from 1958 to 1999 were
available. The training sample sequence was 1958–1977 and the simulation validation data
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sequence was 1978–1998 in the runoff simulation process. The training sample sequence
was 1958–1998 and the reconstruction sequence was 1999–2019 for the runoff reconstruction.

4.3.1. Runoff Simulation of the Kalakash River

Time series curves of the simulated and actual observed data of runoff in the Kalakash
River were plotted (Figure 8). Compared to the training data of the Yurungkash River
runoff simulation, the Kalakash River runoff simulation data decreased, and the PBIAS
were all less than 0 but did not affect the accuracy of the simulation results. The simulated
runoff curves and measured runoff curves from the four methods were in good agreement,
the capture of the peak was slightly higher compared to the measured runoff, but the peaks
were all at the same moment. Comparing the box plot of simulated runoff with measured
runoff for the four models (Figure 9A), it was found that the simulated runoff such as
gradient boosting (GB) had a shorter endline with the data of measured runoff (Real),
the mean and median positions were similar to the values of the measured runoff, and it
effectively reduced the number of anomalies, which provides a better quality of simulation.
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Analyzing the values of the NSE, RMSE, and MAE evaluation parameters (Table 5),
it was found that random forest (NSE = 0.78, RMSE = 1.08, MAE = 0.61), gradient boost-
ing (NSE = 0.78, RMSE = 1.06, MAE = 0.59), and bagging (NSE = 0.76, RMSE = 1.11,
MAE = 0.62), AdaBoost (NSE = 0.75, RMSE = 1.13, MAE = 0.74)—four models used to
simulate the Kalakash River runoff—also had high quality and accuracy, the model results
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of the RMSE and MAE were smaller, the NSE was close to 1, and all were greater than 0.75.
Plotting the Taylor diagram of the model simulation evaluation parameters (Figure 9B)
showed that gradient boosting was the best performing model, random forest and bagging
regression model performed well, and the AdaBoost model performed slightly lower than
the other four methods. The results show that the runoff simulation of the Kalakash River
based on the random forest, gradient boosting, bagging, and AdaBoost ML regression
methods had high accuracy and superiority in the case of reduced training data, the time
series curves of the real and simulated values showed excellent fit with each other, and the
simulation results were credible.

Table 5. Accuracy of the simulated runoff by ML in the Kalakash River.

ML Methods NSE PBIAS (%) RMSE MAE

Random Forest 0.78 −19.17 1.08 0.61
Gradient Boosting 0.78 −18.00 1.06 0.59

Bagging 0.76 −19.71 1.11 0.62
AdaBoost 0.75 −31.13 1.13 0.74

4.3.2. Runoff Reconstruction of the Kalakash River

Plotting the monthly measured runoff curves of the Kalakash River from 1958 to 1998
(Figure 10a), the fluctuation of the runoff curves with the alternation of seasons is regular
and shows a cyclic trend. Reconstruction of the time series curves of the Kalakash River
runoff data from 1999–2019 based on gradient boosting, random forest, AdaBoost, and
bagging methods can be seen in Figure 10b. The comparison showed that the monthly
runoff reconstruction curve and the measured data curve fluctuation status were basically
consistent, the fluctuation pattern was similar, and could well reflect the intra-annual
and inter-annual changes in the runoff features of the Kalakash River. The four models
reconstructed runoff curves with similar patterns of change and high fit. They all reached
the maximum runoff value at the same instant, and the results were credible. It was further
shown that the ML method can be successfully applied to reconstruct the runoff sequence
in the HCMA and used to predict the timing of future runoff peaks.
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5. Discussion

Machine learning models have become an important research tool in the field of
hydrology [82]. In this paper, we considered the effects of different environmental factors
on runoff and applied eight classical machine learning regression models to simulate
and reconstruct the monthly runoff of the Yurungkash and Kalakash Rivers in the alpine
mountainous region with missing data. Li et al. [83] applied five machine learning models,
namely long short-term memory (LSTM), gradient boosted decision tree (GBDT), random
forest (RF), SVR, and gate recurrent unit (GRU), and further improved and enhanced
them by using stepwise regression with Copula entropy to simulate runoff from two key
hydrological stations in the upper Yangtze River in Xinjiang Uygur Autonomous Region,
namely Gaochang and Cuntan. For the basin runoff simulation of the two key hydrological
stations, NSE was greater than 0.84 with high accuracy, while this paper only used machine
learning combined with the regression method for the simulation. Although the results
are more ideal, there is still room for progress in improving the method. Wang et al. [84]
successfully simulated the daily runoff of snowmelt in the Xiying River Basin in the HCMA
of northwest China based on the random forest and artificial neural network (ANN) models,
with NSEs of 0.701 and 0.748, respectively. They introduced the remotely sensed snow data
and proved that the introduction of the snow data could effectively improve the accuracy
of the runoff simulation, and the NSEs of the two models increased by 0.099 and 0.207,
respectively. In this paper, we chose to introduce the atmospheric circulation data, and the
NSE of the random forest model was 0.82, which is an increase of 0.119 compared with their
research accuracy. Han et al. [85] performed a complex parameterization process based on
the J2000 physical hydrological model and successfully simulated the runoff of Yamdrok
Lake on the Tibetan Plateau of the HCMA, showing high performance with NSE and RMSE
values of 0.62 and 1.77, respectively, compared to the present study of gradient boosting
(NSE = 0.84, RMSE = 1.24), random forest (NSE = 0.82, RMSE = 1.32), AdaBoost (NSE = 0.78,
RMSE = 1.38) and bagging (NSE = 0.78, RMSE = 1.42), where there was a certain gap in
the values, which further suggests that the machine learning model is more focused on
improving the accuracy of the simulation process compared to the hydrological models.

