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Abstract: In this paper, the effects of climate change and human activities on the groundwater level
and the concentration of pollutants, such as total dissolved solids (TDS), chloride, and sodium, were
investigated in the western part of the Varamin Plain. The groundwater flow and pollutant transport
were simulated with the two models of MODFLOW and MT3D, respectively. To investigate the
impacts of climate change, the two parameters of temperature and precipitation were downscaled
under the three scenarios of RCP 2.6, RCP 4.5, and RCP 8.5. Four scenarios, including the current
condition (Scenario 0), a 25% increase in the extraction from pumping wells (Scenario 1), the climate
change effects (Scenario 2), and an increase in the incoming effluent (TDS) to the Shoor River due to
industrial activities (Scenario 3), were investigated for a future period of 30 years (2025–2055). The
results show that the highest groundwater decline and chloride and sodium concentrations occur
under Scenario 1, while Scenario 3 leads to the maximum TDS concentration (milligrams per liter). In
Scenario 1, the average and maximum groundwater decline at the end of the simulation period will
be 2.5 m and 7.3 m, and the chloride and sodium concentrations will increase by 7 and 5 milligrams
per liter, respectively.

Keywords: groundwater modeling; contaminant transport; climate change; total dissolved solids;
chloride ion; sodium ion; Varamin Plain

1. Introduction

Groundwater refers to subsurface water that can be collected through wells, tunnels,
and drainage galleries or can percolate to the surface naturally through seepage or springs.
Groundwater is vital in various domains such as drinking, agriculture, industry, environ-
ment, and ecosystems. Groundwater reservoirs represent the largest source of accessible
liquid freshwater on the planet [1] and supply approximately 36% of worldwide drinking
water [2]. In arid and semi-arid regions, such as Iran, where the surface water is contami-
nated or scarce, the dependence upon groundwater is quite remarkable. Evidence shows
that in the near future, factors including population growth and climate change, will result
in the intensification of groundwater consumption [3].

Recent studies indicate that the quality and quantity of groundwater could be impacted
by global climate change through the two parameters of temperature and precipitation [4–9].
Indeed, climate variation alters the distribution of temperature and precipitation around
the world. The Intergovernmental Panel on Climate Change (IPCC) predicts a temperature
increase of 2 to 4 degrees over the 21st century [10]. However, the change in the regime
and quantity of precipitation is uncertain, but, generally, a decrease in dry zones and an
increase in wet areas are forecasted [10].

Two direct consequences of temperature increases are increases in evapotranspira-
tion and crop water need (CWN) [11–13]. Subsequently, these parameters, together with

Water 2023, 15, 3196. https://doi.org/10.3390/w15183196 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15183196
https://doi.org/10.3390/w15183196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w15183196
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15183196?type=check_update&version=1


Water 2023, 15, 3196 2 of 34

precipitation, affect irrigation water need (IWN) [11–13] and, ultimately, change ground-
water discharge because of the aquifer pumpage. Another key element that links climate
variables to the groundwater system is recharge [5,7,14,15]. Indeed, precipitation and
evapotranspiration directly influence the recharge value [14–18]. Allen et al. analyzed the
sensitivity of the Grand Forks aquifer, located in British Columbia, Canada, according to
the change in the recharge and river stage, as well as different climate projection scenarios.
The results showed that the hydraulic head variations were insignificant and ranged be-
tween −0.025 m and 0.5 m for the lowest and highest recharge conditions, respectively [15].
In [17], the effect of climate change on groundwater recharge was investigated for eight
aquifers in the western United States. The simulations indicated that in the southern parts,
the recharge would decrease, while in the northern aquifers, a slight increase to low decline
would be expected.

According to the issues mentioned above, accurate estimations for future projections
of temperature and precipitation are essential. One of the most reliable tools to estimate
future climate variables is the use of general circulation models (GCMs). These physically
based computer models simulate climate response to IPCC scenarios [7]. In this study,
scenarios from the fifth assessment report (AR5), including representative concentration
pathways (RCPs), were considered to evaluate the impact of climate change on groundwater
resources [19]. In the AR5, the four RCPs of 2.6, 4.5, 6, and 8.5 are presented according to
the low, intermediate, and high greenhouse gas emission scenarios, respectively [19].

Since the Coupled Model Intercomparison Project Phase 5 (CMIP5) was conducted
to support the AR5 by employing the RCP emission scenarios, and because of the higher
spatial resolution and improved model physics, it was selected in this work [8]. Among
the CMIP5 GCMs, the Canadian Earth System Model of the Canadian Centre for Climate
Modeling and Analysis (CanESM2) [20,21] was used in the current study to select the
appropriate predictors. The so-called GCM model approximately matches the resolution
of the NCEP/NCAR reanalysis data [21,22] and has been successfully applied in many
cases [23–25]. Furthermore, to resolve the GCM outputs on a regional scale, statistical
downscaling techniques are commonly applied as an effective and computationally in-
expensive tool [26]. Indeed, to provide station-scale climate information, an empirical
relationship is established between local predictands and large-scale GCM predictors [26].
In this study, SDSM 4.2 (statistical downscaling model) software was employed in which
multiple linear regression was used for temperature and precipitation projection [27]. This
software has been widely used, and it is a reliable tool for downscaling climate data [28–33].

