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Abstract: This overview presents the different water masses present in the various primary and
secondary marine regions of the Mediterranean Sea and Black Sea, providing information on their
main physical characteristics (i.e., temperature, salinity, density), the water depths at which they have
been observed and the processes involved in their formation. There is a characteristic difference in the
overall hydrology of the Mediterranean Sea compared to the Black Sea, in terms of the number and
characteristics of water masses and their formation processes, although they form a single (integrated)
marine system. This difference is explained by the limited communication between the two seas
through the Sea of Marmara and its straits (the Dardanelles and Bosporus) and by the fact that the
Mediterranean Sea is a condensation basin while the Black Sea is a dilution basin; therefore, the
deficit of water in the former is compensated by the inflow of Atlantic waters, while the surplus
in the latter outflows to the Aegean Sea. In total, 21 different water masses have been identified in
the Mediterranean Sea (excluding the Straits of Gibraltar and the Sea of Marmara) compared to the
5 water masses identified in the Black Sea (excluding the Sea of Azov). This large number of water
masses is attributed to coastal morphology (i.e., presence of straits) and submarine relief (i.e., deep
basin separated by shallow sills) and different formation processes.

Keywords: Alboran; Adriatic; Ionian; Levantine; Aegean; Marmara; marine regions; temperature;
salinity; density

1. Introduction

The Mediterranean Sea (MED) and Black Sea (BLS), although they belong to a single
(integrated) marine system, are characterised by much different hydrological regimes, being
the combined outcome of their differences in terms of: (i) water balance that is negative
for MED (−500 ± 100 mm/y) and positive for BLS (+850 mm/y) [1]; (ii) air-sea interaction
processes (i.e., heat exchange, wind stress), (iii) internal dynamic processes (e.g., buoyancy
fluxes); and (iv) the influence of the irregular seabed and coastal morphology associated
with the presence of narrow passages and straits with shallow sills that control the exchange
of water masses between the various sub-basins.

The overall circulation pattern of the surface, intermediate and deep waters in the
MED is quasi-cyclonic, being associated primarily with [2–9]: (i) surface waters (upper
100–200 m) of Atlantic origin, which flow eastwards; (ii) intermediate waters (200–1000)
formed in the Levantine basin and flowing westwards; and (iii) bottom waters (>1000),
whose presence and renewal is the result of dense water formation processes (Figure 1).

The circulation pattern of the upper water masses of the BLA (Black Sea main basin) is
also cyclonic with the presence of the peripheral Rim Current, a rather unstable cyclonic
system with baroclinic and frontal instabilities [10–15] and two semi-permanent cyclonic
gyres in its central part (Figure 1). Regarding deep-water circulation beneath the permanent
pycnocline, Markova [16] revealed the presence (quasi-periodically in spring and summer)
of anticyclonic counter currents along the northeastern continental slope at depths of about
1000 m and a number of mesoscale (of the order of several tens of kilometres) cyclonic
eddies and anticyclonic deep-water vortex structures.
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Figure 1. Principal water masses and generalised patterns of circulation (black arrows) in the BLS
(right image) and MED (left image) basins (modified from [1]) [AW: Atlantic Water; MAW: Modified
Atlantic Water; LIW: Levantine Intermediate Water; WMDW: Western Mediterranean Deep Water;
EMDW: Eastern Mediterranean Deep Water; BSSW: Black Sea Surface Water; BSCW: Black Sea Ciastak
Water; CIL: Cold Intermediate Layer; BSIW: Black Sea Intermediate Water; and BSDW: Black Sea
Deep Water] (modified from [1]).

The first publications of the water masses of both the Mediterranean Sea and Black
Sea commenced in the 1960s based on the analysis of CTD cruise data, which intensified in
the 1990s. Moreover, since the beginning of the 21st century, publications have incorpo-
rated the outputs of mathematical simulations and remotely sensed data, whilst during
the past two decades, additional data have been provided by sea-gliders (ARGO floats)
(e.g., [16–18]). Usually, past investigations were restricted either to major marine regions
of the Mediterranean such as the Western Mediterranean and the Eastern Mediterranean,
and/or to secondary ones such as the Aegean Sea, and the Adriatic Sea. In the case of
the Black Sea, although there have been works referring to specific parts of it (e.g., the
north-western sector, the southern sector along the Turkish coast) only since 2000 and
onwards have there been works concerning the entire basin.

The present overview, based on an extensive collection of published data and in-
formation, aims to provide a conclusive picture of the various water masses in both the
Mediterranean Sea and the Black Sea, which, although forming a single (integrated) marine
system, have been studied independently (partly for geopolitical reasons). Here, we present
not only the main characteristics of the various water masses and their formation processes,
but also provide their geographical allocation in the four primary and ten secondary marine
regions of the two seas, a brief description of which follows in Section 2.

2. Physico-Geographical Setting

The Mediterranean Sea can be divided into its primary marine regions [19,20], the
Western Mediterranean basin (WMED), the Central Mediterranean basin (CMED) and
the Eastern Mediterranean basin (EMED), while the Black Sea (BLS) includes only one
primary marine region (Figure 1). The sea limits between the WMED and the CMED were
determined by the International Hydrographic Office [21], whilst the limit between the
CMED and EMED was identified partially by the IOC (i.e., NW promontory of Crete and
Greek Mainland), Carter et al. [19] and Jensen et al. [20] (i.e., southwest end of Crete to
Libya), as described by Poulos [1]. Moreover, the Marmara Sea, which connects the MED
with the BLS, although according to the International Hydrographic Office [21] does not
belong to the MED, was considered part of the MED in several environmental studies
(e.g., [1,22–25]).
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The MED (including the Sea of Marmara) occupies an elongated, irregular deep
depression (Figure 2), with a sea surface area of 2530 × 103 km2 and a water volume of
3.88 × 106 km3 (Table 1). Its average depth is 1544 m, whilst its deepest point is 5267 m.
The MED shelf occupies 16.5% of the seafloor, while >40% of it is deeper than 2000 m.
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Figure 2. Generalised bathymetry and the primary marine regions of the Mediterranean Sea and
Black Sea. Brown are indicates the continental shelf (modified from [1]).

The BLS (Black Sea and the Azov Sea) has a surface area of 463,509 km2 and a vol-
ume of 550 × 103 km3 (Table 1). According to EMODnet [26], its maximum depth is
2590 m (or 2245 m according to the encyclopaedia of Ukraine), occurring in the Euxine
abyssal plain. The BLS shelf occupies 32% of the seafloor, while >58.5% of it lies at water
depths >1000 m [27].

Table 1. Physiographic characteristics of the Mediterranean Sea (MED) and Black Sea (BLS) (data
abstracted from [27]).

GIBR. ST. MED MED (excl. MAR) BLS

Sea surface area (SS in km2) 1630 2,530,148 2,518,261 463,509
Depth mean/maximum (m) 365/900 1544/5267 1539/5267 1195/2590
Volume (V in 106 km3) 0.0006 3.88 3.87 0.55

The three primary marine regions of the MED (WMED, CMED and EMED) are sub-
divided into secondary marine regions, originally by Cruzado in 1985 [28] and subse-
quently by UNEP/MAP/MED POL [22], Ludwig et al. [24], Woodward [29], Coll et al. [30],
UNEP [22] and Poulos [1] (Figure 3). Thus, the WMED includes the Alboran (ALB), West
(WEST) and Tyrrhenian (TYR) Seas, the CMED consists of the Adriatic (ADR) and CIN
(Central-Ionian) Seas and the EMED encompasses the Levantine (LEV), Aegean (AEG) and
Marmara (MAR) Seas (Figure 1). The BLS also includes two distinct marine regions: the
Black Sea (BLA) and Azov Sea (AZOV), with their sea limits also being set by IHO [21].
In the Tables A1–A4 in Appendix A, the main physico-geographical characteristics of the
secondary marine regions of mentioned above are presented.
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Figure 3. Map showing the secondary marine regions of the Mediterranean and Black Seas (ALB:
Alboran; WEST: Western Mediterranean; TYR: Tyrrhenian; ADR: Adriatic; CIM: Central-Ionian
Mediterranean; LEV: Levantine; AEG: Aegean; MAR: Marmara; BLA: Black Sea (main basin) and
AZOV: Azov Sea).

3. Water Masses

The water masses of the Mediterranean and Black Sea are examined in relevance to
their presence in the three primary marine regions of the Mediterranean (WMED, CMED,
EMED), the Black Sea (BLS), and the Strait of Gibraltar through which the water exchange
between the Mediterranean and the Atlantic Ocean takes place.

3.1. Strait of Gibraltar

In the straits of Gibraltar there are two oppositely flowing water masses: (i) the upper
(surface) water mass of Atlantic origin entering the Mediterranean Sea and (ii) the lower
(near seabed) water mass outflowing from the Mediterranean Sea.

