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Abstract: In order to identify the effects of the slope and precipitation intensity on the soil runoff
depth and runoff rate, different tillage patterns (slope-ridge direction, horizontal slope-ridge direction,
no-ridge farming) and different slopes (3◦ and 5◦) were set up, and five typical rainfalls from June
to September 2021 were selected, to dynamically monitor the soil-erosion dynamics of the test plots
under different rainfall intensities. The results show that cross-slope-ridge cropping has a retention
effect on runoff, which effectively inhibits the ineffective loss of rainfall confluence. Among these
results, the variation range in the soil runoff depth under cross-slope-ridge treatment conditions was
0.11~0.94 mm, while that under the slope-ridge treatment and no-ridge treatment conditions was
increased to 1.44~12.49 mm and 3.45~14.96 mm, respectively. It found that the loss of soil nutrients
was significantly higher in the slope-ridge direction and in the no-ridge farming condition than
in the horizontal slope-ridge direction. It is worth noting that, as the slope of the cultivated land
increases, the erosive capacity of the precipitation runoff for the soil phosphorus increases, while
the carrying capacity of the soil nitrogen decreases, and the correlation analysis results confirm that
the corresponding relationship between the free diffusion capacity of the soil ammonium nitrogen
and soil erosion is weaker than that between the nitrate nitrogen and soil erosion. The effects
of single factors, such as the slope, ridge direction, and precipitation intensity of the cultivated land,
have a significant impact on the soil water- and fertilizer-loss process, while the influence effect
of the multi-factor coupling process on soil erosion is weakened. It was confirmed that the erosion
process of rainfall runoff on soil nitrogen and phosphorus loss in slope cultivated land is the result
of multi-factor action, and the artificial modification of the tillage mode can effectively regulate
the effect of farmland water and fertilizer loss.

Keywords: slope cultivated land; farming patterns; surface runoff; loss of nitrogen and phosphorus

1. Introduction

Black soil, deemed as a “giant panda in the arable land”, is a precious land resource
on earth, with a black or dark-brown humus surface layer, which is rich in nutrients, and
has high fertility levels and a wide seedability, especially for soybeans, corn, cereals, wheat,
and other growth [1,2]. Thus, the accelerated exploitation of black soil land resources
has gradually increased, due to the increasing demand for food, particular in northeast
China [3]. The excessive mining scale and unreasonable irrigation methods used during
agricultural production produce residual chemicals in the soil, which can be washed into
water bodies by rainfall, leading to water environmental pollution. Meanwhile, the organic
matter content of black soil land decreases as the rain washes away, which can lead to the
nutrients becoming infertile gradually, resulting in a serious threat to the security of food
production [4]. Moreover, the wanton exploitation of agricultural resources by human
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beings has accelerated soil erosion, and promoted the development of erosion ditches,
resulting in an enhancement in the washing and transportation capacity of atmospheric
precipitation toward the soil, while soil solutes converge into water bodies with the effects
of soil erosion, resulting in frequent environmental pollution in rivers and lakes [5,6].

Nitrogen and phosphorus in soil are indispensable nutrients in the good growth
of crops, and an appropriate amount of soil fertilizer supplementation can effectively
promote the growth and development of crops [7]. In order to increase crop yields, soil
fertilizers are often applied excessively, while precipitation generates runoff that causes soil
nutrient loss, and wash excess fertilizers from the soil into low-lying areas, and eventually
into water bodies, leading to the eutrophication of water bodies, and the degradation
of the water environment [8,9]. The nitrogen and phosphorus export processes on small wa-
tersheds vary significantly, depending on cropping patterns. The intensity of the nitrogen
and phosphorus export increases with the rainfall intensity, and the occurrence of stormwa-
ter runoff increases the risk of downstream eutrophication. It was found that rainfall,
extreme rainfall events, the soil type, subsurface characteristics, and human activities af-
fect the surface runoff nitrogen and phosphorus loss from watersheds [10,11]. Therefore,
the prevention, control, and treatment of agricultural nonpoint source pollution are still
important issues restricting the healthy and sustainable development of agriculture [12,13].

However, the pollution of agricultural surface sources is a complex mechanism, which
requires an effective method of identifying the effects of rainfall and climate change on soil.
In general, in the northern seasonal permafrost area, soil erosion is the main control factor
for agricultural nonpoint source pollution [14]. In addition, the soil erosion types and
complex processes in black soil areas are manifested through the characteristics of multi-
force coupling and multi-process superposition [15]. Affected by the seasonal freeze–thaw
cycle, the soil porosity increases, large pores and fissures continue to develop, the stability
of the soil aggregates decreases, the soil erosion resistance weakens, and the soil hydraulic
erosion intensifies [16]. With the increase in the water flow intensity, fine trenches gradually
develop in the soil, and the eroded sediment between the fine trenches is continuously
transported to wide trenches, and the effect of the cultivated land soil erosion is significantly
increased [17,18]. In addition, soil erosion is complicated by short-term rainfall in summer,
and the soil structure is changed by short-term heavy rainfall, which promotes changes
in the surface and underground sand production characteristics of sloped cultivated land,
and the modification force becomes the main driving force behind surface erosion [19].