In addition to the climate change effect, human activities play a significant role in the
fluctuations in groundwater levels and the quality of this resource. In order to implement
both the human-made and climate change scenarios, the flow model of MODFLOW [34–36]
and solute-transport model of MT3DMS [37] were used in this study to evaluate the ground-
water level and pollutants concentrations, respectively. For this purpose, the groundwater
modeling system (GMS) simulation software was employed to integrate these two models
and facilitate the pre- and postprocessing via three-dimensional visualization [38].

Despite the growing research in recent years investigating the impact of climate
change on groundwater resources, there are a limited number of studies focusing both on
groundwater quantity and quality [39]. This is because of the fact that, contrary to surface
water, which can easily be measured and monitored, a groundwater system’s response
to both human-made and climate change scenarios is very complicated [39]. Therefore,
in the present study, a conceptual modeling approach was developed to integrate the
groundwater drawdown, pollution, climate change scenarios, and anthropogenic factors to
assess future groundwater conditions. Moreover, in most studies, the impact of climate
change on groundwater resources is considered through the recharge process or direct
interaction with surface water [5,7]. In the methodology proposed in this study, in addition
to the effect of recharge, the variation in irrigation water need and the consequent discharge
under future climate scenarios is estimated.
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The study area considered in this work is the Varamin Plain, located in Iran, southeast
of Tehran Province. The agricultural lands in this plain cover more than 60,000 ha and play
a crucial role in providing agricultural products [40]. This leads to excessive groundwater
extraction and groundwater level decline [41]. On the other hand, since the climate of this
zone is dry with low precipitation and high temperature, climate change could increase
the drought and affect groundwater resources in future decades [40,42]. Based on the
studies performed in this plain, the total dissolved solids (TDS) exceeds 1000 milligrams
per liter (mg/L) in the western part of the area [40], which is categorized as brackish
groundwater [43]. As a result, overpumping and climate alteration could significantly
deteriorate the salinity conditions of the groundwater supply in this region. Hence, in the
current research, the concentration of TDS, chloride, and sodium ions were considered to
examine the salinity characteristics of the study area.

In recent studies conducted in the Varamin Plain, the effect of climate change on runoff
using a soil and water assessment tool (SWAT) was investigated. The results show an
increase in the runoff in the fall and spring and a decrease in the winter and summer for all
scenarios [42]. Furthermore, Azizi et al. (2021) evaluated the effect of climate change on the
groundwater level in the Varamin Plain under RCP scenarios. In this study, the general
circulation model (GCM) of the EC-EARTH and the downscaling model of the LARS-WG
were applied. The downscaled model showed an increase in temperature up to 1.5 degrees
between the future periods of 2020 and 2050 [44]. Azizi (2023) developed a simulation-
optimization model in the Varamin aquifer to select a sustainable harvesting plan for
this plain. In this paper, the Borda aggregation method was applied to select the best
solution for aquifer management [45]. For the qualitative studies performed in the Varamin
Plain, Karami et al. (2018) used the kriging method to interpolate groundwater quality
data, including total dissolved solids (TDS), sodium adsorption ratio (SAR), electrical
conductivity (EC), sodium, total hardness, chloride, and sulfate, in the Varamin Plain [46].
The study attempted to determine zones with low and high groundwater quality due to
the high value of TDS and threat of salinity in recent years [46]. In another work, Valivand
and Katibeh (2019) simulated nitrate pollution in the Varamin aquifer by coupling the
two models of MODFLOW and MT3DMS. In this study, the concentration of nitrate was
predicted until 2041 under existing conditions [41]. To date, according to the authors’
knowledge, no study has included the following issues: (1) modeling the three pollutants
of TDS, chloride, and sodium simultaneously in the study area; (2) investigating the impact
of climate change on the quality characteristics of the Varamin Plain; (3) considering the
climate change effect on crop water need and the resultant pumpage in this zone; and (4)
the human-based scenarios applied in this study.

The main objectives of this work were as follows: (1) estimate the future projection of
temperature and precipitation with the coupled GCM and statistical downscaling method
under the RCP scenarios; (2) compute the future groundwater decline and spatiotemporal
distribution of pollutants under the current condition; and (3) investigate the effect of
climate change and possible human-based scenarios via the proposed methodology.

2. Materials and Methods
2.1. Study Area

The Varamin Plain is located in the southeast of Tehran Province, with the minimum
and maximum heights of 810 m and 2310 m, respectively (Figure 1). The main sources of
water in the Varamin Plain include the Jajrood River, Shoor River, sewers of the south of
Tehran, and groundwater, which are utilized for both drinking and irrigation demands.
The whole plain is characterized by an arid climate, with minimum and maximum tem-
peratures of 8.5 ◦C and 24.2 ◦C, respectively. The annual rainfall ranges between 193 mm
in the northern uplands and 143 mm in the southern lowlands. In addition, the average
annual precipitation is approximately 160 mm. The Varamin Plain plays a leading role
in agriculture as the supplier of agricultural products for Tehran and other parts of the
country. The dominant cultivations are barley, wheat, corn, and alfalfa [47].
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Figure 1. (a) Iran; (b) Tehran Province; (c) location map of the study area.