The input parameters all had varying degrees of influence on the HCMA runoff,
with air temperature having the greatest influence and the precipitation correlation being
insignificant. Moderate multicollinearity existed between the variables due to the limitation
of the sampling capacity and the fixed model; we only removed the relevant variable data
by removing the runoff simulation, again, the results found that the NSE did not increase
but rather decreased. As there is no method of increasing or decreasing the sampling
capacity to eliminate the multicollinearity and judgement, the results of removing the
variables indirectly show that ML is able to adapt to the moderate multicollinearity. At
the beginning of this study, we compared the results of runoff simulation between the
maximum, minimum, and average air and soil temperatures as input parameters and only
for the average air and soil temperature data was the NSE value of the former relatively low,
and the correlation between the maximum and minimum air and soil temperatures and
runoff was not separately assessed, which is one of the shortcomings of this study. A careful
comparison of the runoff simulation curves with the measured runoff curves showed that
the runoff extremes were inaccurately captured or not captured at all, with uncertainties.
After reflection, we analyzed this from a data and modeling point of view. Although the
hydrological, meteorological, and atmospheric circulation data at the monthly mean scale
have a certain periodicity, due to the complexity of hydrological processes in the HCMA,
the runoff sequence becomes nonstationary, and the fluctuation range of the monthly scale
data changes drastically, so it is difficult to obtain a strong fit in the runoff simulation, which
leads to the influence on the data process of model training in capturing the characteristic
extremes and the defects of runoff extreme value capture. Most of the various machine
learning models we used simulated runoff based on the default parameters of the model
itself without careful parameter tuning, and although the accuracy was high, the capture
of runoff peaks was also flawed in certain ways. We used random forest, AdaBoost, and
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gradient boost as examples of carefully tuned parameters. By increasing the max_depth of
the random forest tree and the value of the random_state parameter, we found that the NSE
increased by 0.004. By decreasing the value of the n_estimators parameter in the AdaBoost
model, we found that the NSE increased by 0.029, and by increasing the n_estimators and
learning_rate parameters in gradient boost, we found that the NSE increased by 0.016, and
the results proved that the accuracy of runoff feature capture can be effectively improved
by carefully changing the parameters of the model, which is an inspiration for further
extension and improvement of the model.

In general, machine learning models outperform univariate models in both the train-
ing and testing phases [86]. In this paper, multiple machine learning models were fused
and integrated to simulate runoff, and the runoff simulation and reconstruction results
corresponding to each method were obtained in only 37 s, which is shorter than the training
and prediction time of the LSTM and ANN models (t = 120–200 s) [87]. Before running the
simulation, we normalized and standardized the data so that the results were not affected by
one or more attributes being too large or too small [88]. Parameterizing was conducted on
the pairwise random forest, gradient boost, AdaBoost, and bagging models based on the de-
fault parameters (Table A1), specifically: random forest (bootstrap = True, criterion = ‘mse’,
max_depth = 100, max_samples = 490, n_estimators = 1000, random_state = 99), gradient
boost (n_estimators = 2000, learning_rate = 0.01, max_depth = 15, max_features = ‘sqrt’,
alpha = 0.9), AdaBoost (n_estimators = 50, learning_rate = 1.0, random_state = None,
base_estimator = None, loss = ‘linear’), bagging (n_estimators = 90, oob_score = True,
random_state = 90, max_samples = 490). Adjusted runoff simulation of the four models
showed better performance, relative to the KNN, SVR, ridge, linear regression model
performance was excellent, the NSE reached more than 0.78, and could better prevent the
emergence of the overfitting phenomenon as well as adapt to the impact of multiple covari-
ance so that the simulation results of the degree of error to reach the minimum. However
for the capture of runoff peaks, the accuracy of the simulation needs to be further improved.
Linear regression and ridge regression models have a simple model structure, are very
sensitive to data, the predicted runoff values appear negative, and the prediction results are
unsatisfactory. Hyperparameters have a large impact on the prediction results of the model,
and model parameter tuning was weak part of this study. SVR, KNN, and the other four
methods choose the default hyperparameters, therefore, the simulation process may show
the overfitting and underfitting phenomenon, the model performance is poor, and the sim-
ulation accuracy is low, so there is a need to further improve the sample capacity and adjust
the hyperparameters to avoid these issues. The ML we used to construct the hydrological
model as a black box model is vague in its description of the modeling process, lacks some
theoretical support, and is weak in its explanatory nature, which makes it difficult to make
meaningful comparisons between different models. The problems of overfitting results and
the use of multiple models for feature selection were also not fully addressed.