Atlantic Water (AW): This water enters the Mediterranean Sea (the Alboran Sea) through
the Gibraltar Strait, occupying the upper 100 m of depth (west end of Gibraltar strait) with
mean annual ranges of potential temperature θ ∼= 10–16 ◦C, salinity S ∼= 34.9–36.5 and density
σθ

∼= 26.87–26.90 kg/m3 (Argo-floats data from [31]); Bergamasco and Malanotte-Rizzoli [32]
have given values of θ = 14–16 ◦C and S = 36.0–36.5. The inflow of Atlantic Water (AW)
has been estimated to range from 0.72 Sv [33] to 1.01 Sv [34] with most calculations on the
order of 0.72–0.92 Sv (e.g., [35,36]). The different ranges of the water flux are explained
by the different periods and methods of calculations; the latter refers to the Mediterranean
water balance, rates of evaporation/precipitation (salt content) and the applied hydrody-
namic models simulating the two oppositely flowing water layers. Moreover, regarding
ongoing climate change, Fedele et al. [37] found a clear increase in the annual trend in salinity
(~0.007 ± 0.140/y) and temperature (0.026 ± 0.715 ◦C/y) over the last two decades.

Mediterranean Outflow Water (MOW): This water mass flows along the Gibraltar
Strait, as a sub-surface water mass, into the Atlantic Ocean at a depth of 800–1000 m having
a mean temperature of about 13.1 ◦C and a salinity of 38.4 (for the years 2005–2014; after
García-Lafuente et al. [38]). The MOW is mainly composed of the LIW and WMDW, with
minor contributions from other intermediate (e.g., WIW) and deep (TDW) water masses [39].
Estimates of the Mediterranean outflow vary from 0.67 Sv [40] to 0.85 Sv [36], with most
of the estimates ranging between 0.76 Sv and 0.82 Sv [38]. Moreover, based on velocity
data (2004–2020) from the westernmost Camarinal sill of the Strait of Gibraltar, a discharge
value of 0.847 ± 0.129 Sv with a slight decreasing trend of 0.017 ± 0.003 Sv/decade was
provided by García-Lafuente et al. [38].

In Table 2, the physical characteristics of the aforementioned water masses are presented.
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Table 2. Temperature (θ, potential), salinity (S), practical density (σθ , for potential temperature) and
depth of the water masses (W.M.s) in the Strait of Gibraltar.

W.M.s θ (◦C) S σθ (kg/m3) Depth (m) Ref.

AW 14–16
10–16

36.0–36.5
34.9–36.0

26.5–27.0 <100 [32]
[31]

MOW 12.95–13.15
11–12

38.48–38.50
ca. 36.0

ca. 28.999 >700 [38]
[31]

3.2. Western Mediterranean (WMED)

The hydrological conditions in the marine region of the Western Mediterranean
(WMED) are primarily configured by (e.g., [2,3,5]): (a) the influx of Atlantic Water through
the Strait of Gibraltar; (b) the influx at intermediate depths of the more saline waters
originating from the Eastern Mediterranean (EMED); (c) the formation of intermediate
waters within the Provençal and Tyrrhenian basins; (d) the formation of dense water masses
primarily along its northwestern continental margin; (e) the sea bed topography (i.e., sills
and depressions); and (f) decadal and/or seasonal variability in characteristics induced by
climate change and/or variability trends. A brief description of the formation and spatial
extent of water masses within the EMED are described below and divided into surface,
intermediate, and deep waters.

3.2.1. Surface Waters

The surface water masses observed in the WMED marine regions are represented by
Modified Atlantic Water, which is the result of AW transformation during its
eastward movement.

Modified Atlantic Water (MAW): Atlantic Water (AW) moving eastwards is progres-
sively modified due to air-sea interaction (i.e., evaporation) and by mixing with underline
waters, thus becoming saltier and warmer. In this context, temperature (14.01–15.08 ◦C)
and salinity (37.26–37.79) in eastern ALB M.R. [41] reach temperature and salinity values at
the Sicily Strait equal to θ = 16.1 ◦C and S = 38.72–38.81 ([42], for 1995–2000). Moreover, this
increase in salt content makes MAW denser, with the salinity core progressively sinking
to greater water depths; the latter process also reduces air-sea interaction processes [37].
Therefore, MAW is present in the three marine regions of the EMED (i.e., ALB, WEST and
TYR), with slightly different values of temperature and salinity (Table 3).

3.2.2. Intermediate Water Masses

The intermediate water masses include the Levantine Intermediate Water (LIW) orig-
inating from the EMED M.R, the Western Intermediate Water (WIW) (formerly Winter
Intermediate Water) that is formed within the WEST M.R., and the Tyrrhenian Intermediate
Water (TIW) formed within the TYR M.R.

Levantine Intermediate Water (LIW): Levantine Intermediate Water is formed in the
homonymous basin of the EMED M.R., after which it enters the WMED M.R. through the
Strait of Sicily-Tunisia at water depths of 100–200 m, having θ < 13.8 ◦C and S = 7.9–38.2 [42].
In the WEST M.R., the core of the LIW has been detected at water depths of 200–600 m,
having general temperatures of (13.0–14.2 ◦C), salinity of (38.4–38.8) and density of (29.0–
29.10 kg/m3) (e.g., [43–45]). The properties of the LIW differ among the WEST, TYR
and ALB marine regions due to mixing processes taking place during its westward trans-
portation. Thus, the LIW, with θ = 14.07 and S = 38.85 in the WEST M.R. [46], in the
eastern part of the ALB M.R. attains values of θ = 13.23 and S = 38.5 [47], while after
both regions’ entrance into the TYR M.R., their respective ranges are θ = 14.0–14.6 ◦C and
S = 38.5–38.8 ([48]: ARGO Floats 2004–2017).

Western Intermediate Water (WIW): This water mass is observed below the MAW
and above the LIW (e.g., [3,49]). It is produced under cold winter conditions in the Gulf
of Lions, in the Catalan basin [50] in the Ligurian Sea [51], and at lower latitudes along
the Spanish continental shelf (down to Cape Palos) [41]. Its potential temperature and
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salinity values are on the order of θ = 11.5–13.0 ◦C and S = 37.7–38.3, respectively [41]. In
addition, from 2011 to 2015, Juza et al. [52] identified an increasing trend in temperature
and salinity on the order of θ = 0.07–0.15 ◦C/y and S = 0.003–0.040/y, respectively. The
WIW, having similar characteristics to TIW (as shown in the next paragraph) and being
also formed by winter convection within the Tyrrhenian basin [48], could not be identified
in TYR M.R. On the other hand, WIW was identified in the ALB, having maximum values
of θ = 13.1–13.2 ◦C (at water depths of 200–400 m) and S = 38.50–38.52 at water depths of
300–500 m [53].

Tyrrhenian Intermediate Water (TIW): Tyrrhenian Intermediate Water is also pro-
duced by winter convection within the TYR, as in the case of WIW, and more specifically in
its central part, where the presence of the Bonifacio dipole of circulation mixing induces a
homogenization of the water column down to a depth of about 400 m (e.g., [54–56]). TIW
is placed in between the MAW and the LIW waters at depths of 100–200 m. Although the
TIW presents some differences in temperature and salinity between its northern and south-
ern sectors, its temperature and salinity range on the order of 13.9–14.4 ◦C and 38.1–38.3,
respectively (Argo floats 2004–2017; after Iacono et al. [48]). Moreover, the outflow of TIW
in the Algero-Provensal basin (WEST M.R.) is known to have a strong influence on the
hydrology and circulation of the WEST marine region (e.g., [57]); although the maximum
values of the TIW outflow during winter can exceed 1.5 Sv, during summer, they remain
very low [58].

3.2.3. Deep Waters

The major deep water masses in the WMED M.R. are: (i) the Western Mediterranean
Deep Water (WMDW) and (ii) the Tyrrhenian Deep Water (TDW) within the TYR M.R.

Western Mediterranean Deep Water (WMDW): These waters, as said earlier, are one
of the principal water masses of the western Mediterranean Sea that fill its deeper part
(>1000–1200 m), having an average potential temperature of 12.5–14.5 ◦C and a salinity of
S = 37.7–38.6 [59]. WMDW is mainly formed within the cyclonic gyre of the Gulf of Lions
by open sea convection; the latter is associated with the presence of strong northerly winds
(Mistral), which induce excessive heat loss reaching 1000 W/m2. The diameter of the cy-
clonic gyre typically ranges from a few 10ths of km to 100 km, while it can extend vertically
down to the sea bottom (~2400 m depth). The newly formed water has a typical σθ of about
29.10 kg/m3, while its formation rate is estimated to be about 0.3 Sv [60]. In addition, dense
waters (formed over the continental shelf) flow as a strong near-bed gravity current along
the continental slope to a depth with surrounding waters of similar density. The volume of
produced dense waters differs substantially from year to year. For example, during the very
harsh winters of 2004–2005 and 2005–2006, large volumes of warmer (θ = 12.85–12.88 ◦C),
saltier (S = 38.45–38.47) and thus denser (σθ = 29.10–29.12 kg/m3) waters were formed in
the Gulf of Lions and, being denser than the pre-existing WMDW, reached the seafloor [6];
the latter process caused an extensive renewal of the WMDW between 2004 and 2006.
These major events in the mid 2000’s have been associated with the Western Mediterranean
Transient (WMT) [61–63]; the latter was the result of the hydrological changes related to
the Eastern Mediterranean Transient (EMT) (e.g., [61–63]). During this event, saltier and
warmer intermediate waters inflowed through the Sicily Strait [64]. This was a consequence
of dense water formation in the Aegean Sea from 1988 to 1995 that had led to the most
significant intermediate-to-deep water overturning perturbation in the EMED [65]. The
seawater properties (θ, S) of deep waters (WMDW) present pretty similar values in the
WEST and ALB (Table 3), while in the case of TYR, they are represented by the Tyrrhenian
Deep Water (see below).