In recent years, scholars have carried out a large amount of exploration and research
into the control factors behind soil erosion, and have confirmed that human transforma-
tion activities, such as farmland soil tillage measures, straw return, crop rotation systems,
and forest belt construction, have had a positive impact on the prevention and control
of soil erosion [20–22]. Cultivation practices significantly change the soil’s physicochemical
properties, and regulate slope hydrological processes; as proposed by Ahmed et al. [23],
transverse ridge cropping significantly increases the surface roughness, increases the ca-
pacity for surface runoff accumulation, and improves the soil and water conservation
capacity of sloped cultivated land. After the decomposition of stubble and straw, the soil
organic matter content increased, the cohesion ability of small-particle soil aggregates was
improved, the soil stability was enhanced, and the soil erosion resistance effect was corre-
spondingly improved [24]. Forest belt construction can block and absorb surface runoff,
conserve water sources, and inhibit the germination and development of fine soil trenches
in farmland [25]. In addition, the density of fine trenches decreases with the increase
in the forest belt density, but the influence of the forest belt on fine furrow erosion shows
a stable–decreasing–disappearing trend with the increase in the forest belt distance [26].
Based on the above analysis, it can be seen that previous scholars have carried out a lot
of research on the soil erosion process and mechanism, the main environmental factors
controlling soil erosion, and the coupling effect of the soil erosion environment, but there
are few studies on the synergistic response relationship between nitrogen and phosphorus
loss and rainfall runoff that is involved in the soil erosion process.
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This study uses a one-way analysis of variance method to address the study of the migra-
tion pattern of soil nitrogen and phosphorus in hilly and diffuse arable land in the northeastern
black soil region during rainfall runoff, which can respond to the impact of human activities
on the water environment and, thus, contribute to the improvement of the source control
of agricultural surface source pollution. It aims to effectively prevent and control the effects
of water and soil environmental pollution caused by human agricultural activities, and provide
data-based support for the healthy and sustainable use of cultivated land on black soil slopes.

2. Materials and Methods
2.1. Overview of the Study Area

The experimental area is locating in the runoff field of the Heilongjiang Institute
of Soil and Water Conservation, located on the south bank of the Songhua River, belonging
to the southern part of the Songnen Plain, with the geographical coordinates E 127◦24′47′′,
N 45◦44′57′′. The landform belongs to the hilly type, the terrain slopes from north to south,
and the overall trend from northwest high to southeast low shows a changing trend;
the regional location map is detailed in Figure 1. The study area is located in the middle
temperate continental monsoon climate zone, with high temperatures, a rainy summer, and
a cold and dry winter. The average minimum temperature in winter is −37.6 ◦C, the aver-
age maximum temperature in summer is 37.2 ◦C, and the average annual temperature is
4.1 ◦C. The average annual precipitation is 681 mm, the precipitation is mainly concen-
trated in June~August, and the annual runoff depth is 90 mm. After manual sampling
and analysis, it can be found that the 0~35 cm soil layer in this area is black loam, and
the soil layer below 35 cm is dark-brown clay. The soil pH value was 6.65, the organic
matter content was 41.32 g/kg, and the soil total nitrogen and total phosphorus contents
were 2.03 and 1.59 g/kg, respectively. In addition, the soil alkaline hydrolysis nitrogen
content was 172.41 mg/kg, available phosphorus 41.12 mg/kg, and available potassium
213.14 mg/kg. The soil texture of the test area is fertile and suitable for crop growth.
However, with the increase in the intensity of agricultural water and soil resource develop-
ment, the regional surface vegetation and underlying surface have been seriously damaged,
and the area has become a key area for soil erosion control in the national black soil area.
In order to respond to the erosion problem in the region, the one-way analysis of variance
method is introduced, to analyze the migration pattern of soil nitrogen and phosphorus
in hilly diffuse arable land during rainfall runoff.
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2.2. Runoff Site Layout

Considering the topographic characteristics of sloping land in the black soil area, and
the characteristics of the significance of rainfall production flow differences, the slope
of the experimental community was set to 3◦ and 5◦, respectively, and each slope cell
was set with the three methods of cross-ridge, along-the-ridge, and no-ridge, resulting
in a total of six treatments (Table 1). The dimensions of each runoff cell were set to 5 × 20 m,
the ridge width and height of the cross and trail ridges were set to 60 cm, and the height
of the ridge was 15 cm (Figure 2). According to the local traditional farming method,
the plot was uniformly rotated before sowing in spring, a nitrogen (N)–phosphorus (P2O5)–
potassium (K2O) compound fertilizer with a ratio of 15:35:10 was applied as the bottom
fertilizer, the amount of each community was 3.0 kg, and then no more fertilizer was
applied. The surface of the ridgeless plot was raked flat after the ground was turned
and fertilized, and the long grass was removed at times during the monitoring period,
to reduce surface disturbance as much as possible. At the beginning of the test, soil samples
from the soil test cell were collected, the soil structure was analyzed using a laser particle
size analyzer (Winner 2308, Jinan micro-nano, Jinan, China), the dry bulk density of the soil
was determined via the ring-knife method, and the soil cation exchange amount was
determined via the ammonium acetate method [27].
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Figure 2. The experimental plots and sediment collection device. (A–C) represents cross-ridge, no-ridge,
and along-the-ridge plots; (D–F) represents the precipitation and sediment collection devices.

In addition, the bottom of the runoff community is connected to the rainwater and
sediment collection device, to improve the separation efficiency of the soil solution and
sediment, and to increase the standing buffer time of the soil solution, the runoff community
soil erosion collector adopts a three-stage diversion barrel. The bottom area of the first-stage
diversion barrel is 0.5027 m2, the height is 80 cm, and the diversion height of the diversion
barrel is 60 cm; the bottom area of the secondary diversion barrel is 0.1964 m2, the height is
60 cm, and the diversion barrel diversion height is 50 cm; the bottom area of the collection
barrel is 1967 cm2, and the height is 60 cm. Through the measurement of the total amount
of precipitation flow, combined with the area of runoff cells, the depth of the rainfall runoff
in the experimental community was obtained [28].
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Table 1. Basic overview of runoff communities.

