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Abstract: Recently, the development of visible-light-responsive catalysts for the photodegradation
of organic pollutants has captured the attention of researchers globally. The ineffectiveness and
high costs associated with conventional methods and techniques used for the abatement of water
pollution have forced researchers to develop effective and low-cost innovative techniques for this
purpose. Photocatalysis is considered an effective protocol for this purpose. Therefore, this study
was conducted for the development of the Bi2O3-NiO heterojunction as a visible-light-responsive
photocatalyst for the degradation of methyl orange. Ni(NO3)2·6H2O (Fluka) and Bi(NO3)3·5H2O
(Merck) were used as precursor materials for the synthesis of NiO-Bi2O3. After fabrication, the
Bi2O3-NiO heterojunction was characterized using XRD, EDX, SEM, FTIR, and TGA techniques.
Then, it was employed as a catalyst for the photodegradation of methyl orange under sunlight
irradiation. The fabricated Bi2O3-NiO showed higher photocatalytic activity than Bi2O3 and NiO
with 100, 67, and 46% degradation of methyl orange, respectively. The rate constant determined by
the non-linear method of analysis for the photodegradation of MO in the presence of Bi2O3-NiO was
3.2-fold and 1.7-fold of the rate constant with NiO and Bi2O3, respectively. The higher photocatalytic
activity of Bi2O3-NiO than of its individual components in the present study is also attributed to
the separation and transfer of positive holes and electrons. The recycling of spent Bi2O3-NiO under
similar experimental conditions exhibited the same photocatalytic activity suggesting the stability of
the fabricated Bi2O3-NiO photocatalyst.

Keywords: photodegradation; methyl orange; heterojunction; Bi2O3; NiO

1. Introduction

The rapid expansion of the textile and chemical industries and the rapid increase in
world population has resulted in a dramatic condition regarding the pollution of water
reserves. Other sources such as science and technology, agriculture, and domestic activities
also contribute to water pollution. However, the contribution to aqueous contamination by
these various industries is very significant [1–7]. Various industries such as pharmaceu-
tics, leather, textile, food, etc., are responsible for water pollution. The effluents of these
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industries transmit various organic and inorganic pollutants to the environment. Water
pollution due to the release of organic dyes from different industries is the most dangerous
type of pollution that causes a threat to living organisms and society. Aqueous pollution
due to dyes is a critical issue worldwide. These dyes severely affect the environment due
to their carcinogenic nature, high toxicity, and persistent nature [8–12]. Various traditional
methods including physical, chemical, and biological methods have been attempted for the
remediation of dyes-polluted water. However, these methods have some drawbacks such
as high cost and ineffectiveness of treatment processes. The ineffectiveness and high costs
associated with conventional methods and techniques used for the abatement of water
pollution have forced researchers to develop effective and low-cost innovative techniques
for this purpose. Photocatalysis has merged as a green, low-cost, and effective technique
for the destruction of organic pollutants like dyes, pesticides, and pharmaceutics present in
wastewater recently [13–16]. The photocatalytic technique is an effective protocol for the
abatement of organic pollutants like dyes and pesticides. The photocatalytic technique is a
chemical process that is based on the production of hydroxyl radicals that take part in the
complete mineralization of organic molecules into simple inorganic molecules [17–20]. The
photocatalytic protocol has the following advantages over conventional methods:

1. Direct conversion of organic pollutants molecules into simple inorganic molecules
like water and carbon dioxide

2. Mineralization of a wide range of organic pollutants irrespective of selectivity
3. No production of hazardous side products.