The wide area of the plain is managed by the Varamin Irrigation and Agriculture
Network, and the water is supplied from the wastewater of the Tehran sewage treatment
plant. Furthermore, wastewater from the treatment plant in the southeast of Tehran is
transferred to the Varamin Plain and enters the irrigation network. This network recharges
the aquifer; therefore, recursive flows import pollutants to it [41]. Additionally, the pol-
lutants that enter the Shoor River and industrial wastewater increase the values of TDS
in the western and southern parts of the plain, as shown in Figure 2. In this study, the
western part of the Varamin was considered the study area because the concentration of
TDS exceeds the permissible limit (by more than 1000 mg/L, according to a World Health
Organization report [43]) in this zone. Also, samples from the monitoring wells in a field
site show that among the measured solute components, the concentration of chloride (CL−)
and sodium (Na+) are the highest. According to irrigation activities in this area, the salinity
could impact the groundwater quality and be a potential for deterioration of groundwater
in the future. Therefore, the concentration of the three parameters of TDS, chloride, and
sodium were investigated in this research.

The area of the model domain was approximately 430 km2 between the east longitudes
of 51◦20′ and 51◦45′ and north latitudes of 35◦6′ and 35◦38′. Hydrogeology studies show
that the aquifer under consideration is composed of soils with a wide grain size distribution
(from coarse gravel to a mixture of sand and clay), which demonstrates the large spatial
variation in hydraulic properties. Figure 1 shows the study area’s location and the model
domain’s layout in Iran and Tehran Province [47].
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2.2. General Framework of Modeling

The general framework of the proposed model is presented in Figure 3. As shown in
the figure, the climate change scenarios are projected according to the two parameters of
temperature and precipitation. In the next step, the variation in the reference evapotranspi-
ration and crop water needs are calculated. Then, the irrigation water need is computed via
the effective precipitation and crop water need. The alteration in the irrigation water need
in response to the climate change results in an increase in pumpage. Meanwhile, the change
in recharge due to the forecasted precipitation is applied to the groundwater flow model.
Finally, human-based and climate change scenarios are employed in the contamination
groundwater model to determine the concentrations of pollutants.

2.3. Models Used in Quantitative and Qualitative Simulation

In this research, the MODFLOW and MT3DSMS models in GMS software were used
to solve the governing equations of the groundwater flow and contaminant transport,
respectively, using the finite difference numerical method. The two models interface directly
with the same mesh layout. Indeed, the qualitative data, including the head distribution
and velocity field, were imported into the MT3DMS model to compute the contaminant
concentration and identify the sources and causes of pollution in the aquifer [37].
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In this framework, a general governing equation for the groundwater flow in an
anisotropic, heterogeneous aquifer can be written as follows:

∂

∂xi

(
Kij

∂h
∂xi

)
+ w = SS

∂h
∂t

(1)

where Kij is the second-order tensor of hydraulic conductivity, h denotes the hydraulic
head, xi are the cartesian coordinates, w is the volumetric flux per unit volume representing
the sources and sinks terms, SS is the specific storage of the investigated aquifer, and t is
the time. By solving the above equation in MODFLOW, the hydraulic head values and
velocity values are calculated.

For the MT3DMS model, the partial differential equation describing the three-dimensional
single solute transport can be expressed as follows [37,48]:

∂(θC)
∂t

=
∂

∂xi

(
θDij

∂C
∂xj

)
− ∂

∂xi
(θviC) + qsCs + ∑ Rn (2)

where C is the dissolved pollutant concentration, θ is the porosity of the medium, Dij is the
hydrodynamic dispersion coefficient tensor, vi is the seepage or linear pore water velocity
based on Darcy’s law, qs is the volumetric flow rate per unit volume of aquifer representing
fluid sources and sinks, Cs is the concentration of sources or sink flux, and ΣRn represents
the chemical reaction term [48].

In this research, the mechanisms of advection and hydrodynamic dispersion are
considered, which are given in the first and second terms of Equation (2), respectively, and
the chemical reactions are neglected.