Tyrrhenian Deep Water (TDW): This water is present above the WMDW [66], having
slightly higher temperature (about 0.2 ◦C) and salinity (about 0.03) than that of the WMDW,
when generally TDW has temperature and salinity on the order of 12.75–12.85 ◦C and
38.42–38.46, respectively [67]. This local water mass is produced from the mixing of:
(a) waters of eastern origin inflowing through the Sicily Strait and probably being related to
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EMT; (b) waters of western origin, inflowing through the Sardinia Channel; and (c) resident
(pre-existing) deep waters [49]. However, Fuda et al. [68] have argued that TDW might
be the result of a dense water formation process taking place to the east of the Bonifacio
Strait. TDW is exported into the western part of the WEST through the Sardinia Channel,
wherein is mixed with the WMDW [53]. On the basis of hydrographic data collected during
Nov./2006, Feb./2007, Apr./2007, June/2007, Feb./2008 and Jan./2009, the water column
of the TYR between 600 m and 2500 m exhibited an increasing trend in temperature and
salinity at a mean rate of θ = 0.025 ◦C/y and S = 0.0075/y, respectively, compared to the
findings in earlier studies. This change has been associated with and is most likely due to
the downward transfer of excess heat and salt from intermediate water depths [69].

In Table 3, the physical characteristics of the aforementioned water masses are pre-
sented for the different marine (secondary) regions of the EMED.

Table 3. Temperature (θ, potential), salinity (S), practical density (σθ , for potential temperature) and
the depth of the water masses (W.M.) existing in the Western Mediterranean (WMED).

W.M. θ (◦C) S σθ (kg/m3) Depth (m) Ref.
Alboran M.R.

MAW >15.0
14.01 ± 0.33–15.08 ± 0.47

36.60
37.26 ± 0.24–37.79 ± 0.22 <27.425 0–150/200 [47]

[70]
WIW 13.30 ± 0.12 38.23 ± 0.10 [70]

LIW 13.23
13.13 ± 0.02

38.50
38.49 ± 0.01 29.06 200–600 [47]

[70]

WMDW 12.90
12.97± 0.01

38.48
38.48 ± 0.04 28.74 >600 [47]

[70]
West M.R.

MAW 16.16 36.61 26.95 0–50 [46]
WIW 11.5–13.0 37.7–38.3 28.78–28.72 100–300 [70]
LIW 14.07 38.85 ≈29.15 300–600 [46]

12.5–14.5 37.8–38.6
12.86 38.46WMDW

12.70–12.75 38.40–38.44 20.09–29.11

>1000
1480

[59]
[46]
[68]

Tyrrhenian M.R.
MAW 15.0–18.0 36.2–38.2 26.74–27.72 0–150 [48]
TIW 13.9–14.4 38.1–38.20 100/150–200/300 [48]
LIW 14.1–14.7 38.4–38.8 28.82–28.97 200–700 [48]

TDW 12.75–12.85
13.3–13.8

38.42–38.46
38.45–38.8 700–1500 [67]

[48]

3.3. Central Mediterranean (CMED)

The water masses that make up the hydrography of the central part of the Mediter-
ranean Sea are mainly distinguished, due to seafloor relief, into those attributed to the
shallow Adriatic marine region (ADR) and those present in the deep Central-Ionian (CIM)
marine region.

3.3.1. Surface Waters

Surface waters in CMED include: (i) the Modified Atlantic Water (MAW) inflowing from
the WMED through the Sicily Strait; (ii) the Surface Ionian Water (SIW) occupying the CIM
M.R.; and (iii) the surface water mass of the ADR (AdSW: Adriatic Surface Water).

Modified Atlantic Water (MAW): The relatively fresher (S = 36.8–37.5) and colder
(13.85–15.0 ◦C) Modified Atlantic Water (MAW) enters the CMED M.R. via the Sicily Strait
(e.g., [42,71]) and thence, a branch of the MAW moves northwards towards the ADR M.R.,
occupying the northern part of the CIM. Another branch moves eastwards towards the
south Cretan Passage.

This circulation pattern of MAW is also related to the presence of the Ionian Gyre,
whose direction changes occasionally. Thus, during the EMT (approximately from
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1987 to 1997), a transition from a cyclonic to an anticyclonic circulation pattern took place in
the CIM (e.g., [72,73]). During this period, the northward movement towards the Southern
Adriatic of the MAW was enhanced whilst at the same time the eastward flow towards the
Cretan Passage weakened (e.g., [74,75]). After 1997, when again a cyclonic circulation was
established ([73,76,77]), the northward flow of MAW weakened, inducing both salinization
of the northern CIM marine region and an enhancement of its eastward transport. Interest-
ingly, a third reversal from the cyclonic to anticyclonic mode took place in 2006, as shown
by altimeter data analysis [78].

In the CIM M.R., generally, MAW temperatures (potential) vary between 15 ◦C and
17 ◦C, while salinities are <38.6 [71]. Moreover, seasonal atmospheric changes (i.e., exchange
of heat fluxes) make the physical properties of the MAW vary substantially; for example,
in July/2004, May/2005 and Oct./2005, temperatures and salinities varied in the range of
T = 15–20 ◦C and S = 38.40–38.73 [79].

Ionian Surface Water (ISW): This water mass occupies the north-east sector of the CIM
M.R., being the result of mixing between the Levantine Surface Water (LSW) inflowing
through the Cretan Straits, the MAW entering through the Sicily strait, and the colder
and fresher Adriatic Surface Water (AdSW) that enters through the Otranto Strait [72].
Apart from mixing processes, ISW is subjected also to seasonal atmospheric changes
(i.e., exchange of heat fluxes) that are associated with a relatively wide range of temperature
(18–23 ◦C) and salinity (38.77–38.93) as found during cruises in July/2004, May/2005 and
Oct./2005 [79].

Adriatic Surface Water (AdSW): The formation of the AdSW is associated with: (a) large
amounts of freshwater (riverine) inputs [80] along with groundwater influxes [81]; (b) the
advected ISW through the Otranto straits and its subsequent mixing with the previously
mentioned water masses; and (c) surface heat loss (some 19–22 W/m2/y [82]) that leads to
a seasonally unbalanced content of salt and heat. According to Ruso and Artegianni [83]
and for the period 1947–1983, the winter temperatures of surface waters vary from <11.5 ◦C
(Northern Adriatic) to 11.5–13.5 ◦C (Middle Adriatic) and >13.5% (South Adriatic), while
salinity values are <38.0 in the North Adriatic, 38.0–38.5 in the Middle Adriatic and 38.3–38.6
in the South Adriatic. The above trends of temperature and salinity are attributed to the
reduced influence of the freshwater inputs in the Southern Adriatic and the advection of
more saline waters through the Otranto Strait.

3.3.2. Intermediate Waters

The main water masses in the CIM M.R. present at intermediate water depths are:
(i) the Levantine Intermediate Water (LIW); (ii) the Cretan Intermediate Water (CIW) formed in
the Cretan basin; and (iii) the Transitional Mediterranean Water (TMW).

Levantine Intermediate Water (LIW): Levantine Intermediate Water is formed in the
homonymous sea of the EMED M.R. and enters the CIM M.R. mainly through the South-
ern Cretan Passage (Crete-Libya) at water depths greater than 200–300 m. Moreover, the
presence of LIW in deeper waters, compared to those in LEV, is explained by its increased
density obtained during its westward transport; this decrease in temperature is compen-
sated by the parallel decrease in salinity. LIW attain values of θ = 14–15 ◦C, S ≥ 8.8 and
σθ = 29–29.1 [71]. After LIW enters the ADR M.R., mainly through the eastern part of
the Otranto Strait, it flows toward the North Adriatic Sea along its eastern coastline [84],
having θ = 13.5 ◦C and S = 38.5–23.86 [85]. LIW water masses are observed mainly in the
Middle and Southern Adriatic, while after mixing with the fresher and colder AdSW, they
outflow into the CIM M.R, being traced at water depths of about 400 m in the eastern Ionian
Sea [86,87].

Cretan Intermediate Water (CIW): In the CIM M.R. above the LIW and below the
surface waters (under the pycnocline) lies the mass of CIW. It is justified by a salinity
maximum, which is located between 150 m and 300 m. The CIW inflow from the Cretan
Sea (South Aegean) where it is formed has θ = 14.8–15.3 ◦C, S = 38.9 and is slightly less
dense (σθ ≤ 29 kg/m3) than the underlying LIW [88].
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Transitional Mediterranean Water (TMW): In addition to the aforementioned water
masses in the CIM M.R., in between the LIW and the EMDW and at water depths from
400 m to 600 m (or even 800 m) there is the mass of TMW with θ = 13.75–14 ◦C and
S = 38.71–38.80 (July/2004, May/2005 and Oct./2005, after Budillon et al. [79]). The TMW
is formed by the mixing of the basin’s deeper intermediate water masses and the upper
layer of the deep water masses (i.e., EMDW). The occurrence of TMW is also associated
with EMT periods, during which about 20% of the pre-existing EMDW (mostly of Adriatic
origin) is replaced by dense waters that originate from the Aegean (Cretan) Sea [54].