6. Conclusions

The starting point of this study was to provide better hydrological and water man-
agement forecasts for the data scarce HCMA. We combined the meteorological, runoff,
and atmospheric circulation data from the northern slopes of the Kunlun Mountains and
the Hotan River Basin to construct a time series, completed runoff simulations of the Yu-
rungkash and Kalakash Rivers based on machine learning, and successfully reconstructed
the runoff of the Kalakash River for the year with missing data. The main conclusions are:

(1) Temperature is the most important driver of runoff changes in the mountainous areas
upstream of the Hotan River, followed by precipitation, hours of sunshine, wind
speed, and weak correlation of atmospheric circulation. The random forest features
were ranked in order of importance as T_mean > RH > DT_mean > Wind > WSPHI
> PDO > Sun > NAO > P20_20 > AO > ENSO > AMO, with a total of 12 elements
selected as the machine learning training input data.
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(2) Machine learning (ML) methods can successfully simulate runoff changes in the
HCMA. Comprehensive runoff curve coincidence and evaluation parameters using
gradient boosting, random forest, AdaBoost, and bagging showed obvious advantages
over several other ML methods with NSE of 0.84, 0.82, 0.78, and 0.78, respectively,
and the other four methods performed the simulation poorly.

(3) The four methods including random forest were applied to simulate the runoff of
the Kalakash River from 1978 to 1998 with good results, and the Nash–Sutcliffe
efficiency coefficients exceeded 0.75. The reconstruction results of the runoff data of
the missing period (1999–2019) reflected the intra-annual and inter-annual variations
of the runoff characteristics.

Achieving better water resources management on the northern slopes of the Kunlun
Mountains has been the direction of research by scientists. In the future, machine learning
models can be used to simulate the runoff of the Yarkant and Keriya Rivers on the northern
slopes of the Kunlun Mountains to further explore the mechanism of water resource change
on the northern slopes of the Kunlun Mountains. The use of less variable daily-scale meteo-
rological and hydrological data as well as remote sensing data of glacier and snowmelt area
changes as inputs to the machine learning model can further optimize the runoff simulation
and reconstruction results and improve the accuracy of the model. We also found that
Khandelwal et al. [89] achieved higher accuracy than machine learning for runoff simu-
lation based on the LSTM framework combined with the SWAT model, suggesting that
there is no conflict between traditional “process-oriented” physical hydrological models
and “data-oriented” machine learning. The combination of machine learning and physical
modeling will lead to more accurate runoff simulation results, which is a new approach
that should be considered and used in future hydrological research.
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Appendix A

Table A1. Hyperparameter adjustment.

ML Models Parameters

Random Forest Bootstrap = True, criterion = ‘mse’, max_depth = 100,
max_samples = 490, n_estimators = 1000, random_state = 99
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Table A1. Cont.

ML Models Parameters

Gradient Boosting n_estimators = 2000, learning_rate = 0.01, max_depth = 15,
max_features = ‘sqrt’, alpha = 0.9

SVR
Verbose = False, degree = 3, coef0 = 0.0, kernel = ‘rbf’,
tol = 0.001, epsilon = 0.1, max_iter = −1, shrinking = True,
cache_size = 200

AdaBoost n_estimators = 50, learning_rate = 1.0, random_stat e = None,
base_estimator = None, loss = ‘linear’

KNN n_neighbors = 4, weights = ‘uniform’, metric_params = None,
n_jobs = None, p = 2, algorithm = ‘auto’

Bagging n_estimators = 90, oob_score = True, random_state = 90,
max_samples = 490

Ridge
Normalize = False, fit_intercept = True, alpha = 1.0,
copy_X = True, max_iter = None, tol = 0.001, solver = ‘auto’,
random_state = None

Linear Regression fit_intercept = True, normalize = False, copy_X = True,
n_jobs = None, positive = False

References
1. Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Bao, A.; Xing, W.; Feng, X.; De Maeyer, P.; Frankl, A. Identifying climate change impacts on

water resources in Xinjiang, China. Sci. Total Environ. 2019, 676, 613–626. [CrossRef] [PubMed]
2. Rangecroft, S.; Harrison, S.; Anderson, K.; Magrath, J.; Castel, A.P.; Pacheco, P. Climate change and water resources in arid

mountains: An example from the Bolivian Andes. Ambio 2013, 42, 852–863. [CrossRef] [PubMed]
3. Zhang, J.; Xu, B.; Gu, Z.; Lv, Y.; Yin, Z.; Guo, X.; Li, L. Coupling of river discharges and alpine glaciers in arid Central Asia. Quat.

Int. 2023, 667, 19–28. [CrossRef]
4. Yang, B.; Du, W.; Li, J.; Bao, A.; Ge, W.; Wang, S.; Lyu, X.; Gao, X.; Cheng, X. The Influence of Glacier Mass Balance on River

Runoff in the Typical Alpine Basin. Water 2023, 15, 2762. [CrossRef]
5. Wang, C.; Xu, J.; Chen, Y.; Bai, L.; Chen, Z. A hybrid model to assess the impact of climate variability on streamflow for an

ungauged mountainous basin. Clim. Dyn. 2018, 50, 2829–2844. [CrossRef]
6. Jiang, J.; Cai, M.; Xu, Y.; Fang, G. The changing trend of flooding in the Aksu River basin. J. Glaciol. Geocryol 2021, 43, 1–10.
7. Wang, X.; Chen, R.; Li, K.; Yang, Y.; Liu, J.; Liu, Z.; Han, C. Trends and Variability in Flood Magnitude: A Case Study of the Floods

in the Qilian Mountains, Northwest China. Atmosphere 2023, 14, 557. [CrossRef]
8. Sommer, C.; Malz, P.; Seehaus, T.C.; Lippl, S.; Zemp, M.; Braun, M.H. Rapid glacier retreat and downwasting throughout the