2.4. Primary Information of Groundwater Flow Modeling

In the study area, the aquifer is unconfined and considered a one-layer model. The
boundary condition of the simulated domain was defined based on the groundwater
isoline map, geology, and location of the observation wells. Preparing and solving the
mathematical model of an aquifer using the finite difference method requires the division
of the layer into grids, components, or smaller rectangular or square cells. According to the
previous models applied in this study area [41,45], the model grid of the Varamin aquifer
was divided into regular and equal-sized cells of 250 m × 250 m (Figure 4). Figure 4 also
shows the permeable and impermeable boundaries as well. Moreover, according to the
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field data, the porosity was considered to be 0.3, and the groundwater level and depth were
assumed from [47].
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As shown in Figure 4, two boundary types, including permeable and impermeable,
were applied in the quantitative and qualitative models. The impermeable boundaries were
assigned based on the groundwater level isolines and geological formations. As depicted
in Figure 5, where the groundwater level isolines are perpendicular to the boundary, it is
considered an impermeable surface. Furthermore, in the zones with a lack of observation
wells (i.e., the western part of the study area), the geological data were investigated, and in
the interface of the Varamin Plain and mountains, a no-flow boundary condition was as-
sumed. In the permeable boundaries, the constant and time-variant heads were considered
in the steady-state and transient quantitative models, respectively. The qualitative model
only consisted of transient calibration, and the boundary conditions were similar to the
quantitative model. It should be indicated that the values assigned to the boundaries are
equal to the observation wells located at or near the boundaries.

In this research, 28% of agricultural water, 65% of urban and rural drinking water, and
65% of industrial water return to the aquifer as surface recharge. Moreover, 80% of the
effective rainfall causes surface recharge [47]. The initial values of the recharge rate were
estimated from field data and then calibrated during the modeling. Hydraulic conductivity
(K) and specific yield (Sy) were considered unknown parameters to be determined by
calibration. Since these parameters change in different parts of the aquifer, the average value
is first applied for each cell. Afterward, the trial-and-error method and PEST optimizer
were employed for the calibration of the K and Sy values, respectively.

In this area, 6 qanats and 992 pumping wells are being used to extract water from the
aquifer. There are also 27 and 23 piezometric wells to measure the water level in the steady-
state and transient models, respectively. Monthly water level data for all piezometric wells
were used as the observed target for calibration. Additionally, every year was divided into
4 stress periods, corresponding to one season during which the pumping rate was constant.
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2.5. Primary Information of Transport Modeling

The simulation of the solute transport was performed based on the values of hydraulic
heads and flow terms calculated by MODFLOW. In this study, the concentrations of TDS,
CL−, and Na+ ions were modeled using advection and dispersion transport packages as
the main transport mechanisms.

Since the MT3DMS qualitative analysis code uses the results of the MODFLOW quan-
titative model, the same grids, time steps, and stress periods were selected at this stage. The
boundary conditions in this solute-transport model are defined similarly to MODFLOW.

Because of the extent of the study area, determining the appropriate values for longitu-
dinal and latitudinal dispersion coefficients is complicated. According to the field data, the
value of αL was considered as 1 m. The other coefficient αT, which is usually expressed as
a fraction of αL (αT/αL = 0.1), was obtained as 0.1 m by calibration and trial-and-error [47].

The most important pollutant sources entering from the surface to the aquifer in the
Varamin Plain are domestic wastewater and agricultural pollutants penetrating the soil and
aquifer [47]. There exist 20 observation wells in all three models (transport of TDS, CL−,
and Na+), which are being used to measure the concentration of the pollutants. Because of
the limited field data, the monthly concentration data at all observation wells were repaired
by the linear interpolation method and used as the observed target data for calibration.
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2.6. Climate Change Scenarios and Downscaling

The climate projection data were provided from the GCM model of CanESM2, which is
part of the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the three future
scenarios of RCP 2.6, 4.5, and 8.5 [21]. Because of the coarse spatial resolution of the
GCM models, the statistical downscaling model of SDSM was applied to estimate the
local climatic variables of temperature and precipitation. To downscale the parameters of
temperature and precipitation, two synoptic stations and four rain-gauge stations were
used, respectively. The properties of these stations are listed in Table 1. In this method, to
derive the statistical relationship between the GCM predictors and the local predictand, the
historical data used were from 1986 to 2016.

Table 1. Rain gauge and synoptic stations.

Station Type Altitude (m) Latitude (Degrees) Longitude (Degrees)

RGS-1 Rain gauge 840 35◦ 15′ 54′′ 51◦ 34′ 6′′

RGS-2 Rain gauge 1000 35◦ 19′ 45′′ 51◦ 40′ 1′′

RGS-3 Rain gauge 950 35◦ 24′ 7′′ 51◦ 35′ 51′′

RGS-4 Rain gauge 1150 35◦ 30′ 29′′ 51◦ 47′ 2′′

Sys-1 Synoptic 861 35◦ 12′ 37′′ 51◦ 40′ 4′′

Sys-2 Synoptic 1299 35◦ 35′ 53′′ 51◦ 46′ 48′′

2.7. Determination of ET0, ETC, and IWN

Estimating the reference evapotranspiration is essential in estimating the crop water
need, ETC, and irrigation water need. In this study, the Hargreaves equation was used to
calculate ET0, as follows [49]:

ET0 = 0.0023RA(T + 17.8)TD (3)

In which RA is the extraterrestrial radiation, T denotes the mean temperature in de-
grees Celsius, and TD is the difference between the maximum and minimum temperature.
The value of RA is computed from [49] for each month.