No. Slope Ridge Type
Mechanical Composition of the Soil Soil Dry

Density
(cm3·g−1)

Initial
Moisture
Content

(%)

Cation
Exchange
Capability
(cmol·kg−1)

Clay
(<0.002 mm)

Silt
(0.002–0.02 mm)

Sand
(>0.02 mm)

A1 3◦ Ridge cultivation
along the slope 27.5 42.2 31.3 1.32 25.62 8.63

A2 3◦ Cross-slope-ridge
direction 26.3 43.5 30.2 1.37 24.68 7.92

A3 3◦ No-ridge cropping 28.6 44.5 26.9 1.34 26.35 7.63

B1 5◦ Ridge cultivation
along the slope 27.2 46.9 25.9 1.31 25.97 8.12

B2 5◦ Cross-slope-ridge
direction 26.9 45.8 27.3 1.29 26.79 8.35

B3 5◦ No-ridge cropping 28.8 44.3 26.9 1.35 27.68 8.46

2.3. Rainfall Monitoring Process

During the observation period in 2021, the number of days of rainfall was 69 days,
the number of rainfall times was 59, the number of rainfall times leading to the production
flow of runoff communities was 17, the number of occasions of erosive rainfall in runoff
communities was 21, the erosive rainfall was 430.2 mm, and the erosive rainfall erosion
force was 2350.57 MJ·mm/(hm2·h). The maximum daily rainfall is 48.4 mm, the maxi-
mum rainfall erosion force is 728.37 MJ·mm/(hm2·h), the annual rainfall erosion force
is 2900.86 MJ mm/(hm2·h), and the total rainfall is 600.6 mm. To reveal the mechanism
of different rainfall intensities on the flow production, sand production, and nutrient
loss in arable land, and to analyze the effect of the blocking and controlling mechanisms
of different arable land types on water and fertilizer loss from the perspective of soil hydro-
dynamics, five typical rainfall processes during the experimental period were selected as
research objects. The rainfall characteristics are shown in Table 2.

Table 2. Characteristics of typical precipitation processes during the test period.

Date
of Rainfall

(y-m-d)

Rainfall
(mm)

The Rainfall Lasts
for a Long Time

(min)

Average Rainfall
Intensity
(mm·h−1)

I30
(mm)

Rainfall Erosion
(MJ·mm/(hm2·h))

Type
of Rainfall

2021-07-02 9.8 105 5.6 16.1 36.83 light rain
2021-07-07 28.7 818 2.1 31.6 221.34 heavy rain
2021-07-08 27.3 284 5.8 28.6 202.35 heavy rain
2021-08-25 43.3 535 4.9 39.8 445.61 rainstorm
2021-09-11 11.7 1459 0.5 5.8 11.05 moderate rain

2.4. Sample Collection and Analysis
2.4.1. Water Sample and Sediment Separation Method

When collecting the sub-rainfall runoff samples, we first mixed the water samples
in the collection tank, and stirred them thoroughly, then quickly collected the water-and-
sand mixed samples in washed polyethylene plastic bottles. After the sample had stood
for 12 h, the sediment was placed in the oven, and dried at 105 ◦C for 24 h. The drying
sediment was weighed using an electronic balance (with an accuracy of 0.01 g), and
the sediment obtained was used in the measurement of sand in the community diameter,
and the measurement of nitrogen and phosphorus in the sediment [29,30].

Instantaneous water samples at the outlet of the runoff cell were collected every
0.5 h within the first two hours after rainfall production, and then every 1 h until the end
of the runoff. Each sample’s sampling volume was 500 mL, and the collected water samples
were acidified to pH 1~2, sealed, stored at 4 ◦C, and then sent to the laboratory for analysis
within 24 h, for the determination of the nitrogen and phosphorus content in the runoff [31].
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2.4.2. Water Sample and Sediment Analysis Method

The obtained soil runoff water sample was passed through a 0.45 µm filter mem-
brane, and the oxidant prepared using potassium persulfate and sodium hydroxide was
added to the filtered water sample, and oxidized and decomposed via heating at 120 ◦C
for 30 min, to ensure that the nitrogenous compounds in the water sample had decomposed
into nitrate. Then, the total nitrogen content was measured with an ultraviolet spectropho-
tometer [32]. In addition, an appropriate amount of the water sample was added to the
potassium persulfate solution, and the phosphorus concentration was measured via heating
and oxidation at 120 ◦C for 30 min, to ensure that the phosphorus-containing compounds
in the water sample were oxidized and decomposed into orthophosphate, and then counted
into an ascorbic acid solution, and thoroughly mixed. Then, the total phosphorus concen-
tration was measured busing a spectrophotometer [33]. In addition, the nitrate nitrogen
and ammonium nitrogen content in aqueous solutions were analyzed using flow analyz-
ers (Autoanalyser III, Bran + Luebbe GmbH, Hamburg, Germany), while the available
phosphorus was determined directly via the colorimetric colorimetry of antimony ascorbic
acid without heat treatment [34]. For the testing and analysis of the total nitrogen, nitrate
nitrogen, ammonium nitrogen, total phosphorus, and available phosphorus in the soil,
various forms of nitrogen and phosphorus elements need to be extracted from the soil
in advance, and then tested and analyzed, according to the above methods.