European Alps in the early 21st century. Nat. Commun. 2020, 11, 3209. [CrossRef]
9. Wang, J.; Liu, D.W.; Tian, S.N.; Ma, J.L.; Wang, L.X. Coupling reconstruction of atmospheric hydrological profile and dry-up risk

prediction in a typical lake basin in arid area of China. Sci. Rep. 2022, 12, 6535. [CrossRef]
10. Mo, K.L.; Chen, Q.W.; Chen, C.; Zhang, J.Y.; Wang, L.; Bao, Z.X. Spatiotemporal variation of correlation between vegetation cover

and precipitation in an arid mountain-oasis river basin in northwest China. J. Hydrol. 2019, 574, 138–147. [CrossRef]
11. Yan, L.; Lei, Q.W.; Jiang, C.; Yan, P.T.; Ren, Z.; Liu, B.; Liu, Z.J. Climate-informed monthly runoff prediction model using machine

learning and feature importance analysis. Front. Environ. Sci. 2022, 10, 1049840. [CrossRef]
12. Xiao, C.; Zhong, Y.; Wu, Y.; Bai, H.; Li, W.; Wu, D.; Wang, C.; Tian, B. Applying Reconstructed Daily Water Storage and Modified

Wetness Index to Flood Monitoring: A Case Study in the Yangtze River Basin. Remote Sens. 2023, 15, 3192. [CrossRef]
13. Wang, F.; Shao, W.; Yu, H.J.; Kan, G.Y.; He, X.Y.; Zhang, D.W.; Ren, M.L.; Wang, G. Re-evaluation of the power of the mann-kendall

test for detecting monotonic trends in hydrometeorological time series. Front. Earth Sci. 2020, 8, 14. [CrossRef]
14. Abebe, S.A.; Qin, T.; Zhang, X.; Yan, D. Wavelet transform-based trend analysis of streamflow and precipitation in Upper Blue

Nile River basin. J. Hydrol. Reg. Stud. 2022, 44, 101251. [CrossRef]
15. Huang, T.T.; Wang, Z.H.; Wu, Z.Y.; Xiao, P.Q.; Liu, Y. Attribution analysis of runoff evolution in Kuye River Basin based on the

time-varying budyko framework. Front. Earth Sci. 2023, 10, 1092409. [CrossRef]
16. Quang, N.H.; Loc, H.H.; Park, E. Characterizing sediment load variability in the red river system using empirical orthogonal

function analysis: Implications for water resources management in data poor regions. J. Hydrol. 2023, 624, 129891. [CrossRef]
17. Feng, Z.; Niu, W.; Tang, Z.; Xu, Y.; Zhang, H. Evolutionary artificial intelligence model via cooperation search algorithm and

extreme learning machine for multiple scales nonstationary hydrological time series prediction. J. Hydrol. 2021, 595, 126062.
[CrossRef]

18. Amiri, S.N.; Khoshravesh, M.; Valashedi, R.N. Assessing the effect of climate and land use changes on the hydrologic regimes in
the upstream of Tajan river basin using SWAT model. Appl. Water Sci. 2023, 13, 130. [CrossRef]

https://doi.org/10.1016/j.scitotenv.2019.04.297
https://www.ncbi.nlm.nih.gov/pubmed/31051367
https://doi.org/10.1007/s13280-013-0430-6
https://www.ncbi.nlm.nih.gov/pubmed/23949894
https://doi.org/10.1016/j.quaint.2023.06.002
https://doi.org/10.3390/w15152762
https://doi.org/10.1007/s00382-017-3775-x
https://doi.org/10.3390/atmos14030557
https://doi.org/10.1038/s41467-020-16818-0
https://doi.org/10.1038/s41598-022-10284-y
https://doi.org/10.1016/j.jhydrol.2019.04.044
https://doi.org/10.3389/fenvs.2022.1049840
https://doi.org/10.3390/rs15123192
https://doi.org/10.3389/feart.2020.00014
https://doi.org/10.1016/j.ejrh.2022.101251
https://doi.org/10.3389/feart.2022.1092409
https://doi.org/10.1016/j.jhydrol.2023.129891
https://doi.org/10.1016/j.jhydrol.2021.126062
https://doi.org/10.1007/s13201-023-01932-3


Water 2023, 15, 3222 20 of 22

19. Zhao, Y.; Chen, Y.; Zhu, Y.; Xu, S. Evaluating the Feasibility of the Liuxihe Model for Forecasting Inflow Flood to the Fengshuba
Reservoir. Water 2023, 15, 1048. [CrossRef]

20. Liu, J.; Liu, T.; Bao, A.; De Maeyer, P.; Kurban, A.; Chen, X. Response of hydrological processes to input data in high alpine
catchment: An assessment of the Yarkant River Basin in China. Water 2016, 8, 181. [CrossRef]

21. Luo, M.; Meng, F.; Liu, T.; Duan, Y.; Frankl, A.; Kurban, A.; De Maeyer, P. Multi–model ensemble approaches to assessment of
effects of local Climate Change on water resources of the Hotan River Basin in Xinjiang, China. Water 2017, 9, 584. [CrossRef]