To determine the crop water need, the crop coefficients, KC, were derived from the
Food and Agriculture Organization (FAO), and the following formula was used [50]:

ETC = KcET0 (4)

In the last step, the irrigation water need was determined from the difference of the
ETC and the effective precipitation, Pe, as follows [50]:

IWN = ETC − Pe (5)

3. Result
3.1. MODFLOW Calibration and Validation Results

The model’s calibration was conducted in two stages, including the steady-state and
transient analyses. For the calibration of the steady-state condition, the parameters of the
hydraulic conductivity and recharge rate were estimated at the beginning of the adjustment
period, March 2008, as listed in Table 2. Then, the transient MODFLOW model was
calibrated for the two parameters of recharge rate and specific yield of the aquifer (Sy)
using monthly observed water levels from March 2016 (Table 2). The measured data for the
two next years (2017 and 2018) were used during the validation stage. The initial conditions
of the aquifer to implement the model were the same groundwater level at the beginning
of the analysis in March 2008.
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Table 2. The calibrated parameters for the quantitative and qualitative models.

Model Quantitative Model Qualitative Model

Steady-state Hydraulic conductivity, recharge -

Transient Recharge, specific yield longitudinal dispersion coefficient,
pollutant concentration sources

By calibration of the steady-state model, acceptable amounts of hydraulic conductivity
and the recharge rate were obtained, which are presented in Figures 6 and 7. Based on
the simulation results, the values of the hydraulic conductivity and recharge rate varied
between 6 and 74 m/day and 0.0002 and 0.004 m/day, respectively. It should be indicated
that in [41], the hydraulic conductivity in the western Varamin Plain was in the same range.
Figure 8 illustrates the correlation between the observed and calculated water level values
in the piezometric wells of the aquifer for March 2008. The correlation was very high
(R2 = 0.99) and indicates the high adaptation of the model in the steady-state flow. Also, the
groundwater level resulting from the numerical model is shown in Figure 9. The computed
groundwater level varied between 776 and 966 m.
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Figure 6. Distribution of the calibrated values of the hydraulic conductivity parameter in the plain
during the steady-state calibration.

During the transient model’s calibration, an acceptable amount of specific yield was
calibrated. Based on the simulation results, the values of the specific yield varied between
2 and 33%. In [41], the specific yield for the unconfined aquifer was between 3 and
20%, which is similar to the results obtained in this study. To compare the results, the
correlation between the observed and modeled water level values for the calibration period
was computed, which equaled 0.9937 (Figure 10). Also, the variations in the simulated
groundwater levels from 2008 to 2016 are shown in Figure 11. For the validation process,
the correlation between the observed and modeled water level values is shown in Figure 12,
which yielded the R2 value of 0.9918.
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wells of the study area in the steady flow (March 2008).

The results in the calibration and validation phases ensure the high accuracy of
the model. Moreover, to investigate the outcomes, error-based measures, including
ME (mean error), MAE (mean absolute error), RMSE (root mean square error), and MRE
(mean relative error), are presented in Table 3. These measures are given in the following
forms in Equations (6)–(9) [51]:

ME =
1
n

(
n

∑
i=1

Oi − Si

)
(6)

MAE =
1
n

(
n

∑
i=1
|Oi − Si|

)
(7)
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RMSE =

√
1
n∑n

i=1(Oi − Si)
2 (8)

MRE =
RMSE

∆
(9)

where Oi and Si are the measured and simulated parameters at observation well i, respec-
tively. In the definition of the MRE, ∆ equals the difference between the maximum and
minimum observed values [51].
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Table 3. Calculated errors of the quantitative model.

Models ME (m) MAE (m) RMSE (m) MRE (%)

Calibration
(steady state) −0.51 1.44 1.99 1.48

Calibration
(transient) 1.98 2.6 3.25 2.34

Validation 2.14 2.74 3.42 2.52

The sensitivity analysis was performed for the three calibrated parameters of hydraulic
conductivity, specific yield, and recharge. For the two parameters of specific yield and
recharge, the results are listed in Table 4. The minimum value of 2% and 0.0002 m/day was
assumed for the specific yield and recharge rate, respectively. Therefore, for the calculation
of the RMSE, an increase in the value of these parameters up to 30% was assumed.

Table 4. Calculated errors for the increase in the calibrated parameters of the recharge rate and
specific yield.

Calibrated
Parameter 0% +10% +20% +30%

Recharge rate 3.25 3.252 3.254 3.256
Specific yield 3.25 3.256 3.261 3.266

Moreover, for the hydraulic conductivity the maximum value of 80 m/day was consid-
ered in the study area according to the field data and previous studies. Hence, a decrease
up to 30% was considered to compute the RMSE values as presented in Table 5.

Table 5. Calculated errors for the increase in the calibrated parameter of hydraulic conductivity.