3.3.3. Deep Waters

The deep water masses of CMED M.R., as in the case of surface and intermediate
water masses, are differentiated to those located in (a) the ADR M.R. and (b) the CIM. Deep
waters in ADR M.R. are represented by the Adriatic Deep Water (ADW) while those in CIM
M.R. include the masses of the Cretan Deep Water (CDW) that is advected from the Cretan
Sea, and the Eastern Mediterranean Deep Water (EMDW).

Adriatic Deep Water (ADW): This water mass is very important as it represents the
main source of the dense waters comprising the Eastern Mediterranean bottom waters
(EMBWs) (e.g., [89–91]). A certain amount of the Adriatic bottom waters formed in the
northern sub-basin of ADR, i.e., the NAdDW (North Adriatic Deep Water), have low
temperature (about 11.35 ◦C), relatively low salinity (38.3) and high density (σθ > 29.2).
The formation of NAdDW starts in December with the preconditioning phase consisting
of: (i) riverine freshwater flux, (ii) heat flux exchanges and (iii) the advection of saline
waters from the middle and southern Adriatic Sea (e.g., [92–96]). During January and
February, when the northeastern bora wind blows over the Northern Adriatic causing
strong evaporation and cooling within a few days, the already homogenised water column
to a depth of about 30 m continues to lose heat, forming a certain quantity of NAdDW [97].
The characteristics of the newly formed NAdDW vary significantly from year to year
according to the meteorological and oceanographic conditions prevailing during the winter
period. In addition, dense waters are present in the Middle (Central) Adriatic all the year at
the bottom of the Pomo Pits (about 270 m deep) below the depth of the Pelagosa Sill (about
170 m depth), which separates the Pomo Pits from the north Adriatic, having slightly higher
temperature (11.62 ◦C) and salinity (38.47) than those of the North Aegean. An amount of
the waters of Adriatic origin are advected to the mid-Adriatic, flowing along the western
side of the ADR M.R. They subsequently invade the Pomo Pits in spring, renewing the
pre-existed MAdDW. However, most of the Adriatic bottom waters (about 82% according
to Mantziafou and Lascaratos [98]) formed in the southern Adriatic sub-basin ([85,90,99])
and are named South Adriatic Deep Water (SAdDW); it is warmer (θ = 13.61 ◦C) and saltier
(S = 38.61) than the NAdDW and MAdDW. The formation processes of SAdDW are quite
different compared to those of the NAdDW. SAdDW is formed in the winter through open
ocean convection, inside the south Adriatic Pit (depths > 1200 m)—to the south of the
Palagruza sill (depths < 200 m)—where a cyclonic gyre is nearly permanently present,
and mixing subsequently with LIW. The outflow of the dense Adriatic waters through the
western part of the Otranto Strait [100] are on the order of about 0.3 Sv [90]. The amount of
outflowing ADW might be enhanced during dense-water-productive years (e.g., 0.33 Sv
in 1975/76) or lowered during dense-water-non-generative years (e.g., 0.14 Sv over the
1976–1980 interval after [87]).

Cretan Deep Water (CDW): It forms within the Cretan basin via processes of deep-
water formation (see Section 3.4.1.3) and enters the CIM M.R. via the southwest Aegean
passage (Crete-Antikythira-Kythira-Peloponnese) mainly during periods of manifestation
of EMT. The physical characteristics of the CDW in the CIM M.R. during the cruises of
7/2004, 5/2005 and 10/2005 were θ = 13.2–13.6 ◦C and S = 38.70–38.77 [79].

East Mediterranean Deep Water (EMDW): It is present below the CDW (water
depths > 1200 m), characterised by a mean temperature of 13.2–13.6 ◦C and salinity of
38.70–38.77 in July/2004, May/2005 and Oct./2005 [79]. The largest part of the EMDW
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forms after mixing with the denser (about 29.24 kg/m3) ADW, whose temperature and
salinity during the above-mentioned cruises was θ = 13.5–13.7 ◦C and S = 38.66–38.76. The
EMDW is also the result of a mixture between pre-existing water masses (old-EMDW) and
the inflowing water mass from the ADR (ADW) and from the Cretan Sea (CDW) [72].

In Table 4, the physical characteristics of the aforementioned water masses are pre-
sented for the different marine (secondary) regions of the CMED M.R.

Table 4. Temperature (θ, potential), salinity (S), practical density (σθ , for potential temperature) and
the depth of the water masses (W.M.) existing in the Central Mediterranean (CMED).

W.M. θ (◦C) S σθ (kg/m3) Depth (m) Ref.
Central-Ionian Mediterranean M.R.

ISW 18.0–23.0 38.77 (w)-38.93 (s) 27.94–26.92 0–50 (?) [79]
MAW 15.0–20.0 38.4–38.73 28.60–27.61 30–100 [79]
CIW 14.8–15.3 38.77–38.93 27.56–28.94 100–200 [79]

LIW 14.0–15.0
14.5

38.9–39.0
38.75–38.89

29.0–29.1
28.98–29.09 200–600

[88]
[79]

TMW 13.75
13.5–13.6

38.75
38.66–38.76

29.14
29.13–29.18 400–600/800 [88]

[79]
CDW 13.2–13.6 38.70–38.77 29.22–29.19 ca. 700–900 [79]

EMDW 13.60
13.04

38.70
38.70

29.14
29.25 >1000 [76]

[88]
Adriatic M.R.

NAdSW
MAdSW
SAdSW

<11.5
11.5–13.5

>13.5

<38.0
38.0–38.5
38.3–38.6

<29.02–>29.08 0–ca. 50 [83]

LIW 13.5 38.5–38.6 ≈29.04 [83]
ADW 11.35–13.16 38.3–38.6 29.28–29.15 [83]

Note: Ref. [79] refers to the periods July/2004, May/2005 and Oct./2005; Ref. [83] refers to the period 1947–1983;
(w): winter period; (s): summer period; ca.: circa (about).

3.4. Eastern Mediterranean (EMED)

The water masses of the EMED present pronounced differences between the three
secondary marine regions (LEV, AEG and MAR) due to complex oceanographic processes
and their irregular seabed morphology. For this reason, the surface, intermediate and deep
water masses are presented separately for each marine region.

3.4.1. Levantine M.R.

The LEV marine region from the oceanographic point of view can be distinguished
in the main Levantine basin to the east of 26.5 ◦E longitude and the south Cretan Passage,
i.e., the marine area located between the south coast of Crete Island and the African coast.
The LEV M.R. includes: (i) the surface water masses represented by the Levantine Surface
Water (LSW) and Modified Atlantic Water (MAW); (ii) the intermediate water masses repre-
sented by the Levantine Intermediate Water (LIW) and the Transitional Mediterranean Water
(TMW); and (iii) the deep water masses represented by the Cretan Deep Water (CDW) and
the East Mediterranean Deep Water (EMDW).

3.4.1.1. Surface Waters

There are two main water masses in the LEV M.R.: (i) Modified Atlantic Water (MAW)
and (ii) Surface Levantine Water (LSW).

Modified Atlantic Water (MAW): It enters the LEV through the southern Cretan pas-
sage, occupying mainly the western part of the LEV, i.e., in between Crete Isl. and the
African coast. MAW extends to water depths up to 100 m with S ≤ 38.89 and variable
temperatures on an annual and seasonal basis. For example, in April 2016, the MAW at
approximately 50 m of water depth had θ = 17–23 ◦C and S ≤ 38.9 [101], when the average
temperature during summer in the central part of the Levantine basin was 18.22 ± 1.39 ◦C.
Moreover, Ozer et al. [102] for the period 1979–2014 identified in the Levantine basin an
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increasing trend of temperature and salinity, with rates on the order of T = 0.12 ± 0.07 ◦C/y
and S = 0.008 ± 0.006/y.

Surface Levantine Water (LSW): MAW flowing eastwards undergoes continuous trans-
formation due to evaporation, heating, and eddy formation-decay [103], resulting in the
formation of the highly saline (≥39.0) LSW with temperatures > 17 ◦C [104]. It occu-
pies most of the main Levantine basin (to the east of Crete), extending to water depths
of between ca. 50 m (in summer) and ca. 100 m in winter (e.g., [103,105]. Tempera-
tures vary considerably on a seasonal basis, obtaining values of 16.2 ± 0.4 ◦C (in winter),
19.16 ± 0.34 ◦C (in spring) and 24.05 ± 2.3 ◦C (in summer) according to Ozsoy et al. [105].
Moreover, temperature and salinity show a slight increasing trend from 1979 to 2014, with
annual rates on the order of θ = 0.04 ± 0.05 ◦C/y and S = 0.005 ± 0.006/y [102].

3.4.1.2. Intermediate Waters

The intermediate waters in EMED include: (i) the Levantine Intermediate Water (LIW),
which is a principal water mass, not only for the EMED but for the entire Mediterranean
Sea; and (ii) the Transitional Mediterranean Water (TMW) in association with the periods
of EMT.