2.5. Analysis of the Erosion Mechanism

The description of the flow regime and properties of slope runoff is usually charac-
terized by hydraulics and erosion sand production hydrodynamic parameters, including
the runoff depth, flow velocity, Reynolds number, Froude number, and drag coefficient.
Of these, the runoff depth and velocity are the input elements, and are obtained through
experimental measurements, while the other parameters are calculated using the relevant
open-channel hydraulic equations:

The flow rate measured during the test is only the surface flow rate, and has to be
corrected in order to obtain the average flow rate. This is calculated by the following equation:

V = kVm (1)

where Vm is the surface flow velocity; V is the mean flow velocity; k is a coefficient of 0.67
for laminar flow, 0.7 for transition flow, and 0.8 for turbulent flow [35].

The Reynolds and Froude numbers are used to determine the flow pattern of the water.
The Reynolds number (Re) is used to determine whether the flow is laminar or turbulent.
When Re < 500, the flow is laminar; when Re > 500, the flow is turbulent. The Froude
number (Fr) is the ratio of the inertial force of the flow to the gravitational force, and is
used to determine whether the flow is rapid or slow. When Fr < 1, the flow is slow; when
Fr > 1, the flow is fast. The expressions are as follows:{

Re = VR
ν

Fr = V√
gh

(2)

where v is the kinematic viscosity coefficient (cm2·s−1); R is the hydraulic radius (cm); V is
the mean flow velocity (cm·s−1); and h is the runoff depth (m).

The coefficient of resistance (f ) is a general term for the forces that impede the move-
ment of water from the soil–water interface during the downward movement of runoff,
and is expressed as follows:

f =
8gRJ

V2 (3)

where R is the hydraulic radius (m); J is the water surface energy slope (m·m−1); and V is
the average flow velocity of the water (m·s−1).



Water 2023, 15, 3148 7 of 18

The runoff shear is the main driving force for separating the soil, and dispersing
the soil particles and carrying them off the slope. It is calculated as follows:

τ = γRJ (4)

where τ is the runoff shear (Pa); and γ is the water gravity (N·m−3).
There is a significant correlation between water flow power and runoff shear, which is

expressed using Equation (5).
W = τV (5)

where W is the flow power (N·m−1·s−1); and V is the average flow velocity (m·s−1).
The concept of the power per unit of flow is based on the conventional sediment

transport equation, and defines the power per unit of flow as the product of the flow
velocity and the slope drop.

ϕ = V J (6)

where ϕ is the power per unit of water flow (m·s−1); and J is the water surface slope
energy (m·m−1).

2.6. Data Processing

The data processing, plotting, and tabulation used SPSS 22.0 and Sigmaplot 12.5 software.
We calculated the mean and standard deviation (SD) for each set of trial data. One-way
ANOVA was used to test the differences between treatments at a significance level (p) of 0.05
(Duncan’s multiple range test).

3. Results and Discussion
3.1. Runoff Sand Effect

The precipitation and sand effect of the runoff community is shown in Figure 3.
Firstly, the analysis of the runoff characteristics under different rainfall intensities showed
that, from the first to the fifth rainfall, all three different types of tillage treatment exhibited
a gradual increase in runoff depth with the increasing rainfall intensity. This result was
positively correlated with the trends in the average rainfall intensity, I30, and duration
of rainfall in Table 2 above. In addition, in the type A test cell (3◦), under the condition
of precipitation of 9.8 mm (the first precipitation), the runoff depth of the downslope-
ridge test cell was 1.44 mm, while, in the cross-slope-ridge direction and the no-ridge
test cell, the runoff depth became 0.11 mm and 3.45 mm, respectively, and the transverse
ridge crop effectively inhibited the precipitation flow effect of the sloped cultivated land,
while the ridgeless crop increased the runoff depth of the precipitation flow to a certain
extent, as in Liu et al. [36]. The proposed contour ridge of the cross-slope ridge can
effectively reduce the kinetic energy of rainwater, slow down the erosion and erosion
effect of heavy rainfall on slope cultivated land, and reduce the runoff loss on slope
cultivated land. When the precipitation increased to 43.3 mm (the fourth precipitation),
the soil runoff depth increased by 7.76, 0.69, and 8.50 mm under the three cultivation
modes compared with the first precipitation conditions, which also confirmed the findings
of Hou et al. [37], that the precipitation intensity affects the slope recharge coefficient
of slope cultivated land, and with the increase in precipitation intensity, the soil infiltration
rate and cumulative infiltration decrease, and the precipitation production flow increases.
At the same time, in the type B test cell (5◦), all three different tillage patterns showed
further increases in runoff depth relative to the A test cell (3◦), which confirmed that, with
the increase in the slope cultivated land slope, the runoff depth of the experimental cell
showed a significant improvement trend, which, once again, verified the results of Zhao
et al. [38]. The stagnation of the slope properties decreases with the increase in the slope,
and the soil yield rate and runoff depth show a significant increase trend under the same
precipitation intensity.
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Farmland soil loss is affected by multiple environmental factors, and atmospheric
precipitation production and sediment production have a strong transportation capacity,
which has become the main driving force behind topsoil erosion in northern China [39].
Precipitation, topography, and farming patterns are closely related to the soil erosion and
loss process [40]. Specific analysis of sediment loss under precipitation erosion shows
that, under the conditions of a type A test area (3◦) and precipitation of 9.8 mm (the first
precipitation), the sediment loss in the downslope-ridge test community is 1.34 kg, while
the sediment loss in the cross-slope-ridge direction and the non-ridge test community
is 0.35 kg and 2.53 kg, respectively, indicating that the transverse ridge crop reduces
the sediment-carrying capacity of the precipitation flow, and effectively inhibits the effect
of farmland soil erosion. Luo et al. [41] also proposed in the study that the sediment
loss from slope-ridge treatment is greater than that from horizontal slope-ridge treatment
during the process of rainfall production flow, and the sediment loss from cross-slope-
ridge treatment accounts for only 30~44% of the slope treatment. During the monitoring
process, with the increase in the runoff depth, the soil sand production increased, and
when the precipitation reached the maximum (the fourth precipitation), the soil and yield
increased to 9.27 kg under the slope treatment, while the soil sand yield increased to 0.67
and 14.08 kg under the transverse-ridge and no-ridge treatment, respectively. The long-term
field observations of Peng et al. [42] have found that, as the intensity of rainfall increases,
the higher the impact capacity of raindrops on topsoil, and the easier it is for soil particles
to disperse, meaning that the ability of the water flow to transport sediment is enhanced,
thereby increasing the loss of runoff and sediment nutrients.