22. He, C.; Chen, F.; Long, A.; Qian, Y.; Tang, H. Improving the precision of monthly runoff prediction using the combined
non-stationary methods in an oasis irrigation area. Agric. Water Manag. 2023, 279, 108161. [CrossRef]

23. Perrin, C.; Oudin, L.; Andreassian, V.; Rojas-Serna, C.; Michel, C.; Mathevet, T. Impact of limited streamflow data on the efficiency
and the parameters of rainfall—Runoff models. Hydrol. Sci. J. 2007, 52, 131–151. [CrossRef]

24. Lu, M.; Hou, Q.; Qin, S.; Zhou, L.; Hua, D.; Wang, X.; Cheng, L. A Stacking Ensemble Model of Various Machine Learning Models
for Daily Runoff Forecasting. Water 2023, 15, 1265. [CrossRef]

25. Mohammadi, B. A review on the applications of machine learning for runoff modeling. Sustain. Water Resour. Manag. 2021, 7, 98.
[CrossRef]

26. Hao, R.; Bai, Z. Comparative Study for Daily Streamflow Simulation with Different Machine Learning Methods. Water 2023, 15,
1179. [CrossRef]

27. Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A. An integrated fluvial and flash pluvial model using 2D high-resolution sub-grid and
particle swarm optimization-based random forest approaches in GIS. Complex Intell. Syst. 2019, 5, 283–302. [CrossRef]

28. Langhammer, J. Flood Simulations Using a Sensor Network and Support Vector Machine Model. Water 2023, 15, 2004. [CrossRef]
29. Vaheddoost, B.; Safari, M.J.S.; Yilmaz, M.U. Rainfall-runoff simulation in ungauged tributary streams using drainage area

ratio-based multivariate adaptive regression spline and random forest hybrid models. Pure Appl. Geophys. 2023, 180, 365–382.
[CrossRef]

30. Nasiboglu, R.; Nasibov, E. WABL method as a universal defuzzifier in the fuzzy gradient boosting regression model. Expert Syst.
Appl. 2023, 212, 118771. [CrossRef]

31. Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef] [PubMed]
32. Ratnasingam, S.; Muñoz-Lopez, J. Distance Correlation-Based Feature Selection in Random Forest. Entropy 2023, 25, 1250.

[CrossRef]
33. Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics 2013, 7, 21. [CrossRef]
34. Niu, W.-J.; Feng, Z.-K.; Xu, Y.-S.; Feng, B.-F.; Min, Y.-W. Improving prediction accuracy of hydrologic time series by least-squares

support vector machine using decomposition reconstruction and swarm intelligence. J. Hydrol. Eng. 2021, 26, 04021030. [CrossRef]
35. Fu, X.; Shen, B.; Dong, Z.; Zhang, X. Assessing the impacts of changing climate and human activities on streamflow in the Hotan

River, China. J. Water Clim. Chang. 2020, 11, 166–177. [CrossRef]
36. Wei, X.; Long, A.; Yin, Z.; Jiawen, Y. Simulation of response of glacier runoff to climate change in the Hotan River Basin. Water

Resour. Prot. 2022, 38, 137–144.
37. Xu, Y. A study of comprehensive evaluation of the water resource carrying capacity in the arid area: A case study in the Hetian

river basin of Xinjiang. J. Nat. Resour. 1993, 8, 229–237.
38. Fan, M.; Xu, J.; Chen, Y.; Li, W. Modeling streamflow driven by climate change in data-scarce mountainous basins. Sci. Total

Environ. 2021, 790, 148256. [CrossRef]
39. Wang, X.; Luo, Y.; Sun, L.; Shafeeque, M. Different climate factors contributing for runoff increases in the high glacierized

tributaries of Tarim River Basin, China. J. Hydrol. Reg. Stud. 2021, 36, 100845. [CrossRef]
40. Guo, H.; Ling, H.; Xu, H.; Guo, B. Study of suitable oasis scales based on water resource availability in an arid region of China:

A case study of Hotan River Basin. Environ. Earth Sci. 2016, 75, 984. [CrossRef]
41. Tan, K.; Wang, X.; Gao, H. Analysis of ecological effects of comprehensive treatment in the Tarim River Basin using remote

sensing data. Min. Sci. Technol. 2011, 21, 519–524. [CrossRef]
42. Xue, X.; Mi, Y.; Li, Z.; Chen, Y. Long-term trends and sustainability analysis of air temperature and precipitation in the Hotan

River Basin. Resour. Sci. 2008, 30, 1833–1838.
43. Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Huang, Y.; Frankl, A.; De Maeyer, P. Proportional coefficient method applied to TRMM

rainfall data: Case study of hydrological simulations of the Hotan River Basin (China). J. Water Clim. Chang. 2017, 8, 627–640.
[CrossRef]

44. Liu, P.; Jiang, Z.; Li, Y.; Lan, F.; Sun, Y.; Yue, X. Quantitative Study on Improved Budyko-Based Separation of Climate and
Ecological Restoration of Runoff and Sediment Yield in Nandong Underground River System. Water 2023, 15, 1263. [CrossRef]