The photocatalytic technique is based on the in situ production of excitons in the
valance band and conduction band of semiconductors photocatalysts under ultraviolet
or visible light. These excitons generate highly reactive OH radicals through subsequent
reactions. These OH radicals then mineralize the pollutants species. Depending upon the
bandgap energy of the semiconductors photocatalysts, both ultraviolet and visible light
can be used in the photocatalytic techniques. The semiconductor metal oxides like TiO2,
ZnO, SnO2, CeO2, CuO, MgO, perovskite metal oxides, etc., have been used as traditional
photocatalysts for a long time [21–25]. However, the traditional photocatalysts are not
successful; the ineffective degradation of pollutants is due to their wide band gap energies.
The traditional photocatalysts can only be used under the irradiation of ultraviolet light.
As visible light is abundantly available, due to the sun (44% of sunlight is in the visible
range), the development of a photocatalyst that can be effectively employed for the destruc-
tion of pollutants under the irradiation of sunlight is essential [26–28]. Semiconductors
with narrow band gap energy can be employed for this purpose because such types of
semiconductors can absorb visible light [29]. Therefore, the bismuth oxide, Bi2O3, which is
a narrow band gap semiconductor, has gained the interest of researchers recently. It has
desirable characteristics such as appropriate band gap energy, stable structure, low cost,
and an environmentally benign nature. It has been widely used in many fields such as for
thin films, photovoltaic cells, fuel cells, and catalysis. The bismuth oxide exists in various
forms, however, the α-Bi2O3 (band gap 2.85 eV) and β-Bi2O3 (band gap 2.58 eV) are more
important for catalytic applications [30–32]. However, due to the low energy difference
in the valence band and conduction band of Bi2O3, the photo-induced positive holes and
electrons quickly recombine. As a result, the photocatalytic performance of Bi2O3 is badly
affected. Therefore, researchers have attempted to reduce the recombination of positive
holes and electrons by modification of the structure of Bi2O3. One of the attempted modi-
fications is the construction of heterojunctions between Bi2O3 and other semiconductors.
The construction of a heterojunction between two semiconductors produces an electric
field at the interface. This electric field assists in the separation of photo-induced positive
holes and electrons resulting in the enhancement of photocatalytic activities [33–35]. This
study reports the enhancement in photocatalytic activity of Bi2O3 for the photodegradation
of methyl orange by the construction of a heterojunction with NiO. NiO is a p-type wide
band gap (3.6–4.0 eV) semiconductor with high electro-optical proficiency and chemical
stability. It has been used in several applications such as gas sensing, solar cells, and cataly-
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sis [36–40]. The driving force for the construction of heterojunction between NiO and Bi2O3
was to develop a solar light-driven photocatalyst for the photodegradation of dyes. The
Bi2O3-NiO heterojunction exhibits higher photocatalytic activity due to two reasons: (1) It
harvests an extended portion of the UV-visible spectrum. (2) It suppresses the unwanted
recombination of photo-induced positive holes and electrons due to its synergic effect.

2. Materials and Methods
2.1. Synthesis of Bi2O3-NiO

Analytical-grade chemicals were used in this study. All the chemicals and reagents
were used as received, i.e., without further purification. Ni(NO3)2·6H2O (Fluka) and
Bi(NO3)3·5H2O (Merck) were used as precursor materials for the synthesis of NiO-Bi2O3.
Typically, equimolar quantities of both Ni(NO3)2·6H2O and Bi(NO3)3·5H2O were dissolved
in 10 mL concentrated HNO3. Then, the mixed solution was diluted with 100 mL of distilled
water. The resultant solution was hydrolyzed by dropwise addition of 1M NaOH solution
under continuous stirring. The addition of NaOH to the mixed solution produced a gel.
The gel formed was filtered, washed, and dried at 100 ◦C for 24 h. Finally, the substance
formed was calcined first at 300 ◦C and then at 600 ◦C for 4 h at each temperature. Pristine
NiO and Bi2O3 were also prepared in the same way. The prepared samples were kept in
glass vials for further study.

2.2. Characterization of Bi2O3-NiO

The NiO-Bi2O3 was characterized using XRD, EDX, SEM, FTIR, and TGA techniques.
The instruments used for the characterization of prepared Bi2O3, NiO, and Bi2O3–NiO
samples are listed in Table 1.

Table 1. Instruments used for characterization of Bi2O3, NiO, and Bi2O3–NiO samples.