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.
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3.2. Nitrogen and Phosphorus Loss Effects in Runoff Communities

The nitrogen in soil, as an important element replenishment, is conducive to promoting
photosynthesis and protein synthesis in crops, accelerating the accumulation of substances
and nutrient metabolism in crops, and playing an important role in crop growth [43,44].
With changes in the climate environment, nitrogen is lost in different forms. There are
many factors affecting nitrogen loss, and surface runoff is the main driving force behind
the migration of dissolved matter in the soil [45]. In this study, the effect of nitrogen
loss in the soil erosion caused by rainfall runoff was discussed in depth, and the nitro-
gen loss in each runoff area showed an upward trend with the increase in precipitation
(Figure 4). Comparing the characteristics of soil nitrate nitrogen, ammonium nitrogen,
and total nitrogen loss under different rainfall intensity conditions, the soil nitrogen loss
gradually increases with rainfall, i.e., the increase in the average rainfall intensity and
cumulative rainfall. In addition, the soil nutrient loss also showed significantly different
effects on different slopes and tillage patterns. Firstly, in the type A test cell (3◦), under
the condition of precipitation of 9.8 mm (the first precipitation), the ammonium-nitrogen
loss in the downslope-ridge direction test cell was 4.74 g/hm2, while, in the cross-slope-
ridge direction and the no-ridge test area, the ammonium nitrogen loss became 1.98 g/hm2

and 10.18 g/hm2, respectively, and the transverse ridge crop effectively inhibited the loss
effect of soil nitrogen, while the non-ridge crop increased the nitrogen loss to a certain
extent, as reported by [46] The results show that the interception effect of the cross-slope
on runoff prolongs the interaction time between runoff and the soil surface, which buys
time for the rainwater to fully infiltrate into the soil, and then reduces the erosion, and car-
ries the effect of precipitation runoff on the soil nutrients. When the precipitation increased
to 43.3 mm (the fourth precipitation), the soil ammonium nitrogen loss under the three
cultivation modes increased by 86.46, 11.46, and 114.30 g/hm2 compared with the first
precipitation conditions, indicating that, with the increase in the precipitation intensity,
the impact of precipitation runoff on the ground surface was greater, and the enrichment
effect of the erosion sediment on the soil nitrogen was increased [47].

Water 2023, 15, x FOR PEER REVIEW 10 of 19 
 

 

reported by [46] The results show that the interception effect of the cross-slope on runoff 
prolongs the interaction time between runoff and the soil surface, which buys time for the 
rainwater to fully infiltrate into the soil, and then reduces the erosion, and carries the effect 
of precipitation runoff on the soil nutrients. When the precipitation increased to 43.3 mm 
(the fourth precipitation), the soil ammonium nitrogen loss under the three cultivation 
modes increased by 86.46, 11.46, and 114.30 g/hm2 compared with the first precipitation 
conditions, indicating that, with the increase in the precipitation intensity, the impact of 
precipitation runoff on the ground surface was greater, and the enrichment effect of the 
erosion sediment on the soil nitrogen was increased [47]. 

 
Figure 4. Analysis of the soil nitrogen loss effect. Note: (a) the soil ammonium nitrogen loss at a 3° 
slope; (b) the soil nitrate nitrogen loss at a slope of 3°; (c) the total soil nitrogen loss at a 3° slope; (d) 
the soil ammonium nitrogen loss at a slope of 5°; (e) the soil nitrate nitrogen loss at a slope of 5°; 
and (f) the total soil nitrogen loss at a slope of 5°. The different le ers indicate significant differences 
of soil nitrogen content (p < 0.05). 

On the contrary, in the type B test cell (5°), when the precipitation was 9.8 mm, the 
ammonium nitrogen loss in the downslope ridge to the test cell became 4.04 g/hm2, which 
decreased by 14.76% compared with the class A test cell (3°) and, under the conditions of 
transverse ridge cultivation and no-ridge cropping, the ammonium nitrogen loss de-
creased by 31.81% and 8.46% relative to the class A test cell (3°), respectively. On the con-
trary, the loss of nitrogen showed a gradual downward trend. This may be due to the 
relatively high soil-organic-ma er content in the black soil area, the organic complexation 
between the soil particulate organic functional groups and nitrogen, and a decrease in the 
free capacity of nitrogen [48]. At the same time, with the increase in the slope, the soil 
precipitation production rate increases, the runoff time is shortened under the same rain-
fall intensity, nitrogen and soil colloids cannot be fully desorbed, and the effect of soil 
nitrogen loss is weakened. This conclusion verifies the research results of Ao et al. [49]; 
the downslope in different rain intensities is linearly correlated with the amount of soil 
nitrogen loss per unit area; with the increase in the rain intensity, the soil nitrogen loss 
increases significantly; and, when the rain intensity is constant, the slope change has li le 
effect on the change rate of nitrogen loss. 