45. Nuber, S.; Rae, J.W.; Zhang, X.; Andersen, M.B.; Dumont, M.D.; Mithan, H.T.; Sun, Y.; De Boer, B.; Hall, I.R.; Barker, S. Indian
Ocean salinity build-up primes deglacial ocean circulation recovery. Nature 2023, 617, 306–311. [CrossRef] [PubMed]

46. Ye, Y.; Li, Z.; Li, X.; Li, Z. Projection and Analysis of Floods in the Upper Heihe River Basin under Climate Change. Atmosphere
2023, 14, 1083. [CrossRef]

47. Zhang, Q.; Shen, Z.; Pokhrel, Y.; Farinotti, D.; Singh, V.P.; Xu, C.-Y.; Wu, W.; Wang, G. Oceanic climate changes threaten the
sustainability of Asia’s water tower. Nature 2023, 615, 87–93. [CrossRef]

48. Wang, J.; Sun, X.; Cheng, Q.; Cui, Q. An innovative random forest-based nonlinear ensemble paradigm of improved feature
extraction and deep learning for carbon price forecasting. Sci. Total Environ. 2021, 762, 143099. [CrossRef] [PubMed]

https://doi.org/10.3390/w15061048
https://doi.org/10.3390/w8050181
https://doi.org/10.3390/w9080584
https://doi.org/10.1016/j.agwat.2023.108161
https://doi.org/10.1623/hysj.52.1.131
https://doi.org/10.3390/w15071265
https://doi.org/10.1007/s40899-021-00584-y
https://doi.org/10.3390/w15061179
https://doi.org/10.1007/s40747-018-0078-8
https://doi.org/10.3390/w15112004
https://doi.org/10.1007/s00024-022-03209-3
https://doi.org/10.1016/j.eswa.2022.118771
https://doi.org/10.1038/nbt1206-1565
https://www.ncbi.nlm.nih.gov/pubmed/17160063
https://doi.org/10.3390/e25091250
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.1061/(ASCE)HE.1943-5584.0002116
https://doi.org/10.2166/wcc.2018.281
https://doi.org/10.1016/j.scitotenv.2021.148256
https://doi.org/10.1016/j.ejrh.2021.100845
https://doi.org/10.1007/s12665-016-5772-5
https://doi.org/10.1016/j.mstc.2011.06.010
https://doi.org/10.2166/wcc.2017.080
https://doi.org/10.3390/w15071263
https://doi.org/10.1038/s41586-023-05866-3
https://www.ncbi.nlm.nih.gov/pubmed/37165236
https://doi.org/10.3390/atmos14071083
https://doi.org/10.1038/s41586-022-05643-8
https://doi.org/10.1016/j.scitotenv.2020.143099
https://www.ncbi.nlm.nih.gov/pubmed/33127140


Water 2023, 15, 3222 21 of 22

49. Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A random forest machine learning approach for the retrieval of leaf
chlorophyll content in wheat. Remote Sens. 2019, 11, 920. [CrossRef]

50. Nguyen, J.M.; Jézéquel, P.; Gillois, P.; Silva, L.; Ben Azzouz, F.; Lambert-Lacroix, S.; Juin, P.; Campone, M.; Gaultier, A.;
Moreau-Gaudry, A. Random forest of perfect trees: Concept, performance, applications and perspectives. Bioinformatics 2021, 37,
2165–2174. [CrossRef]

51. Saravanan, S.; Abijith, D.; Reddy, N.M.; Parthasarathy, K.; Janardhanam, N.; Sathiyamurthi, S.; Sivakumar, V. Flood susceptibility
mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India. Urban Clim. 2023, 49, 101503.
[CrossRef]

52. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
53. Kurani, A.; Doshi, P.; Vakharia, A.; Shah, M. A comprehensive comparative study of artificial neural network (ANN) and support

vector machines (SVM) on stock forecasting. Ann. Data Sci. 2023, 10, 183–208. [CrossRef]
54. Zhong, W.; Du, L. Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on

Collision Data of Urban Roads. Sustainability 2023, 15, 2944. [CrossRef]
55. Ren, J.; Zhao, H.; Zhang, L.; Zhao, Z.; Xu, Y.; Cheng, Y.; Wang, M.; Chen, J.; Wang, J. Design optimization of cement grouting

material based on adaptive boosting algorithm and simplicial homology global optimization. J. Build. Eng. 2022, 49, 104049.
[CrossRef]

56. Wang, C.; Xu, S.; Yang, J. Adaboost algorithm in artificial intelligence for optimizing the IRI prediction accuracy of asphalt
concrete pavement. Sensors 2021, 21, 5682. [CrossRef] [PubMed]

57. Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm
and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [CrossRef]

58. Wang, F.; Zhen, Z.; Wang, B.; Mi, Z. Comparative study on KNN and SVM based weather classification models for day ahead
short term solar PV power forecasting. Appl. Sci. 2017, 8, 28. [CrossRef]

59. Garcia, S.; Derrac, J.; Cano, J.; Herrera, F. Prototype selection for nearest neighbor classification: Taxonomy and empirical study.
IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 417–435. [CrossRef] [PubMed]

60. Rajan, M. An efficient Ridge regression algorithm with parameter estimation for data analysis in machine learning. SN Comput.
Sci. 2022, 3, 171. [CrossRef]

61. Wang, X.; Wang, X.; Ma, B.; Li, Q.; Wang, C.; Shi, Y. High-performance reversible data hiding based on ridge regression prediction
algorithm. Signal Process. 2023, 204, 108818. [CrossRef]

62. Hothorn, T.; Lausen, B. Double-bagging: Combining classifiers by bootstrap aggregation. Pattern Recognit. 2003, 36, 1303–1309.
[CrossRef]

63. Wang, Q.; Luo, Z.; Huang, J.; Feng, Y.; Liu, Z. A novel ensemble method for imbalanced data learning: Bagging of extrapolation-
SMOTE SVM. Comput. Intell. Neurosci. 2017, 2017, 1827016. [CrossRef] [PubMed]

64. James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. Linear regression. In An Introduction to Statistical Learning:With Applications
in Python; Springer: Berlin/Heidelberg, Germany, 2023; pp. 69–134.