Calibrated
Parameter 0% −10% −20% −30%

Hydraulic conductivity 3.25 3.252 3.254 3.256

3.2. MT3D Calibration and Validation Results

In the next step, first, the contaminants’ concentration was entered in different periods
of the qualitative model in the transient state. Second, the longitudinal dispersion coefficient
and pollutants concentration sources were calibrated using data from March 2008 to March
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2016, and an acceptable tolerance was obtained. Finally, the qualitative model was validated
against the data from the wells from March 2016 to March 2018. Consequently, as presented
in Table 6, the calculated errors derived by comparing each pollutant’s modeled and
observed concentrations for both the calibration and validation periods in this area were
reasonable. It should be mentioned that the concentration of the parameters, including
TDS, chloride, and sodium, in March 2008 was assumed as the initial condition.

Table 6. Calculated errors of qualitative models.

Models ME (mg/L) MAE (mg/L) RMSE (mg/L) MRE (%)

TDS—calibration 3.5 277.97 432.72 7.78
CL−—calibration −0.49 3.4 5.77 9.4
Na+—calibration 0.23 2.58 4.16 9.27
TDS—validation 23.51 273.46 416.49 9.4
CL−—validation −0.58 3.51 5.87 10.09
Na+—validation 0.74 2.83 4.33 8.7

3.2.1. TDS

In this section, Figure 13 illustrates the correlation between the observed and modeled
TDS concentration values from March 2008 to March 2016. Accordingly, the high correlation
value of 0.93 indicates a suitable modification of the solute-transport model. Also, the
changes in the calculated concentration of TDS from 2008 to 2016 are shown in Figure 14.
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Figure 13. Correlation between the observed and computed values of the TDS concentration in the
observation wells of the Varamin aquifer in the transport modeling (2008–2016).

Figure 15 illustrates the correlation between the observed and modeled TDS con-
centration values for the validation period. Accordingly, the high correlation value of
0.95 indicates an acceptable adaptation of the model during the validation process. Also,
the latest change in the calculated concentration of TDS from 2016 to 2018 is shown in
Figure 16.

3.2.2. Chloride

Figure 17 illustrates the correlation between the observed and modeled Cl− concen-
tration values from March 2008 to March 2016 in which R2 was equal to 0.8522. Also, the
changes in the calculated concentration of CL− from 2008 to 2016 are shown in Figure 18. In
Figure 19, the correlation between the measured and simulated values of CL− is depicted
during the validation stage, and the R2 value of 0.83 is computed. The spatial distribution
of CL− from 2016 to 2018 is shown in Figure 20.
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3.2.3. Sodium Ion

The correlation between the observed and calculated Na+ concentration values for
the calibration is shown in Figure 21. Moreover, the maps of the Na+ concentration
during the calibration period is displayed in Figure 22. For the validation period, the
results are presented in Figures 23 and 24, respectively. The high values of the correlations
in the Figures 21 and 23, suggest a very good agreement between the measured and
simulated data.



Water 2023, 15, 3196 20 of 34

Water 2023, 15, x FOR PEER REVIEW 21 of 37 
 

 

 
(a) (b) 

Figure 20. CL− concentration in the Varamin aquifer during the validation process: (a) 2016; (b) 

2018 (Black circles represent qualitative wells). 

3.2.3. Sodium Ion 

The correlation between the observed and calculated Na+ concentration values for 

the calibration is shown in Figure 21. Moreover, the maps of the Na+ concentration dur-

ing the calibration period is displayed in Figure 22. For the validation period, the results 

are presented in Figures 23 and 24, respectively. The high values of the correlations in the 

Figures 21 and 23, suggest a very good agreement between the measured and simulated 

data. 

 
Figure 21. Correlation between the observed and computed values of the Na+ concentration in the
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3.3. SDSM Calibration, Validation, and Prediction Results

In this stage, to calibrate the SDSM model, different sets of predictors were screened
for a period of twenty years (1986–2006) at each station. The list of screened variables is
presented in Tables 7 and 8. It should be indicated that the National Centre for Environ-
mental Prediction (NCEP) re-analysis data set was used for the model calibration. In the
next step, to verify the model, observed and generated results were compared from 2006 to
2016 (Figures 25 and 26). As illustrated in these figures, a good agreement exists between
the downscaled and observed data.

Table 7. The selected predictors for the downscaling of the precipitation for each rain gauge station.

Station Selected Predictors

RGS-1

Zonal velocity component near the surface (p_u)
Meridional velocity component at 500 hPa (p5_v)

500 hPa geopotential height (p500)
Divergence at 500 hPa (p5zh)

Total precipitation (prec)
Near surface specific humidity (shum)

Near surface air temperature (temp)

RGS-2

Vorticity at 500 hPa (p5_z)
500 hPa geopotential height (p500)

Vorticity at 850 hPa (p8_z)
850 hPa geopotential height (p850)

Total precipitation (prec)
Near surface specific humidity (shum)

RGS-3

Vorticity at 500 hPa (p5_z)
500 hPa geopotential height (p500)

Vorticity at 850 hPa (p8_z)
850 hPa geopotential height (p850)

Total precipitation (prec)
Near surface specific humidity (shum)

RGS-4

Meridional velocity component at 500 hPa (p5_v)
500 hPa geopotential height (p500)

Vorticity at 850 hPa (p8_z)
850 hPa geopotential height (p850)

Total precipitation (prec)
Near surface specific humidity (shum)

Near surface air temperature (temp)
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Figure 22. Na+ concentration in the Varamin aquifer in the transport modeling: (a) 2008; (b) 2010;
(c) 2012; (d) 2014 (Black circles represent qualitative wells).
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Table 8. The selected predictors for the downscaling of temperature for each synoptic station.