The phosphorus in soil plays an important role in plant growth and development, 
which is related to plant energy biochemical reactions, and is essential for plant cell divi-
sion and meristem development [50,51]. There are many factors affecting phosphorus loss, 
such as migration and transformation mechanisms under hydrothermal transport, leach-
ing, volatilization, and surface runoff [52]. The phosphorus loss in runoff communities is 

Figure 4. Analysis of the soil nitrogen loss effect. Note: (a) the soil ammonium nitrogen loss at a 3◦
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On the contrary, in the type B test cell (5◦), when the precipitation was 9.8 mm,
the ammonium nitrogen loss in the downslope ridge to the test cell became 4.04 g/hm2,
which decreased by 14.76% compared with the class A test cell (3◦) and, under the con-
ditions of transverse ridge cultivation and no-ridge cropping, the ammonium nitrogen
loss decreased by 31.81% and 8.46% relative to the class A test cell (3◦), respectively.
On the contrary, the loss of nitrogen showed a gradual downward trend. This may be
due to the relatively high soil-organic-matter content in the black soil area, the organic
complexation between the soil particulate organic functional groups and nitrogen, and a de-
crease in the free capacity of nitrogen [48]. At the same time, with the increase in the slope,
the soil precipitation production rate increases, the runoff time is shortened under the same
rainfall intensity, nitrogen and soil colloids cannot be fully desorbed, and the effect of soil
nitrogen loss is weakened. This conclusion verifies the research results of Ao et al. [49];
the downslope in different rain intensities is linearly correlated with the amount of soil
nitrogen loss per unit area; with the increase in the rain intensity, the soil nitrogen loss
increases significantly; and, when the rain intensity is constant, the slope change has little
effect on the change rate of nitrogen loss.

The phosphorus in soil plays an important role in plant growth and development,
which is related to plant energy biochemical reactions, and is essential for plant cell di-
vision and meristem development [50,51]. There are many factors affecting phosphorus
loss, such as migration and transformation mechanisms under hydrothermal transport,
leaching, volatilization, and surface runoff [52]. The phosphorus loss in runoff communi-
ties is shown in Figure 5, and the phosphorus loss in each runoff area shows an upward
trend with the increase in precipitation. Firstly, during the five regular rainfall events,
the loss of soil-adequate phosphorus and total phosphorus gradually increased with the in-
creased rainfall intensity. Taking the para-tillage treatment as an example, when the rainfall
intensity increased from 9.8 to 43.3 mm, the changes in the adequate soil phosphorus
under the slope conditions of 3◦ and 5◦ were 4.28~68.87 g/hm2 and 5.53~102.78 g/hm2.
In the type A, we found that the transverse ridge crop effectively inhibited the loss effect
of soil phosphorus, while the ridgeless crop increased the phosphorus loss to a certain
extent, just as Bayad et al. [53] reported. The study confirmed that the coupled straw
mulching of cross-slope-ridge farming can effectively reduce the total phosphorus loss
of surface runoff from slope cultivated land by 36.84~79.66% compared with conventional
tillage treatment and single optimized tillage treatment. When the precipitation increased
to 43.3 mm (the fourth precipitation), the soil particulate phosphorus loss under the three
cultivation modes increased by 68.87, 8.07, and 99.84 g/hm2, respectively, compared with
the first precipitation conditions, which may be attributed to the fact that phosphorus
is mainly present in the soil surface layer in the granular state, which is easily splashed
by raindrops during rainfall, and accompanied by runoff erosion loss. At the same time,
in the type B test cell (5◦), when the precipitation was 9.8 mm, the loss of granular phospho-
rus in the downslope ridge to the test cell became 5.53 g/hm2, 1.63, and 11.41, increased
by 29.20% compared with the class A test cell (3◦), and under the conditions of trans-
verse ridge cultivation and no ridge cropping, the loss of granular phosphorus increased
by 45.53% and 53.98% compared with the class A test cell (3◦), respectively, with the increase
in the slope cultivated land slope. The loss of particulate phosphorus in the experimental
community showed a significant growth trend.
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Figure 5. Analysis of the soil phosphorus loss effect. Note: (a) the soil particulate phosphorus loss
at a slope of 3◦; (b) the total soil phosphorus loss at a 3◦ slope; (c) the soil particulate phosphorus
loss at a slope of 5◦; and (d) the total soil phosphorus loss at a 5◦ slope. The different letters indicate
significant differences of soil phosphorus content (p < 0.05).

3.3. Analysis of Influencing Factors behind Water and Fertilizer Loss in Runoff Communities

To further reveal the synergistic effect of soil water and fertilizer loss in sloped culti-
vated land, the response relationship between cultivated land runoff characteristics and
nitrogen and phosphorus loss processes was further explored, as shown in Figure 6.