Levantine Intermediate Water (LIW): It is formed when the saline LSW, due to intense
evaporation during summer, cools down during winter from the dry northerly winds and
sinks to intermediate depths from ca. 130 m to 350 ± 50 m ([43,104,105]); this process
usually takes place as LSW reaches the Rhodes Gyre [106]. Moreover, the formation of LIW
may also occur along the continental margins of the Levantine basin [105]. The typical
values of salinity are on the order of 38.74–39.20 and those of temperature (potential) of
15–17 ◦C ([43,60]). More recently, during the cruises in April /2016 and July/2016, the LIW
core (found at approximately 125 ± 40 m) had θ = 16.20 ± 0.6 ◦C and S = 39.09 ± 0.05 [101].
Moreover, temperatures and salinities show an increasing trend between 1979 and 2014,
with mean annual rates on the order of θ = 0.03 ± 0.02 ◦C and S = 0.005 ± 0.003 [102].

Transitional Mediterranean Water (TMW): It is present at water depths of
600–1200 m [101] with a mean potential temperature of about 13.6 ◦C and salinity of 38.74–38.76;
these values (θ, S) correspond to a potential density (σθ) of 29.17–29.19 kg/m3 [105]. Addition-
ally, Vervatis et al. [107] during the winter surveys of 2005 and 2006 identified the core of TMW
at a depth of 750 m to have θ = 14.2 ◦C, S = 38.92 and σθ = 29.18 kg/m3. The formation of
TMW is analogous to that described in the case of the CIM M.R., i.e., the mixing of LIW with
the basin’s deep water masses (EMDW and CDW) during periods of dense water formation
in the AEG and outflowing to the LEV during periods of East Mediterranean Transient.

3.4.1.3. Deep Waters

The deep water masses in LEV are represented by: (i) the East Mediterranean Deep
Water (EMDW), formed locally; and (ii) the Cretan Deep Water (CDW), advected from the
Cretan Basin.

East Mediterranean Deep Water (EMDW): The dense waters filling the basinal depths
(>2500 m) in the LEV M.R. are similar to those discussed earlier in the case of the CIM M.R.
Prior to 1990, it was believed that the main source of the dense deep waters of the EMED
was the ADR, presenting annual fluxes through the Otranto Strait on the order of 0.3 Sv.
Although this process has an annual recurrence, in the early 1990s, dense waters were
observed outflowing from the Cretan Straits (e.g., [61,108]). Because of its transient nature,
this process has been called the Eastern Mediterranean Transient (EMT). More specifically,
the EMT refers to a change in the deep water source of the EMED from the Adriatic
Basin to the Aegean Basin, causing the presence of warmer, saltier deep and intermediate
water masses in the eastern Mediterranean; this change is also transmitted to the WMED
through the Sicily Strait [109]. Although there is not a consistent and quantified theory
of the cause of the EMT, the following processes have been proposed [110]: (a) internal
redistribution of salt [108], (b) changes in the local atmospheric forcing (e.g., increased
evaporation) over the Aegean combined with long-term salinity change (e.g., [106,111]);
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(c) variations in fresh Black Sea water influx [112]; and (d) changes in circulation patterns
leading to changes either in the influx of LIW and/or of the Modified Atlantic Water
(MAW) ([71,113]). Furthermore, during the peak EMT period (between mid-1992 and late
1994), Roether et al. [114] estimated that the mean outflow of CDW through the Cretan Arc
Straits accounted for ca. 2.8 Sv; this value is an order of magnitude larger than the typical
ADW formation rate. Therefore, by 1995, it was estimated that about 20% of EMDW was
replaced by this new denser water mass [106]. In general, the temperature and salinity that
characterise the EMDW are θ = 13.6 ◦C and S = 38.7 [76,88]. More recently, south of Crete
and at water depths >3000 m, potential temperatures varied from 13.44 ◦C to 13.51 ◦C,
salinity was 38.74 ± 0.01 and density was 29.194 ± 0.002 [113].

Cretan Deep Water (CDW): It is formed within the Cretan Sea and was first observed
in 1998 by Theocharis et al. [101]. Tsimplis et al. [115] used a simple hydraulic model to
estimate the deep-water fluxes of Cretan Deep Water (CDW) through the Cretan Arc Straits
and into the Eastern Mediterranean Basin. The results show a significant CDW outflow of
0.75 Sv in early 1995. Thereafter, CDW has been reported repeatedly (e.g., [86,114,116,117]).
The formation of CDW has been attributed to the onset of EMT of 1988–1990, when lower-
than-climatic-average atmospheric temperatures prevailed in the Aegean Sea [106] that,
combined with the saltier LSW, produced dense waters in the central and southern Aegean,
which submerged to depths > 600 m within Cretan basin. Subsequently, these dense
waters outflow from the Cretan Straits during the EMT relaxation periods (1996–2000). The
core values of old CDW identified in LEV found at water depths of 1400–2500 m were
θ = 13.58 ± 0.02 ◦C, S = 38.76 ± 0.01, and σθ = 29.188 ± 0.004 kg/m3 [101].

3.4.2. Aegean M.R.

The Aegean Sea M.R. presents the largest number of water masses due to: (a) a very
irregular morphology of the seabed with a clear separation between its northern (maximum
depth 1500 m) and southern sector (maximum depth 2800 m) by the Cyclades plateau
(maximum depth about 400 m) located in between them; (b) its water balance, related
to air-sea heat flux exchanges, river inputs and the exchange of water masses with the
adjacent marine regions (i.e., the Black Sea and the Levantine Sea); and (c) its seasonality of
climatic conditions (e.g., [2,71,104,112,118]). The description of the surface, intermediate,
and deep water masses of the AEG M.R. follows.

3.4.2.1. Surface Waters

The surface waters, having a rather distinctive spatial presence, include: (i) the low-
salinity Black Sea Water (BSW) mostly in the North Aegean Sea; (ii) the high-salinity Levantine
Surface Water (LSW) in the southeastern Aegean; (iii) the Modified Atlantic Water (MAW)
primarily in the south Aegean; and (iv) the Cretan Surface Water (CSW) in the central and
eastern part of the south Aegean Sea (Cretan Sea).

Black Sea Water (BSW): This water mass dominates the surface waters up to a depth
of 40–50 m in the northern Aegean Sea, having generally temperatures > 14 ◦C and salinities
30–36 [119]. The influx of BSW accounts for approximately 1200 km3/y [120]. BSW flows
westward and then southwards along the east coast of the Greek mainland, whilst a branch
of it flows towards the Cyclades plateau [121]. BSW can be also traced in the Cretan Sea,
where in April 2016 it had θ = 15.9–17.0 ◦C and S = 38.87–39.01 [122].

Modified Atlantic Water (MAW): This water mass has been traced along the western
part of the Cretan Sea and to the east of the Cyclades plateau [101]. It enters the South
Aegean (Cretan Sea) primarily through the western and secondarily through the eastern
Cretan Straits at depths < 100 m. As it presents similar characteristics to those of the
BSW, their differentiation becomes rather difficult. In the Cretan Sea, in June 2016, MAW
extending to water depths up to 50 m with T = 17–23 ◦C and S ≤ 38.9 was found [101].

Levantine Surface Water (LSW): Levantine Surface Water is observed primarily in the
eastern part of the South Aegean, advected through the eastern Cretan passage from the
LEV M.R., extending to water depths < 100 m, with θ > 18 ◦C and S = 39.1–39.3 [122].
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Cretan Surface Water (CSW): Cretan Surface Water occupies the central and western
part of the South Aegean (Cretan Sea), being relatively cooler (>18.0 ◦C) and less saline
(39.0–39.1) than the above-mentioned LSW [101]. Its formation involves the mixing of:
(a) the MAW entering from the western Cretan strait, (b) the influx of the modified BSW,
and (c) the westward-flowing LSW after its entry in the southeast Aegean Sea (as mentioned
earlier).

3.4.2.2. Intermediate Waters

The intermediate water masses of the AEG M.R. include: (i) the LIW, advected from
the LEV M.R.; (ii) the AgIW (Aegean Intermediate Water), produced after the mixing of BSW
and LIW; (iii) the Cretan Intermediate Water (CIW), produced in the Cretan Sea; and (iv) the
Transformed Mediterranean Water (TMW) mostly observed in the Cretan Sea in association
with EMT events.

Levantine Intermediate Water (LIW): The LIW, advected from the LEV M.R. primarily
through the east Cretan Straits [104] and secondarily (occasionally) through the west Cretan
Straits [55], is characterised by high salinities (≥38.89) and potential temperatures > 14.3
(winter) [104]. During the cruises in April and June of 2016, LIW was found to have
S = 39.11–39.14 and θ = 16.2–16.7 ◦C [101]. LIW flows northwards along the Turkish coast
reaching the Limnos plateau, where it is mixed with the colder and fresher BSW, producing
the AgIW (or MLIW: Modified Levantine Intermediate Water), eventually reaching the
entrance of the Dardanelles Strait.

Cretan Intermediate Water (CIW): Cretan Intermediate Water is formed in the Cretan
Sea during winter convection episodes and is observed at water depths of 200–300 m ([123,
124]). CIW presents interannual variability, appearing in some cases colder, more saline, and
denser than LIW (e.g., [55,104]). Thus, in June of 2016, CIW was detected at water depths of
200–400 m, having θ = 15.5–15.7 ◦C and S = 39.05–39.07 [101]. The differentiation between LIW
and CIW becomes rather easier after CIW leaves the Cretan Sea towards the EMED, where
it settles at depths slightly deeper than LIW due to its slightly higher density. Subsequently,
CIW moves westwards along the Cretan continental slope towards the Ionian Sea (CIM M.R.)
as mentioned earlier (e.g., [86,111,125]).