65. Parashar, A.; Parashar, A.; Ding, W.; Shabaz, M.; Rida, I. Data Preprocessing and Feature Selection Techniques in Gait Recognition:
A Comparative Study of Machine Learning and Deep Learning Approaches. Pattern Recognit. Lett. 2023, 172, 65–73. [CrossRef]

66. Wang, W.; Jing, H.; Guo, X.; Dou, B.; Zhang, W. Analysis of Water and Salt Spatio-Temporal Distribution along Irrigation Canals
in Ningxia Yellow River Irrigation Area, China. Sustainability 2023, 15, 12114. [CrossRef]

67. Zhao, Y.; Zhu, W.; Wei, P.; Fang, P.; Zhang, X.; Yan, N.; Liu, W.; Zhao, H.; Wu, Q. Classification of Zambian grasslands using
random forest feature importance selection during the optimal phenological period. Ecol. Indic. 2022, 135, 108529. [CrossRef]

68. Alduailij, M.; Khan, Q.W.; Tahir, M.; Sardaraz, M.; Alduailij, M.; Malik, F. Machine-learning-based DDoS attack detection using
mutual information and random forest feature importance method. Symmetry 2022, 14, 1095. [CrossRef]

69. Fu, H.; Shen, Y.; Liu, J.; He, G.; Chen, J.; Liu, P.; Qian, J.; Li, J. Cloud detection for FY meteorology satellite based on ensemble
thresholds and random forests approach. Remote Sens. 2018, 11, 44. [CrossRef]

70. Han, H.; Morrison, R.R. Improved runoff forecasting performance through error predictions using a deep-learning approach.
J. Hydrol. 2022, 608, 127653. [CrossRef]

71. Vu, M.; Raghavan, S.V.; Liong, S.-Y. SWAT use of gridded observations for simulating runoff–a Vietnam river basin study. Hydrol.
Earth Syst. Sci. 2012, 16, 2801–2811. [CrossRef]

72. Lu, X.; Li, J.; Liu, Y.; Li, Y.; Huo, H. Quantitative Precipitation Estimation in the Tianshan Mountains Based on Machine Learning.
Remote Sens. 2023, 15, 3962. [CrossRef]

73. Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data.
J. Hydrol. 1996, 181, 23–48. [CrossRef]

74. Gu, X.; Yang, G.; He, X.; Zhao, L.; Li, X.; Li, P.; Liu, B.; Gao, Y.; Xue, L.; Long, A. Hydrological process simulation in Manas River
Basin using CMADS. Open Geosci. 2020, 12, 946–957. [CrossRef]

75. Lee, J.; Noh, J. Development of a One-Parameter New Exponential (ONE) Model for Simulating Rainfall-Runoff and Comparison
with Data-Driven LSTM Model. Water 2023, 15, 1036. [CrossRef]

76. Xu, Y.; Hu, C.; Wu, Q.; Jian, S.; Li, Z.; Chen, Y.; Zhang, G.; Zhang, Z.; Wang, S. Research on particle swarm optimization in LSTM
neural networks for rainfall-runoff simulation. J. Hydrol. 2022, 608, 127553. [CrossRef]

https://doi.org/10.3390/rs11080920
https://doi.org/10.1093/bioinformatics/btab074
https://doi.org/10.1016/j.uclim.2023.101503
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/s40745-021-00344-x
https://doi.org/10.3390/su15042944
https://doi.org/10.1016/j.jobe.2022.104049
https://doi.org/10.3390/s21175682
https://www.ncbi.nlm.nih.gov/pubmed/34502573
https://doi.org/10.1038/s41598-022-10358-x
https://doi.org/10.3390/app8010028
https://doi.org/10.1109/TPAMI.2011.142
https://www.ncbi.nlm.nih.gov/pubmed/21768651
https://doi.org/10.1007/s42979-022-01051-x
https://doi.org/10.1016/j.sigpro.2022.108818
https://doi.org/10.1016/S0031-3203(02)00169-3
https://doi.org/10.1155/2017/1827016
https://www.ncbi.nlm.nih.gov/pubmed/28250765
https://doi.org/10.1016/j.patrec.2023.05.021
https://doi.org/10.3390/su151612114
https://doi.org/10.1016/j.ecolind.2021.108529
https://doi.org/10.3390/sym14061095
https://doi.org/10.3390/rs11010044
https://doi.org/10.1016/j.jhydrol.2022.127653
https://doi.org/10.5194/hess-16-2801-2012
https://doi.org/10.3390/rs15163962
https://doi.org/10.1016/0022-1694(95)02918-4
https://doi.org/10.1515/geo-2020-0127
https://doi.org/10.3390/w15061036
https://doi.org/10.1016/j.jhydrol.2022.127553