The loss of soil nitrogen and phosphorus increased with the increase in runoff depth
and soil erosion, showing a linear correlation (the significance passed the p < 0.05 test),
and the slope of the fitting curve reflected the carrying capacity of soil erosion to soil
nutrients. Firstly, the slope of the fitting curve between the soil runoff depth and ammonium
nitrogen loss is 6.08, while the slope of the fitting curve between the runoff depth and
soil nitrate nitrogen loss is 32.98, which shows a significant improvement trend compared
with ammonium nitrogen, indicating that the transport capacity of soil runoff for nitrate
nitrogen is stronger than that for ammonium nitrogen. This also verifies that the ammonium
ions proposed by [54] are easily adsorbed by negatively charged soil particles when they
move with the runoff, while the adsorption performance of nitrate ions and soil particles
is weakened, and the synergistic effect on rainfall washing is strong. In addition, with
the increase in precipitation intensity, raindrop splashing and runoff continue to destroy
large-grained aggregates in the soil, forcing the release and decomposition of ammonium
ions in soil aggregates, which aggravates the loss effect of ammonium ions in farmland
soil [55]. Analyzing the correlation between the soil runoff depth and phosphorus loss,
it can be seen that, with the increase in the soil runoff depth, the soil available phosphorus
and total phosphorus loss show a clear increasing trend, indicating that the response effect
of soil phosphorus migration on the soil runoff gradually increases [56].
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The slope of the fitting curve between soil erosion and soil nitrogen and phosphorus
loss reflects the nutrient content carried by soil erosion; firstly, the slope of the fitting curve
between soil erosion and ammonium nitrogen loss is 6.07, and similarly, the transport
capacity of nitrate nitrogen and total nitrogen is significantly improved, and the slope
of the fitting curve between soil erosion and nitrate nitrogen and the total nitrogen loss
becomes 30.61 and 45.18, respectively, which further verifies that soil loss has a strong
carrying effect on nitrate nitrogen. Similarly, the increase in soil erosion also increased
the phosphorus loss effect, indicating that there is a strong coupling synergistic effect
between phosphorus migration pathways and soil particles, and that soil erosion will lead
to obvious fertility loss consequences [57,58].

In addition, the significance analysis of the influence effect of the precipitation, ridge
direction, slope, and other factors on soil water and fertilizer loss was further carried out,
and the results are shown in Table 3. Firstly, the analysis of single factors had a significant
effect on the depth of runoff, sediment yield, and nutrient loss in hilly cultivated land
(p < 0.001), which fully confirmed the above statistical analysis results, confirming that
the rainfall factor is the main driving factor behind the occurrence and development
of runoff erosion, and the cultivated land slope and ridge direction affect the hydraulic
characteristics of surface runoff [59]. Especially in slope farming, a large catchment area
will be formed in the rainy season, and the erosion force caused by surface runoff is strong,
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and the cultivated land very easily forms fine ditches and shallow ditches on the slope
surface, resulting in serious soil erosion and the thinning of the black soil layer, year
by year [60]. When the two factors interact, their influence on the soil water and fertilizer
loss process is weakened, especially the loss of ammonium nitrogen, and the combined
effect of the precipitation and slope has no significant effect on it. When the three factors
interacted, the rainfall erosion only had a significant effect on the loss of soil nitrate nitrogen
and available phosphorus (p < 0.05), but had a weak effect on other indicators. This also
shows that soil water and fertilizer loss under rainfall conditions is a very complex process,
which is affected by many factors and conditions [61].

Table 3. Analysis of the influencing factors on soil water and fertilizer loss.

Treatment

Runoff Is Deep Sand Production Ammonium
Nitrogen Nitrate Total Nitrogen Available

Phosphorus Total Phosphorus

F-
Value Sig. F-

Value Sig. F-Value Sig. F-
Value Sig. F-

Value Sig. F-
Value Sig. F-

Value Sig.

Rainfall 178.53 0.000 ** 257.23 0.000 ** 287.67 0.000 ** 351.78 0.000 ** 457.67 0.000 ** 231.89 0.000 ** 387.96 0.000 **
Ridge direction 152.36 0.000 ** 221.56 0.000 ** 89.36 0.000 ** 125.56 0.000 ** 172.35 0.000 ** 112.45 0.000 ** 56.35 0.000 **

slope 85.65 0.037 * 159.36 0.025 * 112.32 0.072 135.64 0.114 86.36 0.089 72.36 0.023 * 22.35 0.017 *
Rainfall × ridge

direction 56.48 0.005 ** 37.58 0.002 ** 54.16 0.000 ** 52.12 0.000 ** 35.64 0.000 ** 28.56 0.001 ** 35.48 0.000 **

Ridge direction × slope 65.69 0.008 ** 52.13 0.025 * 32.11 0.015 * 21.68 0.015 * 63.56 0.011 * 42.15 0.007 ** 21.48 0.005 **
Rainfall × slope 19.74 0.033 * 12.48 0.013 * 12.45 0.079 9.36 0.046 * 14.58 0.028 * 16.35 0.034 * 14.65 0.027 *
Rainfall × ridge
direction × slope 15.36 0.065 6.35 0.079 3.63 0.081 4.56 0.022 * 5.28 0.137 5.27 0.037 * 3.26 0.143

Note(s): “**” represents that the correlation passes the significance test of p < 0.01; “*” represents that the correlation
passes the significance test of p < 0.05.