Aegean Intermediate Water (AgIW): Aegean Intermediate Water was first recognized
during the R/V Yakov Gakkeln Cruises (22 Feb.–25 Apr. of 1988 and 24 Jan.–4 Mar. of
1990) as a colder water mass than LIW, being formed locally during the transformation and
mixing of BSW and LSW [121]. In addition, Velaoras and Lascaratos [126] analysing CTD
data covering a period between 1993 and 2001 also identified an intermediate water mass
produced during winter in the North and Central Aegean Sea; they named it “Modified
Levantine Intermediate Water (MLIW)” in order to denote its difference as being colder and
denser than the LIW. In addition, to differentiate AgIW from the BSW, the LSW and the
underlying waters, an isohaline surface of 38.7, isotherm surface of 14.7 ◦C and isopycnal
surface of 29.2 kg/m3 are used. The bulk of AgIW is found at water depths of 140–370
m, while during 1988 it was observed by Gertman et al. [121] at water depths of 240–430
m. Velaoras [101] in April/2016 identified AgIW at water depths between 140 m and
430 m having θ = 14.39–14.43 ◦C and S = 38.93–38.95, while Vervatis et al. [107] in the
Southern Aegean Sea reported values of θ = 13.9–14.4 ◦C and S = 38.7–39.0 at water depths
of 100–350 m.

Transitional Mediterranean Water (TMW): At depths greater than 350–400 m down
to 600–700 m, a relatively cooler and, therefore, slightly denser TMW is present; its for-
mation is associated with the occurrence of EMT, representing an older water mass in the
EMED (e.g., [124,127]). TMW appears recurrently in the Cretan Sea as a compensation of
the outflow of the dense water mass to the EMED. During the post-EMT period, TMW
was characterised by θ = 14.2 ◦C and S = 38.92, having its core ca. 750 m (Mar./2005
and Feb./2006), according to Vervatis et al. [107]. Additionally, during the spring of
2016, TMW was identified at water depths of 600–800 m, having θ = 13.90–14.15 ◦C and
S = 38.85–38.94 [101].
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3.4.2.3. Deep Water Masses

There are three deep water masses that fill the deepest parts of the Aegean Sea: (i) the
North Aegean Deep Water (NAgDW); (ii) the Central Aegean Deep Water (CAgDW); and (iii) the
Cretan Deep Water (CDW). It should also be noted that in some publications, NAgDW and
CAgDW have been considered as one water mass under the name NAgDW. According
to this approach, all the deep waters, filling the various sub-basins located to the east
and north of the Cyclades plateau (depths < 400 m), are considered to be part of the
North Aegean. Therefore, the deep sub-basins to the south of the Aegean volcanic arc
(i.e., Myrtoon, Cretan, Karpathos) belong to the Southern Aegean. The deep (>1000 m)
water masses of the South Aegean fall under the name of Cretan Deep Water (CDW) as
they exhibit quite similar, if not identical, characteristics.

North Aegean Deep Water (NAgDW): In the North Aegean Sea, the NAgDW is found
in depressions 700–1300 m separated by sills (200–500 m) that impede water exchanges be-
tween them, as in the case of the Athos and Sporades depressions. According to Theocharis
and Georgopoulos [128], prior to EMT the NAgDW had θ = 13.2–13.3 ◦C, S = 38.80–38.85
and σθ = 29.27–29.32. Especially during the winter of 1988, the main volume of NAgDW was
observed at water depths of ca. 740 m having θ = 12.72–12.78 ◦C and S = 38.76–38.82 [121].

Central Aegean Deep Water (CAgDW): Deep water masses in the Central Aegean fill
the isolated depressions (i.e., the depressions of North Skyros, Chios and North Ikaria),
which extend to depths between 500 m and 1000 m. In general, deep water masses in the
Central Aegean Sean are characterised by S ≥ 38.7 and θ = 13.2–13.9 ◦C, while for their
separation from the overlying AgIW, the isopycnal surface of 29.20 kg/m3 was used by
Gertman et al. [121]. In addition, during the late winters of 1988 and 1990, the CAgDW
was warmer and saltier than the NAgDW, but with slightly different values of temperature
and salinity of the waters filling the different depressions (depths >500 m). Thus, the
deep water mass in the North Skyros depression was colder (13.38–13.44 ◦C) and saltier
(38.94–39.06) compared to that of the Chios and North Ikaria depression (θ = 13.44–13.50 ◦C;
S = 38.82–38.88). This difference has been attributed to the dense waters that formed on the
Lesvos-Lemnos plateau [112] and filled the adjacent North Skyros Depression. Based on
ARGO float data (2010–2017), CAgDW at 800 m water depth was found to have θ = 14.2,
S = 39.0 and σθ = 29.22 [129].

Cretan Deep Water (CDW): This water mass is characterised by θ ≥ 13.9 ◦C and
S ≥ 39.95 and is differentiated from overlying intermediate waters by an isopycnal surface
of 29.20 (e.g., [121,127]). Similar values have been given by Kassis and Kores [129], who
analysed ARGO float data spanning from 2010 to 2017. The main source of this water mass
is the inflowing dense waters formed on the Cyclades Plateau. The latter process that was
enhanced during the EMT could cause a slight, although crucial, increase in salinity and,
therefore, in density of the CDW. For example, after the cold winter of 1987, water densities
below 1000 m began to increase above 29.2 kg/m3, leading to the uplifting of the isopycnal
of 29.2 from depths below 1000 m (in 1987) up to the surface (30 m) layers in 1992 [129],
while at the peak of the event (1992–1995), the salinity and density of CDW reached values
up to 39.08 kg/m3 and 29.4 kg/m3, respectively. Due to this uplift of the isopycnals, dense
water of Cretan origin began to exit the Cretan Straits as early as 1987 (e.g., [111,115]).

3.4.3. Marmara Sea

The hydrology of the Marmara marine region (MAR) consists of two counter-flowing
water masses: (i) the upper one transferring brackish Black Sea Water (MaBSW: Marmara
Black Sea Water) towards the Aegean Sea and (ii) the lower one carrying Mediterranean
waters (MaMW: Marmara Mediterranean Water) to the Black Sea. The interface between the
upper and the lower layers is represented by a strong pycnocline, which is located at water
depths of ca. 25 m (e.g., [120,130–132]).

Marmara Black Sea Waters (MaBSW): The water mass of Black Sea origin within the
MAR M.R. has an initial salinity (S = 17.8) at its entrance from the Black Sea (Bosporus
Strait), which becomes 29.3 at its west exit (Dardanelles Strait) [131]; this is due to heat
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exchange and mixing processes with the underlying more saline waters. Additionally, sea
water properties vary seasonally; for example, in August of 1987, MaBSW had θ = 20–27 ◦C
and S = 22–25, while in March 1990, it had T = 10–12 ◦C and S = 20–27 [132].

Marmara Mediterranean Water (MaMSW): At the entrance of the Dardanelles Strait,
MaMSW has an initial salinity of 38.8, which becomes 35.5 in the Bosporus Strait due to heat
exchange and mixing processes with the overlain less saline MaBSW [120,131,132]. Also,
temperature shows high seasonal variability (from 10–15 ◦C in March 1990 to 14–16 ◦C in
August 1987; after Özsoy and Altıok [132], compared to salinity, which remains approxi-
mately at the same level (S = 35–39).

Table 5 presents the physical characteristics of the aforementioned water masses for
the different marine (secondary) regions of the EMED.

Table 5. Temperature (θ, potential), salinity (S), practical density (σθ , for potential temperature) and
the depth of the water masses (W.M.) existing in the Eastern Mediterranean (EMED).

W.M. θ (◦C) S σθ (kg/m3) Depth (m) Ref.
Levantine M.R.

LSW
LSW (Main basin)
LSW (South Cretan Passage)

>17.0
22.0–29.0

>18.0

≥39.0
39.0–39.7
39.1–39.3

0–>50
0–100

[104]
[102]
[101]

MAW (Main basin)
MAW (South Cretan
Passage)

17.0–23.5
17.0–23.0

36.6–39.1
≤38.9 28.51–26.90 0–50 [102]

[101]

LIW
LIW (Main basin)
LIW (South Cretan Passage)

16.20 ± 0.6
15.2–17.3
15.6–16.8

39.09 ± 0.05
38.94–39.33
39.04–39.14

28.85 ± 0.1
28.75–28.95

130–350
85–170

[104]
[102]
[101]

TMW (South Cretan
Passage) 13.5–13.6 38.74–38.76 29.17–29.19 600–1200 [101]

CDW 13.56–13.60 38.75–38.78 29.18–29.19 1400–2550 [101]

EMDW 13.44–13.51
13.6–13.7

38.73–38.75
38.6–38.7 29.194 ± 0.002 >3000

1000–2000
[101]
[104]

Aegean M.R.
BSW (N. Aegean)
BSW (Cretan Sea)

>14.0
15.9–17.0

30.0–36.0
38.87–39.01

22.7–26.5
26.3–26.81

<40/50
45–60

[119]
[101]

MAW (Cretan Sea) 12.99–25.44 37.17–39.69 28.75–28.60 50–150 [101]
LSW (Cretan Sea, summer) >18.0 (sum.) 39.1–39.3 <28.49 [101]
CSW >18.0 39.0–39.1 <40 [101]