No Characterization Technique Instrument Model

1 XRD analysis X-ray diffractometer JOEL-JDX-3532, Japan

2 EDX analysis EDX spectrophotometer JSM5910, UK

3 SEM analysis Scanning electron microscope JEOL-JSM 5910, Japan

4 FTIR analysis IR spectrophotometer Bruker VRTEX70, USA

5 Thermal gravimetric analysis TGA analyzer Perkin Elmer 6300 TGA analyzer, USA

6 Analysis of dye solution UV-visible spectrophotometer Hitachi U-2800, Japan

2.3. Photocatalytic Activity

The photocatalytic activity of Bi2O3-NiO was explored through the photodegradation
of methyl orange under sunlight. The photodegradation of methyl orange was studied in a
Pyrex glass beaker. In the first step, blank experiments were performed. In the first blank
experiment, the dye solution was stirred under sunlight for an estimation of photolysis. A
sample was taken after 30 min and analyzed with a UV-visible spectrophotometer. There
was no removal of methyl orange due to photolysis. The second blank experiment was
performed for confirmation of the leaching of the catalyst. It was confirmed by stirring
0.1 g Bi2O3-NiO in 20 mL distilled water for one hour. After stirring, the Bi2O3-NiO was
separated and the clear liquid was analyzed for the existence of Bi or Ni ions. The analysis
confirmed that there was no leaching of the metal ions from Bi2O3-NiO. In the second step,
an optimized amount of catalyst was suspended in a 50 mL solution of methyl orange and
stirred in the dark to maintain adsorption equilibrium. The initial concentrations of the
dye solution used were 50, 100, and 150 mg/L. A sample was taken and analyzed with a
UV-visible spectrophotometer. About 10% removal of methyl orange was determined due
to adsorption. Then, the beaker was placed in sunlight under continuous stirring in the
third step. Samples were taken and analyzed with a UV-visible spectrophotometer.
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3. Results and Discussion
3.1. Characterization

The XRD spectra of Bi2O3, NiO, and Bi2O3–NiO are given in Figure 1. The existence of
sharp peaks in the XRD spectrum of Bi2O3 indicates the crystalline nature of the prepared
sample. The XRD spectrum of Bi2O3 is dominated by diffraction peaks corresponding to
planes of tetragonal α-Bi2O3 at 2θ 24.71◦ (121), 30.68◦ (012), 33.59◦ (−112), 46.84◦ (041),
and 47.61◦ (−104) [41–44]. The XRD pattern of NiO also shows the crystallinity of the
fabricated sample with diffraction peaks and hkl planes of cubic NiO at 2θ 37.31◦ (111),
43.32◦ (200), and 62.78◦ (220) according to PDF 01-089-5881 [45–47]. The XRD of the Bi2O3-
NiO heterojunction shows the diffraction peaks of both pure Bi2O3 and NiO which confirms
the successful fabrication of the heterojunction. Based on the comparison of the XRD of
the fabricated Bi2O3-NiO heterojunction with the available literature, it was concluded
that the heterojunction had been successfully fabricated with a tetragonal Bi2O3 phase and
cubic NiO phase with space groups P-421c and Fm-3m, respectively. The 2θ values and
hkl planes corresponding to Bi2O3 observed in the XRD pattern and Equation (1) were
used for the calculation of the lattice parameters of the tetragonal structure. Equation
(1) was applied to the observed data through the non-linear method using the “Solver”
software (Microsoft 365) of MS Word. The lattice parameters of the tetragonal structure
were calculated as a = b = 2.32 Å and c = 1.34 Å. Similarly, using Equation (2) and the
observed XRD data of NiO, the lattice parameters for the cubic structure were calculated as
a = b = c = 0.98 Å [42].

1
d2

hkl
=

h2 + k2

a2 +
l2

c2 (1)

1
d2

hkl
=

h2 + k2 + l2

a2 (2)
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The stability of the fabricated samples was investigated by thermal gravimetric anal-
ysis (TGA). Figure 2 shows the results of the thermal gravimetric analyses. All three
fabricated samples were quite stable over a wide range of temperatures. A minute weight
loss (about 2%) observed in each sample is attributed to the evaporation of adsorbed
moisture content.
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Figure 2. TGA analysis of Bi2O3, NiO, and Bi2O3–NiO samples.

The fabrication of the samples was further confirmed by elemental composition anal-
yses using energy-dispersive X-ray (EDX) spectroscopy. Figure 3 shows the results of
the energy-dispersive X-ray (EDX) analyses of the samples. The results confirmed that
Bi2O3 comprised Bi and O. Similarly, the NiO comprised Ni and O only. The Bi2O3-NiO
heterojunction is composed of Bi, Ni, and O. The demonstrated EDX results confirmed the
successful fabrication and purity of the samples. A trace amount of C was also detected in
the Bi2O3-NiO heterojunction which might be due to impurity in the precursor material or
contamination during the synthesis process.
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Figure 3. EDX analysis of Bi2O3, NiO, and Bi2O3–NiO samples.