Water 2023, 15, 3222 22 of 22

77. Feng, Z.-K.; Niu, W.-J.; Wan, X.-Y.; Xu, B.; Zhu, F.-L.; Chen, J. Hydrological time series forecasting via signal decomposition
and twin support vector machine using cooperation search algorithm for parameter identification. J. Hydrol. 2022, 612, 128213.
[CrossRef]

78. Patro, E.R.; De Michele, C.; Avanzi, F. Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage:
The case of Italian Alps. Appl. Energy 2018, 231, 699–713. [CrossRef]

79. Taylor, G.P.; Loikith, P.C.; Aragon, C.M.; Lee, H.; Waliser, D.E. CMIP6 model fidelity at simulating large-scale atmospheric
circulation patterns and associated temperature and precipitation over the Pacific Northwest. Clim. Dyn. 2023, 60, 2199–2218.
[CrossRef]

80. Fahu, C.; Tingting, X.; Yujie, Y.; Shengqian, C.; Feng, C.; Wei, H.; Jie, C. Discussion on the problem of “warming and humidification”
and its future trend in the arid area of Northwest China. Sci. China Earth Sci. 2023, 53, 1246–1262. [CrossRef]

81. Zhao, Q.; Ye, B.; Ding, Y.; Zhang, S.; Yi, S.; Wang, J.; Shangguan, D.; Zhao, C.; Han, H. Coupling a glacier melt model to the
Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China. Environ. Earth Sci. 2013, 68, 87–101.
[CrossRef]

82. El Bilali, A.; Abdeslam, T.; Ayoub, N.; Lamane, H.; Ezzaouini, M.A.; Elbeltagi, A. An interpretable machine learning approach
based on DNN, SVR, Extra Tree, and XGBoost models for predicting daily pan evaporation. J. Environ. Manag. 2023, 327, 116890.
[CrossRef] [PubMed]

83. Li, X.; Zhang, L.; Zeng, S.; Tang, Z.; Liu, L.; Zhang, Q.; Tang, Z.; Hua, X. Predicting Monthly Runoff of the Upper Yangtze River
Based on Multiple Machine Learning Models. Sustainability 2022, 14, 11149. [CrossRef]

84. Wang, G.; Hao, X.; Yao, X.; Wang, J.; Li, H.; Chen, R.; Liu, Z. Simulations of Snowmelt Runoff in a High-Altitude Mountainous
Area Based on Big Data and Machine Learning Models: Taking the Xiying River Basin as an Example. Remote Sens. 2023, 15, 1118.
[CrossRef]

85. Tang, H.; Zhang, F.; Zeng, C.; Wang, L.; Zhang, H.; Xiang, Y.; Yu, Z. Simulation of Runoff through Improved Precipitation:The
Case of Yamzho Yumco Lake in the Tibetan Plateau. Water 2023, 15, 490. [CrossRef]

86. Aksan, F.; Suresh, V.; Janik, P.; Sikorski, T. Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid
Deep Learning Models. Energies 2023, 16, 5381. [CrossRef]

87. Guo, J.; Liu, Y.; Zou, Q.; Ye, L.; Zhu, S.; Zhang, H. Study on optimization and combination strategy of multiple daily runoff
prediction models coupled with physical mechanism and LSTM. J. Hydrol. 2023, 624, 129969. [CrossRef]

88. Jin, Q.; Sun, Y.; Liu, Z.; He, S. Multidimensional tensor strategy for the inverse analysis of in-service bridge based on SHM data.
Innov. Infrastruct. Solut. 2023, 8, 228. [CrossRef]

89. Khandelwal, A.; Xu, S.; Li, X.; Jia, X.; Stienbach, M.; Duffy, C.; Nieber, J.; Kumar, V. Physics guided machine learning methods for
hydrology. arXiv 2020, arXiv:2012.02854. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jhydrol.2022.128213
https://doi.org/10.1016/j.apenergy.2018.09.063
https://doi.org/10.1007/s00382-022-06410-1
https://doi.org/10.1007/s11430-022-1098-x
https://doi.org/10.1007/s12665-012-1718-8
https://doi.org/10.1016/j.jenvman.2022.116890
https://www.ncbi.nlm.nih.gov/pubmed/36459782
https://doi.org/10.3390/su141811149
https://doi.org/10.3390/rs15041118
https://doi.org/10.3390/w15030490
https://doi.org/10.3390/en16145381
https://doi.org/10.1016/j.jhydrol.2023.129969
https://doi.org/10.1007/s41062-023-01199-2
https://doi.org/10.48550/arXiv.2012.02854

	Introduction 
	Research Area and Data 
	Research Area 
	Data 

	Research Methods 
	Runoff Simulation and Reconstruction Modelling 
	Feature Selection 
	Evaluation Parameters 

	Results and Analyses 
	Feature Analysis 
	Pearson Correlation Coefficient 
	Random Forest Feature Importance 

	Runoff Simulation of the Yurungkash River 
	Runoff Simulation and Reconstruction of the Kalakash River 
	Runoff Simulation of the Kalakash River 
	Runoff Reconstruction of the Kalakash River 


	Discussion 
	Conclusions 
	Appendix A
	References