Station Selected Predictors

SyS-1 500 hPa geopotential height (p500)
Near surface air temperature (temp)

SyS-2 500 hPa geopotential height (p500)
Near surface air temperature (temp)
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Figure 26. The comparison between the downscaled (using NCEP predictors) and observed daily
mean temperature for the period of 2006–2016 at the different synoptic stations.

After the evaluation of the downscaling models, the synthetic daily weather series was
generated for the time period of 2025–2054 at different stations with the GCM predictors.
The annual mean values under the three scenarios of RCP2.6, RCP4.5, and RCP8.5 for
the two parameters of precipitation and mean temperature are shown in Figure 27. From
these figures, the following observations are made: (1) the annual mean precipitation
decreased between 0.02 and 0.34 mm/day for the different rain gauge stations under the
three emission scenarios; (2) the annual mean temperature is expected to increase between
1.94 and 2.57 degrees; and (3) the increases in temperature are the most severe with RCP
8.5, while RCP 4.5 shows the largest reduction in precipitation.

3.4. Climate Change Effect on ET0, ETC, and IWN

In Figure 28, the values of ET0 for each month were computed based on the monthly
mean average temperature during the historical interval (1986–2016) and future period
(2025–2055) for each RCP. Also, as mentioned above, since the major crops in the Varamin
Plain include wheat, barley, corn, and alfalfa, the crop water need and irrigation water
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need for each product were estimated for the historical and future emission scenarios
(Figures 29 and 30). As illustrated in these figures, because of the increase in the reference
evapotranspiration and decrease in the precipitation during the crop growth stage, the
values of ETC and IWN increase for the future period.
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3.5. Predicting the Aquifer’s Status in the Future

In this section, the quantitative and qualitative status of the model were predicted
in light of anthropogenic and climate change effects. The prediction period was set to be
2025 to 2055. However, some parameters, such as hydraulic conductivity, specific yield,
porosity, and longitudinal and latitudinal dispersion coefficients, were considered equal to
the historical period (2008–2018).

3.5.1. Scenario 0: Continuing the Existing Conditions

In the first step, to compare the results, the model was implemented without consid-
ering any human or climate effects, and all parameters for the observation period were
fixed for 2025 to 2055. The results indicate that in this case, the groundwater level will
decline by 2.4 m, the chloride concentration will increase by 6.8 milligrams per liter, the
sodium concentration will increase by 4.8 milligrams per liter, and the TDS concentration
will decline by 143.2 milligrams per liter. Figures 31–34 show the groundwater level, TDS,
CL−, and Na+ ions concentration changes in 2025, 2035, 2045, and 2055 in the Varamin
aquifer, respectively.

3.5.2. Scenario 1: Increase in the Extraction from Pumping Wells (25%)

In this scenario, the amount of extraction from pumping wells increased up to 25%,
15% of which returns to the aquifer as surface recharge. This increase in extraction can be
due to the increase in drinking water demand or in agricultural and industrial activities.
Under this scenario, the groundwater level will decline by 2.5 m; for the pollutants’ con-
centration, the chloride concentration will increase by 7 milligrams per liter, the sodium
concentration will increase by 5 milligrams per liter, and the TDS concentration will decline
by 153.7 milligrams per liter.

3.5.3. Scenario 2: Climate Changes

The climate change effect as considered in Scenario 2. In this area, an irrigation
efficiency of 60% was assumed, 15% of which returns to the aquifer as a return flow. In
addition, 80% of the effective rainfall feeds the aquifer. It is obvious that under the scenarios
caused by climate change, we will see more groundwater declination in comparison to
Scenario 0. Furthermore, the climatic change effects on the quality of the aquifer are
very insignificant.
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3.5.4. Scenario 3: Increase in the Incoming Effluent (TDS) to the Shoor River (50%)

In this scenario, the incoming effluent (TDS) to the Shoor River increased up to 50%.
This river is exposed to the industrial activities of the southeastern areas of Tehran Province,
since a wastewater treatment plant exists. Therefore, the concentration of TDS added to the
Shoor River was investigated. Under this scenario, the TDS concentration will decline by
130.9 milligrams per liter.

Figures 35–38 illustrate a comparison of these different scenarios for the average and
maximum changes in the study area.
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4. Discussion

The current research aimed to examine the impact of climate change and human
effects on alterations in groundwater levels within the western region of the Varamin
Plain. Additionally, the study sought to analyze changes in the concentration of certain
contaminants, namely, TDS, chloride, and sodium. The rationale behind choosing this
particular area was due to the presence of an unapproved elevated level of TDS exceeding
1000 milligrams per liter within this zone.