The morphology and particle size analyses were carried out using scanning electron
microscopy (SEM). Figure 4 demonstrates the scanning electron micrographs of Bi2O3,
NiO, and Bi2O3-NiO samples. Particles of both Bi2O3 and NiO are non-agglomerated and
irregular in shape. The SEM of Bi2O3-NiO indicates that both Bi2O3 and NiO retain their
identity and particle shape in the heterojunction.
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Figure 4. SEM analysis of Bi2O3, NiO, and Bi2O3–NiO samples.

3.2. Photocatalytic Activity

The comparison of the photocatalytic activity of Bi2O3, NiO, and Bi2O3-NiO was
studied by performing separate photodegradation experiments using a 50 mL solution of
methyl orange with a 100 mg/L concentration. The photodegradation profile of methyl
orange dye in terms of Mt/Mo (Mt: concentration or absorbance at a different time interval,
Mo: concentration or absorbance at zero time) is given in Figure 5. The data given in
Figure 5 shows that the photodegradation of methyl orange dye observed with Bi2O3-NiO
is significantly higher than the photodegradation observed with pristine Bi2O3 and NiO.
In terms of the percent photodegradation of methyl orange, the photocatalytic activity of
Bi2O3-NiO, Bi2O3, and NiO was observed as ~100%, 67%, and 46%, respectively. After
vigilant analyses of the observed results, it was predicted that various factors contribute to
the enhanced photocatalytic response of the Bi2O3-NiO composite.
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Figure 5. Comparison of photocatalytic activity of Bi2O3, NiO, and Bi2O3-NiO towards photodegra-
dation of methyl orange.

The photocatalytic efficiency of a photocatalyst is significantly influenced by the sepa-
ration, transfer, and recombination of the photo-induced positive holes and electrons. It is
accepted that efficient separation and transfer of the positive holes and electrons suppresses
the recombination of these charge carriers and ultimately causes a significant improvement
in the photocatalytic activity of the photocatalyst. The higher photocatalytic activity of
Bi2O3-NiO than of its individual components in the present study is also attributed to the
separation and transfer of the positive holes and electrons [48–50].

Methyl orange is a colored substance that absorbs light in the wavelength range of
340–530 nm of the UV-visible spectrum. Similarly, Bi2O3, having a bandgap energy of
2.58 eV, also absorbs in the visible region at ~480 nm. Ordinary sunlight is composed of
10% ultraviolet light and 45% visible light in addition to other types of radiation. It shows
that methyl orange masks the absorption region of Bi2O3. Therefore, the available region
of sunlight to be absorbed by the photocatalyst is only 300–340 nm. Hence, it is predicted
that the photocatalytic degradation of methyl orange in the present study takes place
via an indirect excitation process, unlike the normal photocatalytic process in which the
photocatalytic degradation takes place via direct excitation. Furthermore, the inhibition of
the recombination of positive holes and electrons through a synergic effect is also expected
due to the composite photocatalyst. The irradiation of the reaction mixture (methyl orange
and Bi2O3-NiO) causes excitation of the methyl orange due to the absorption of light. The
excited methyl orange then transfers the absorbed energy to the Bi2O3 component of the
photocatalyst. The transfer of this energy promotes the electrons from the VB to CB of Bi2O3
resulting in the formation of the exciton (a pair of positive holes and electrons). The positive
holes are then diffused to the VB of NiO. As a result, the recombination of the positive hole
and electron is inhibited. Similarly, the absorption of ultraviolet light causes the production
of exciton in NiO as well. The photo-induced electron in the CB of NiO then flows to
the CB of Bi2O3 [51–53]. The positive holes and electrons react with water and oxygen,
respectively, and ultimately produce OH radicals. The OH radicals then take part in the
degradation of methyl orange molecules. The formation of positive holes and hydroxyl
radicals was verified experimentally using EDTA and t-BuOH as scavengers for charge
carriers, respectively. It was noted that the photocatalytic activity of Bi2O3-NiO decreased
from 80% to 63 and 41% in the presence of EDTA and t-BuOH, respectively [54–56]. The
proposed process can be summarized as follows (BN: Bi2O3-NiO). This is explained in
Figure 6 as well.
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It is necessary to mention that the excitation of NiO through the transfer of energy
from methyl orange through indirect photocatalysis is less likely, as the energy absorbed
by methyl orange is not sufficient to promote an electron from the VB to CB of the NiO
counterpart of the composite photocatalyst. The higher photocatalytic activity of Bi2O3-NiO
than of its individual components verifies the proposed assumptions.