AgIW (MLIW) 13.9–14.4
14.39–14.43

38.70–39.00
38.93–38.95 29.10–29.18

100–350
140–430

[107]
[121]

LIW
LIW

14.3–16.0
16.2–16.7

38.89–39.11
39.11–39.14 28.8–28.9

<700–1000
120–300

[104]
[101]

CIW 15.5–15.7 39.05–39.07 28.90–29.01 200–400 [101]
TMW (summer) 13.90–14.15 38.85–38.94 29.17–29.18 600–800 [101]

NAgDW 13.2–13.3
12.72–12.78

38.80–38.85
38.76–38.82 29.27–9.32 ≈740

[128]
[121]

CAgDW
13.2–13.9

13.38–13.44
14.20

≥38.7
38.82–39.06

39.00 29.22 ≈740

[121]
[112]
[127]

CDW
(EMT 1992–1995) 14.0–14.02 ≤39.05

39.08
>29.31
29.40

>2000
>1500

[101]
[86]

Marmara M.R.
MaBSW (Mar./1990)
MaBSW (Aug./1987)

10.0–12.0
20.0–27.0

22.0–25.0
20.0–25.0 15.74–16.14 0–25 [132]

MaMSW (Mar./1990)
MaMSW (Aug./1987)

14.0–16.0
10.0–15.0

35.0–39.0
35.0–39.0 28.51–28.90 >25 [132]

Note: Ref. [104]: for winter/summer 1986; Ref. [102]: mean annual values for the period 1978–2014; Ref. [101]: for
April of 2016.
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3.5. Black Sea

The overall hydrology of the Black Sea marine region (BLS M.R.) can be distinguished
into the main Black Sea M.R. (called BLA) with water depths > 2000 m and the extremely
shallow (<15 m) Azov Sea M.R. (called AZOV).

3.5.1. Black Sea Secondary M.R. (BLA)

The hydrology of the BLA M.R. is controlled by (a) riverine freshwater inflows
(T = 0–28 ◦C and S < 1), (b) the air-sea interaction process (i.e., heat and salt exchange),
(ii) the influx of the MaMSW (ca. 300 km3/y) flowing at water depths of 25–70 m, with
T = 12–15 ◦C and S = 34–37 and being the only source of saline water to the BLA M.R.;
(c) the incoming Azov Sea Water (AzW) via the Kerch Strait; (d) the incoming Azov Sea
Water (AzW) via the Kerch Strait, with S = 12–15; (e) the cyclic circulation of water within
the BLA basin that redistributes water masses; and (f) the strong stratification of the water
column [133,134]. Within the BLA M.R., there are five main water masses: (i) the Black
Sea Surface Water (BSSW); (ii) the Black Sea Coastal Water (BSCW); (iii) the Cold Intermediate
Layer (CIL); (iv) the Black Sea Intermediate Water (BSIW); and (v) the Black Sea Deep Water
(BSDW) [133].

3.5.1.1. Surface Water Masses

Two surface water masses have been identified based on their spatial extents: (i) the
Black Sea Surface Water (BSSW) and (ii) the Black Sea Coastal Water (BSCW).

Black Sea Surface Water (BSSW): Surface waters at the off-shore deeper part of the
Black Sea basin occupies the upper 30–60 m, representing about 2.3% of the total volume of
BLA M.R. BSSW is almost homogeneous, with salinities 17.4–18.6 and temperatures from
6.9 (winter) to 23.8 (summer), according to Mamayev et al. [135].

Black Sea Coastal Water (BSCW): This water mass is formed over the continental shelf
under the strong influence of river runoff and is characterised by low salinity and higher
horizontal salinity variations. Belokopytov [134] differentiates the BSCW from the BSSW
using the 17.8 isohaline and/or horizontal salinity gradients of 0.05–0.1/10 km. In general,
the BSCW is 3–5 ◦C cooler in winter than the BSSW. The BSCW extends to water depths no
greater than 30 m, representing about 0.5% of the total volume of the BLA M.R. However,
the volume of the BSCW varies considerably on a seasonal basis, being about three times
larger in winter than in summer; this is related to the seasonal cycle of the freshwater
budget of the BLA M.R.

3.5.1.2. Intermediate Waters

Two water bodies exist at intermediate water depths (approximately 40–1200 m):
(i) the Cold Intermediate Layer (CIL) and (ii) the Black Sea Intermediate Water (BSIW).

The Cold Intermediate Layer (CIL): This intermediate layer of minimum temperature
is placed in between the seasonal and permanent pycnocline, exhibiting a high inter-annual
variability. Two main mechanisms contribute to the formation of the CIL: (a) cooling, in
winter, of the surface waters in the centres of cyclonic gyres present in the basin interior and
(b) the transport of cold water masses, along the north-western shelf, by the main cyclonic
rim-current and by mesoscale eddies on the shelf break [136]. CIL is found at water depths
between 30 m and 100 m, representing 2.2% of the total water volume of the BLA, with
θ = 6.0–7.8 ◦C, S = 18.0–19.0 and σθ = 14.0–14.8 [134].

Black Sea Intermediate Water (BSIW): This water mass corresponds to the main/
permanent pycnocline. The upper limit of BSIW is found at water depths of 50–100
m, with θ = 7.4–7.8 ◦C and S = 18.9–19.0, while its lower limit is found at water depths
of 1100–1200 m, with θ = 8.98 ◦C, S = 22.30. This water mass corresponds to the largest
volume (55%) among the five water masses of the BLA M.R. [133].
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3.5.1.3. Deep Waters

The deepest part (depths > 1100–1200 m) of the Black Sea basin is filled by the water
mass called Black Sea Deep Water (BSDW).

Black Sea Deep Water (BSDW): Black Sea Deep Water lies below the BSIW, being a ho-
mogeneous anoxic water mass with almost stable physical properties, i.e., θ = 8.98–9.11 ◦C
and S = 22.30–22.34. BSDW comprises 40% of the total volume of the BLA M.R. [133].

3.5.2. Azov M.R.

The waters that fill the exceptionally shallow and enclosed Sea of Azov (called AzW)
are described below.

Azov Water (AzW)
The water mass of the AZOV sea (AzW) has a low salinity (i.e., 12–15), due to large

riverine freshwater inputs (>40 km3/y; after Ivanov et al. [133]). Its mean temperature is
highly variable and shows strong seasonality, with values of 0–1 ◦C in winter (2–3 ◦C in
Kerch Strait) and 24–25 ◦C in summer. Maximum temperatures of ca. 28 ◦C are observed in
its central part and more than 30 ◦C in the nearshore zone [137,138].

Regarding the water flow exchange through the Strait of Kerch, various estimates
suggest an average outflow of 55 km3/y, while the inflow is 40 km3/y [133].

In Table 6, the physical characteristics of the water masses for the different marine
(secondary) regions of the BLS are presented.

Table 6. Temperature (θ, potential), salinity (S), density (σθ , for potential temperature) and the depth
of the water masses (W.M.) existing in the Black Sea (including the Azov Sea).

W.M. θ (◦C) S σθ (kg/m3) Depth (m) Ref.
Black Sea M.R.

BSCW >3.0 <15.0 (or <17.8) 14.18–13.99 0–30/60 [133,134]
BSSW 6.9–23.8 17.4–18.6 12.42–11.33 0–50/60 [135]

CIL 6.0–7.75
5.0–6.3

18.0–19.0
18.6–20.0

14.0–14.8
- 50–70 [135]

[134]

BSIW 7.75–8.82
7.40–8.98

19.0–22.30
18.9–22.30

14.77–17.19
- 90/100–1100/1200 [134]

[133]
BSDW 8.98–9.11 22.30–22.35 >1100/1200 [133]

Azov M.R.
AZW 0–30 12.0–15.0 - - [137]

4. Conclusions and Future Directions

There is a big difference in the overall hydrology of the Mediterranean Sea compared
to the Black Sea (Table 7). In the Mediterranean Sea, surface waters are controlled by the
Modified Atlantic Water, waters at intermediate depths by the Levantine Intermediate
Water and waters in the deeper parts of the basin by the Western/Eastern Mediterranean
Deep Water. The above-mentioned main water masses are characterised by different
physical characteristics in the various marine regions (primary and secondary). In addition,
there are other water masses with rather local characteristics, formed by different formation
processes and under the influence of coastal (e.g., presence of straits) and submarine
topography (e.g., deep basin separated by shallow sills). The hydrology of the Black Sea
shows strong stratification with a permanent pycnocline associated with the presence of
the cold intermediate layer, which separates the surface water masses from the Black Sea
intermediate waters, which overlays the deep and anoxic basinal waters.

The presence of different water masses in the Mediterranean Sea is related to: (a) the
inflow of Atlantic waters, the formation of intermediate waters in the LEB; (b) the formation
of dense waters along its northern margin (i.e., the Gulf of Lions, Adriatic and Aegean);
(c) the negative freshwater balance (concentration basin); and (d) the morphology of the
coast and the topography of the seabed. On the other hand, the formation of the BLA
water masses is mainly controlled by: (a) fluvial freshwater inflows (dilution basin) and
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(b) the presence of a strong permanent dense sediment that not only separates the surface
brackish water from the intermediate water masses but also creates anoxic conditions at
depths > 200 m.