The modeling was carried out using GMS7.1 software under both steady and unsteady
(transient) conditions. The study conducted the steady model analysis for March 2008. At
this time, the hydraulic conductivity and surface recharge were subjected to calibration.
The calibration outcomes indicate a satisfactory concurrence between the water levels
observed and modeled. To clarify, the root mean square error for March 2008 was 1.99 m.

The transient model was also run for eight years, from April 2008 to December 2015,
during which the recharge rates and specific yield parameters were calibrated. The findings
of the calibration process indicated a very good agreement between the observed and
modeled groundwater levels. The Varamin aquifer’s groundwater level contour exhibited
a decreasing trend from the northern to the southern region, as per the observations made.
The validation process for the transient model spanned 24 months from March 2016 to
December 2017, during which a satisfactory correspondence was observed between the
calculated and observed values.

The subsequent phase of this study involved modeling the contamination transfer
in the groundwater of the Varamin Plain. A qualitative model for TDS, chloride, and
sodium was implemented on the transient model within the same period. The study
involved the calibration of various parameters, including longitudinal and latitudinal
dispersion coefficients, porosity, and surface recharge. The findings indicated a satisfactory
correlation between the concentrations that were measured and those that were simulated.
The concentration of pollutants in the Varamin groundwater aquifer exhibited a declining
trend from the western to the eastern regions, as evidenced by the pollutant concentration
contours. The model demonstrated an average increase of 2.7 milligrams per liter in
chloride concentration, an increase of 2.7 milligrams per liter in sodium concentration,
and a decrease of 40.9 milligrams per liter in TDS concentration over an 8-year simulation
period. Notably, the qualitative models underwent validation following the transient
quantitative model validation period, and the outcomes have demonstrated a reasonable
agreement between the modeled and measured values.

The final phase of this investigation entailed an examination of the impacts of climate
change and human activities on the Varamin aquifer model during the 30-year interval
from 2025 to 2055. In Scenario 0, where the parameters remain constant in the future, the
average and maximum groundwater decline at the end of the simulation period will be
2.4 and 7.2 m, respectively. The decrease in the average and maximum TDS concentrations
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are equal to 143 and 435 mg/L, respectively. Also, the average concentration of chloride
and sodium in this area increases by approximately 7 and 5 mg/L, respectively. For the
maximum values, the increase was approximately 41 mg/l for chloride and 29 mg/L for
sodium ion.

Under Scenario 1, which involved a 25% increase in pumping, the maximum draw-
down reaches 7.3 m. The average and maximum TDS concentration values decrease by
154 and 473 mg/L, while the changes in chloride and sodium concentrations follow the
same trend as Scenario 0.

For the climate change scenarios, the maximum groundwater decline was approxi-
mately 7.3 m. For the pollutants concentrations, the results were similar to Scenario 0, and
the effect of climate change was insignificant on the groundwater quality of this study area.

Finally, Scenario 3, with a 50% increase in incoming effluent (TDS) to the Shoor
River, according to industrial activities, was examined. In this scenario, the computed
average value of TDS was approximately 2208 mg/L at the end of the simulation period,
corresponding to a decrease of 131 mg/L, while the maximum change was about 328 mg/L.

5. Conclusions

In this paper, the effects of climate change and human activities on the groundwater
level and the concentration of pollutants, such as total dissolved solids (TDS), chloride,
and sodium, were investigated in the western part of the Varamin Plain. For this purpose,
four scenarios, including the current condition (Scenario 0), a 25% increase in the extraction
from pumping wells (Scenario 1), climate change effects (Scenario 2), and an increase in
the incoming effluent (TDS) to the Shoor River because of industrial activities (Scenario 3),
were investigated for a future period of 30 years (2025–2055).

The results show that under all scenarios, the concentration of chloride and sodium
will increase in the future, but the highest concentration could be observed under Scenario
1 in which the extraction from pumping wells exceeds 25%. Also, the groundwater decline
was the most severe under this scenario. The effect of climate change on the concentration
of all three pollutants was insignificant.

For the TDS concentration, the decreasing trend observed in the historical period
continues in the future for all scenarios. However, under Scenario 3 the lowest decline and
under Scenario 1 the highest decline are shown in the simulations.

It should be noted that in this study, there are factors that cause uncertainties which can
be categorized into three groups: first, difficulty in predicting the future temperature and
precipitation according to the accuracy of the GCM model, the selection of predictors, and the
linear relationships between the predictands and the list of predictors; second, the uncertainties
exits in the calibration of both the models of MODFLOW and MT3DMS due to the insufficiency
of field data in some parts of the plain; and, third, evaluating the response of the aquifer to both
the recharge and discharge according to the different components which could alter during
the future period (e.g., land use, crop pattern, number of pumping wells, etc.). Because of the
uncertainties explained above, the downscaling method should be applied for any other study
area, and the set of predictors according to those stations should be selected. However, the
results and the set of predictors could be considered as guidelines. It should be stated that the
GCM model used in this study should be compared to other models in other areas.
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