Based on the proposed mechanism, the rate of photodegradation of MO in the present
study is expressed in the following equation (M: concentration of methyl orange, θM:
fraction of catalyst surface covered by methyl orange).

r = −d[M]

dt
= k OH•θM (3)

As the amount of catalyst is constant and the reaction mixture is open to the atmo-
sphere and continuously irradiated, the rate of reaction therefore does not depend on the
concentration of OH radicals. Hence, the rate expression becomes

r = −d[M]

dt
= k θM (4)
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The surface of the catalyst covered by methyl orange is expressed in terms of Langmuir
adsorption isotherm. Hence, the rate expression modifies as (K: Langmuir constant for
adsorption of methyl orange, Ki: Langmuir constant for adsorption of degradation products,
Pi: concentration of products):

r = −d[M]

dt
= k

KM
1 + KM + ∑ KiPi

(5)

As
KM + ∑ Ki[P]i = M0 = Constant (6)

Therefore, the rate equation becomes

r = −d[M]

dt
= kobs M (7)

where
kobs =

kK
1 + Mo

(8)

On integration of Equation (7)

ln
Mo

Mt
= kobs t (9)

On re-arrangement of Equation (9), we obtain

Mt = Mo e−kobst (10)

The photodegradation data of methyl orange over Bi2O3, NiO, and Bi2O3-NiO were
analyzed according to kinetics Equation (10) using the non-linear method of analysis.
The Microsoft Excel Solver add-in was used for non-linear analyses. Figure 7 shows the
treatment of the degradation data according to kinetics Equation (10). The rate constants
(kobs) are given in Table 2. The rate constant for the photodegradation of MO in the presence
of Bi2O3-NiO was 3.2-fold and 1.7-fold of the rate constant with NiO and Bi2O3, respectively.

Table 2. Rate constants determined by the non-linear method of analysis.

Catalyst kobs R2

NiO 0.0039 0.99

Bi2O3 0.0072 0.99

Bi2O3-NiO 0.0125 0.94

3.3. Dependance of Photocatalytic Activity on Catalyst Dosage

The optimization of catalyst dosage is also an important parameter in catalysis because
the catalytic activity and rate of reaction significantly depend on catalyst dosage. Therefore,
photocatalytic reactions were conducted with various catalyst dosages of Bi2O3-NiO using
a 50 mL (100 mg/L) solution of methyl orange. Figure 8 shows the photocatalytic activity
of Bi2O3-NiO towards the degradation of methyl orange after 120 min of reaction. It is
evident that although the photodegradation increased with the catalyst dosage, the increase
was not continuous. The catalytic activity initially significantly increased up to 0.08 g of the
catalyst and then there was a slight increase with further increase in the catalyst dosage. On
the other hand, the rate of reaction (degradation per gram of catalyst per minute) initially
increased up to 0.08 g of the catalyst and then decreased with further additions. Hence,
0.08 g was chosen as an optimum catalyst dosage in this investigation. It is obvious that the
number of active sites increases with catalyst dosage, therefore the catalytic activity also
increases with catalyst dosage. However, a higher dosage of the catalyst creates a hindrance
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to the penetration of photons due to scattering and turbidity, therefore, the catalytic activity
decreased at the higher dosage [57,58].
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3.4. Dependance of Photocatalytic Activity on Concentration of Methyl Orange

The initial concentration of dye significantly influences the efficiency of the photocat-
alytic process. Therefore, we investigated the dependence of the photocatalytic activity of
Bi2O3-NiO on the concentration of methyl orange. This investigation was accomplished by
performing independent photodegradation experiments using 0.08 g Bi2O3-NiO and 50 mL
solution of methyl orange with concentrations of 50, 100, and 150 mg/L. The removal of
dye due to adsorption was excluded by stirring the reaction mixture in the dark for 30 min.
Figure 9 shows the obtained data. The data shows that the catalytic efficiency of Bi2O3-NiO
is inversely proportional to the concentration of methyl orange. The catalytic efficiency
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of Bi2O3-NiO towards the photodegradation of methyl orange was 100, 80, and 65% after
60 min of reaction with 50, 100, and 150 mg/L solutions of methyl orange, respectively.
The obtained degradation data was analyzed for kinetics analysis according to kinetics
Equation (10). The rate constants were found as 0.0227, 0.0125, and 0.0082 per minute for
the photodegradation of 50, 100, and 150 mg/L solutions of methyl orange, respectively.
An increase in the initial concentration of methyl orange decreased the photocatalytic
performance. Generally, the rate of a reaction is a directly proportional to the concentration
of the reactant. However, in this study, we observed that the rate of reaction is inversely
proportional to the concentration of methyl orange. It is because photons cannot penetrate
the catalyst surface due to the intense color of the solution at higher concentrations. Fur-
thermore, as the catalyst dose was kept fixed in all three experiments the concentration
of hydroxyl radicals was therefore also expected to be the same in all experiments. The
increase in the concentration of methyl orange causes a decrease in the number of hydroxyl
radicals per molecule of methyl orange. Hence, the photocatalytic efficiency is inversely
proportional to the initial concentration of methyl orange [59–62].
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3.5. Comparison of the Present Photocatalyst with Reported Photocatalysts