Table 7. The main hydrological characteristics of the Mediterranean Sea and the Black Sea marine
regions (data abstracted from [1,17] and from this work).

Mediterranean Sea
(Excluding Marmara)

Black Sea
(Excluding Azov)

Volume 3.88 0.55
Sea surface/drainage basin 0.54 0.23
Riverine influx 576 418
Heat budget −(4–11) W/m2 −(5–7) W/m2

Water budget −457.4 mm + 497 ± 108
No. of main marine regions 3 1
No. of secondary marine regions 7 1
No. of water masses 21 5
No. of surface water masses 7 2
No. of intermediate water masses 6 2
No. of deep water masses 5 1
Range of surface water mass
properties (θ, in ◦C and salinity)

θ = 14–29
S = 36.6–39.7

θ = 3–24
S = 12–18.6

Range of intermediate water mass
properties (θ, in ◦C and salinity)

θ = 13.2–16.7
S = 38.5–39.1

θ = 5–9
S = 18–22.3

Range of deep water mass properties
(θ, in ◦C and salinity)

θ = 13–13.8
S = 38.4–38.8

θ = 9.0
S = 22.32

Regarding the distribution of the different water masses in the eight submarine regions
of the Mediterranean (including the MAR), the Aegean Sea M.R. (AEG) has the largest
number of water masses (12 water masses), followed by the Ionian-Central Mediterranean
M.R. (ICM) with 7 water masses, compared to only 2 water masses in the Marmara Sea.
The large number of water masses in the case of AEG and CIM is due to their irregular
bottom/coast morphology, freshwater inputs (atmospheric and terrestrial) and the mixing
of different water masses, including dense water, as dictated by circulation and buoyancy
flows. On the other hand, the two MAR water masses essentially represent the exchange
of water masses between the MED (AEG) and the BLS. In the case of the BLS, there is
a clear differentiation between the main BLA M.R. and the extremely shallow (<15 m),
semi-enclosed and under the strong influence of river inflows Azov Sea (AZOV); the
former includes five water masses, while the latter includes a fairly uniform water mass. A
comparison of the hydrological status of the two main marine regions is given in Table 7.

Future work should include more coherent monitoring of water masses in different ma-
rine regions, both interannual and seasonal, using technological developments (e.g., marine
slides and satellite oceanography) and investigating current and future climate impacts
(e.g., acidification, marine heatwaves, thermal expansion) at the basin level (e.g., MED,
BLS) and at the level of the different secondary marine regions as well.
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Abbreviations
Marine regions
MED Mediterranean Sea
WMED Western Mediterranean Sea
CMED Central Mediterranean Sea
EMED Eastern Mediterranean Sea
MAR Marmara Sea (Propontis)
BLS Black Sea (or Pontus Euxinus) (including Azov Sea)
BLA Black Sea (excluding AZOV)
AZOV Azov Sea
ALB Alboran Sea
WEST West Mediterranean
TYR Tyrrhenian Sea
ICM Ionian Sea and Central Mediterranean Sea
ADR Adriatic Sea
LEV Levantine Sea
AEG Aegean Sea
Water Masses
ADW * Adriatic Deep Water
AgIW (or MLIW): Aegean Intermediate Water (or Modified Levantine Intermediate Water)
ASW * Adriatic Surface Water
AW * Atlantic Water
AZW Azov Water
BSCW Black Sea Coastal Water
BSDW Black Sea Deep Water
BSIW Black Sea Intermediate Water
BSSW Black Sea Surface Water
BSW * Black Sea Water
CAgDW Central Aegean Deep Water
CDW * Cretan Deep Water
CIL Cold Intermediate Layer (Black Sea)
CIW * Cretan Intermediate Water
CSW Cretan Surface Water
EMDW * Eastern Mediterranean Deep Water
ISW Ionian Surface Water
LDW * Levantine Deep Water
LIW * Levantine Intermediate Water
LSW * Levantine Surface Water
MaBSW Marmara Black Sea Water
MAdSW Middle Adriatic Surface Waters
MaMSW Marmara Mediterranean Sea water
MAW Modified Atlantic Water
MOW * Mediterranean Outflow Water
NAdDW * North Adriatic Deep Water (formerly NADW)
NAdSW North Adriatic Surface Water
SAdSW South Adriatic Surface Water
TDW * Tyrrhenian Deep Water
TIW Transitional Mediterranean Water
WIW * Western Intermediate Water (formerly Winter Intermediate Water)
WMDW * Western Mediterranean Deep Water
(*): agreed acronyms for major Mediterranean water masses in 36th CIESM Congress, Monte Carlo, 26 September 2001).
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Appendix A

Table A1. Physico-geo-graphic characteristics of the Western Mediterranean Sea (WMED) and its
secondary marine regions (ALB: Alboran; WEST: West Mediterranean; and TYR: Tyrrhenian).

ALB WEST TYR WMED
Sea Surface area (SS) (km2) 54,173 573,340 217,497 845,010

SS/SSMED (%) 2.14 22.66 8.60 33.40
Depth mean/maximum (m) 753/2342 1798/3225 1640/3648 1691/3648

Volume (V) (106 km3) 0.041 1.026 0.358 1.424
V/VMED (%) 1.053 26.48 9.20 36.73

Table A2. Physico-geo-graphic characteristics of the Central Mediterranean Sea (CMED) and its
secondary marine regions (ADR: Adriatic; and ICM: Ionian and Central Mediterranean).

ADR ICM CMED
Sea Surface area (SS) (km2) 140,320 789,414 929,734

SS/SSMED 5.55 84.9 36.75
Depth mean/maximum (m) 258/1264 26.4 1465/5267

Volume (V) (106 km3) 0.036 3.8% 1.360
V/VMED (%) 0.935 1.32 35.07

Table A3. Physico geo-graphic characteristics of the Eastern Mediterranean Sea (EMED) and its
secondary marine regions (LEV: Levantine; AEG: Aegean; MAR: Marmara).

LEV AEG MAR EMED

Sea Surface (SS) (km2) 551,609 191,908 11,887 755,404
SS/SSMED 21.80 7.58 0.47 29.86

Depth mean /max (m) 1816/4538 457/2842 311/1288 1462/4538
Volume (V) (103 km3) 1.9 876 3.7 1131

V/VMED (%) 25.84 2.26 0.10 28.20

Table A4. Physico geo-graphic characteristics of the Black Sea (BLS) and its secondary marine regions
(BLA: Black Sea main basin; AZOV: Azov Sea).

BLA AZOV BLS

Sea Surface area (SS) (km2) 422,235 41,274 463,509
SS/BLS (%) 91.1 8.9

Depth mean/ maximum (m) 1302/2590 8.6/15 1195/2590
Slope mean (%) 2.2 0.04 2.0

Volume (V) (106 km3) 0.5497 0.00035 0.5499
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133. Ivanov, V.A.; Belokopytov, V.N. Oceanography of the Black Sea. In National Academy of Science of Ukraine; Ivanov, V.A., Belokopytov,
V.N., Eds.; Marine Hydrophysical Institute: Sevastopol, Ukraine, 2013; 210p.

134. Mamayev, O.I.; Arkhipkin, V.S.; Tuzhilkin, V.S. TS-analysis of the Black Sea waters. Oceanol. Russ. Acad. Sci. 1994, 34, 154–168.
135. Belokopytov, V.N. Thermohaline and Hydroacoustic Structure of the Black Sea. Ph.D. Thesis, Marine Hydrophysical Institute,

Sevastopol, Ukraine, 2004. (In Russian).
136. Miladinova, S.; Stips, A.; Garcia-Gorriz, E.; Moy, D.M. Formation and changes of the Black Sea cold intermediate layer. Prog.

Oceanogr. 2018, 167, 11–23. [CrossRef]
137. Dobrovolsky, A.D.; Zalogin, B.S. Seas of the USSR; Moscow State University: Moscow, Russia, 1982; 192p. (In Russian)
138. Kosarev, A.N.; Kostianoy, A.G.; Shiganova, T.A. The Sea of Azov; Springer: Berlin/Heidelberg, Germany, 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1029/2009JC005694
https://doi.org/10.5194/os-14-999-2018
https://doi.org/10.12681/mms.256
https://doi.org/10.1175/JPO2940.1
https://doi.org/10.1016/j.pocean.2015.04.010
https://doi.org/10.1016/0198-0149(91)90088-W
https://doi.org/10.1016/j.jmarsys.2010.07.001
https://doi.org/10.1029/1999GL900320
https://doi.org/10.1016/0278-4343(93)90017-R
https://doi.org/10.12681/mms.24833
https://doi.org/10.1016/0079-6611(94)90018-3
https://doi.org/10.1016/j.pocean.2018.07.002

	Introduction 
	Physico-Geographical Setting 
	Water Masses 
	Strait of Gibraltar 
	Western Mediterranean (WMED) 
	Surface Waters 
	Intermediate Water Masses 
	Deep Waters 

	Central Mediterranean (CMED) 
	Surface Waters 
	Intermediate Waters 
	Deep Waters 

	Eastern Mediterranean (EMED) 
	Levantine M.R. 
	Aegean M.R. 
	Marmara Sea 

	Black Sea 
	Black Sea Secondary M.R. (BLA) 
	Azov M.R. 


	Conclusions and Future Directions 
	Appendix A
	References