Various Bi2O3-based photocatalysts have been reported for the photodegradation
of dyes. Dhiman et al. [63] have reported the CoFe2O4@Bi2O3/NiO photocatalyst for
degradation of ofloxacin under visible light. They reported a 92% degradation of ofloxacin
in 90 min using 100 mL of a 10 mg/L solution of ofloxacin. Shahzad et al. [64] have reported
an organosilica-supported Bi2O3 photocatalyst for the degradation of methylene blue and
methyl orange dyes. They obtained about 90% degradation of these dyes using 30 mL of
a 20 mg/L solution of each dye. In another study, Co3O4-Bi2O3 was used as a catalyst
for the photodegradation of rhodamine B dye with 92% degradation efficiency using a
100 mg/L solution of the dye [54]. Similarly, a 94% degradation of MB and MO over the
NiO-Bi2O3 photocatalyst has been reported recently [65]. Banoth et al. [66] have prepared
novel BiFeO3 and BiFeO3-Fe2O3 photocatalysts for the photodegradation of dyes. They
tested their catalysts for the photodegradation of methylene blue dye. Almost complete
degradation of methylene blue was obtained using 40 mg of catalyst and a 10 mg/L (100 mL)
solution of methylene blue dye under visible light with a reaction duration of 70 min.
Poorsajadi et al. [67] have synthesized a CuO-Bi2O3 nanocomposite via a hydrothermal
method. After characterization, they evaluated the photodegradation of methylene blue
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dye using the prepared nanocomposite as a photocatalyst. About 88% degradation of BM
was obtained at an acidic pH using 0.2 g/L of CuO-Bi2O3 nanocomposite as a catalyst and
a 10 mg/L solution of the dye. Zhang et al., [68] have studied the synthesis of Bi2O3@Zn-
MOF composite via a hydrothermal method. They used the prepared composite for the
degradation of rhodamine B dye. They found 97% degradation of the dye using a 50 mL
(40 mL) solution of rhodamine B dye under visible light. In this study, we report Bi2O3-
NiO as a photocatalyst for the degradation of methyl orange. The catalyst developed
in this study is more effective for the degradation of dyes because the almost complete
degradation of methyl orange was observed using a 100 mg/L (50 mL) solution of the dye
under natural sunlight.

4. Conclusions

This study showed that photocatalytic activity can be improved with the formation of
a heterojunction by coupling two suitable semiconductors. The enhanced photocatalytic
performance of the heterojunction is attributed to an extended response in the wide region
of the UV–visible spectrum. The heterojunction photocatalysts play an important role
in the enhancement of drawbacks associated with conventional photocatalysts like poor
light response and low efficiency. Hence, a 50 mL solution of methyl orange (100 mg/L)
was completely degraded under sunlight irradiation in the presence of Bi2O3-NiO. In
comparison, the photocatalytic activity of Bi2O3 and NiO was found to be 67 and 46%,
respectively. The optimum catalyst dosage was found as 0.08g. The degradation data
were analyzed according to first-order kinetics through the non-linear method of analysis
using Solver software. The rate constant for the photodegradation of MO in the presence of
Bi2O3-NiO was 3.2-fold and 1.7-fold of the rate constant with NiO and Bi2O3, respectively.
The photocatalytic activity of Bi2O3-NiO was inversely related to the initial concentration of
methyl orange. The catalytic efficiency of Bi2O3-NiO towards photodegradation of methyl
orange was 100, 80, and 65% after 60 min of reaction with 50, 100, and 150 mg/L solutions
of methyl orange, respectively.
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