4. Discussion
4.1. Analysis of Rainfall-Runoff Processes

In order to further analyze the influence of precipitation processes on the runoff
generation and erosion and sand production processes, the fourth rainfall was used as
an example, to explore the trend in rainfall runoff with rainfall ephemeris under dif-
ferent tillage patterns, and the measured runoff reduction rate is shown in Figure 7.
During the initial rainfall period, the soil water content was unsaturated, and rainwa-
ter infiltrated rapidly, so the runoff reduction rate was at a high level. As time passes,
the soil gradually reaches saturation, and the soil rainfall runoff gradually tends to be
stable, and at a lower level, and the erosion effect of runoff on the sediment increases.
This also verifies the findings of the empirical study of Zhang et al. [62], who reported that
soil runoff and sand production show linear and S-curve growth trends, respectively, with
increasing rainfall ephemeris. In addition, through a comparison of the trends in the soil
runoff reduction rate under different tillage patterns, it can be seen that, during the initial
period, the rate of reduction of the rainfall runoff was greatest in the cross-monopoly
tillage treatment, followed by the smooth-monopoly tillage, while the lowest reduction
rate was found in the no-monopoly tillage treatment and, at the end of precipitation,
the rate of reduction of the soil rainfall runoff was, in descending order, cross-monopoly
tillage > smooth-monopoly tillage > no-monopoly tillage. When St. Gerontidis et al. [63]
studied the effect of down-slope tillage versus contour tillage on soil-particle displacement,
it was found that contour tillage effectively inhibited the soil water and fertilizer loss
process. In addition, the rate of reduction of soil rainfall runoff decreased as the slope
of the cultivated land increased, indicating a gradual increase in the runoff and sand
production effects of the precipitation processes.
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4.2. Hydrodynamic Characteristics of Rainfall Runoff

The characteristics of the changes in the hydraulic parameters of rainfall runoff
from sloping cultivated land are shown in Table 4. For the runoff Reynolds coefficient (Re),
the soil runoff Reynolds coefficient was 96.52 when the slope was 3◦ and the precipitation
was 9.8 mm, and it increased gradually with the increase in precipitation. Under cross-slope
tillage, the soil Reynolds coefficients show a significant decrease compared to the down-
slope treatment, which confirms that cross-slope tillage has a greater effect on the generation
of rainfall runoff. In addition, under the no-monopoly treatment, the soil runoff Reynolds
coefficient increased significantly, with the overall level fluctuating between 153.41 and
517.46, and the runoff state changed from laminar flow to turbulent flow. The higher
the Reynolds coefficient, the more turbulent the runoff, the greater the erosive transport
capacity of the runoff, and the more easily the particles on the slope are displaced [64].
The trend characteristics of the Reynolds coefficients again confirm that para-tillage and
cross-tillage alter the flow patterns of rainfall runoff, and that cross-tillage is the most
effective in reducing the effect of the soil-flow rates [65]. Similarly, analysis of the Four-
drinier number shows that, as the amount of rainfall increases, the soil runoff changes
from slow to fast, and cross-monopoly tillage is most effective in reducing the Fourdrinier
number by 56.14%, to 64.38%, compared to no-monopoly tillage. On the contrary, with
increasing rainfall, the soil runoff resistance coefficient showed a gradual decrease, mainly
because the larger the Reynolds coefficient, the stronger the turbulence of the rainfall runoff,
and the greater the erosive transport capacity of the runoff, meaning the slope particles
migrate more easily and, therefore, the resistance to runoff along the course is extremely
reduced [66].

Table 4. Characteristics of the hydrodynamic parameters.

Slope Rainfall
(mm)

Re Fr f

Downhill Cross Ridgeless Downhill Cross Ridgeless Downhill Cross Ridgeless

3◦

9.8 96.52 23.78 153.41 0.42 0.16 0.39 43.62 86.33 24.56
28.7 239.94 51.35 382.93 0.49 0.25 0.57 35.24 65.27 18.61
27.3 218.86 45.27 352.24 0.54 0.23 0.62 32.45 59.34 15.57
43.3 276.55 60.64 517.46 0.63 0.26 0.73 28.36 51.45 13.91
11.7 110.47 26.42 180.41 0.39 0.18 0.47 38.63 76.86 21.98

5◦

9.8 104.92 27.41 175.03 0.39 0.19 0.45 39.41 81.52 21.32
28.7 263.41 34.85 434.07 0.64 0.34 0.69 27.46 60.58 15.67
27.3 229.61 47.61 454.70 0.68 0.31 0.75 29.36 55.23 14.75
43.3 389.53 69.41 567.41 0.76 0.39 0.82 24.16 48.26 11.82
11.7 135.38 32.04 208.24 0.45 0.21 0.62 35.21 73.64 19.71
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4.3. Rainfall Erosion Force Effect

Again using the fourth rainfall as an example, the soil runoff shear, water-flow
power, and unit water-flow power for different tillage patterns are shown in Figure 8.
As for the runoff shear: at a slope of 3◦, the soil runoff shear was 0.72 Pa and 0.88 Pa
for the down-slope and no-monopoly tillage patterns respectively, while the cross-monopoly
pattern showed a significant decrease. At the same time, the soil runoff shear increased
as the slope of the tillage field increased. This, again, explains the synergistic effect of soil
runoff and sediment loss in the para-tillage and no-monopoly cropping patterns, with
more severe soil water and fertilizer loss, while the cross-monopoly cropping pattern effec-
tively suppresses rainfall-runoff shear, thereby reducing the sediment-carrying capacity
of the soil [67,68]. In addition, the soil runoff water power was significantly increased
in the smooth and no-monopoly treatments compared to the cross-monopoly treatment,
suggesting that as the water shear increases, the bond between soil particles decreases,
the soil shear strength decreases, and the dispersed soil particles are more likely to migrate
with the runoff, increasing the runoff water power [69].
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5. Conclusions

The slope, ridge direction, and precipitation intensity of cultivated land under rainfall
conditions in the northeast black soil area affect the soil production and flow process
to varying degrees, and the cross-slope-ridge direction effectively hinders the migration
path of the water flow, changes the rainwater distribution mode, and inhibits the ineffective
loss of water. However, with the increase in the slope and precipitation intensity, the depth
and runoff rate of the soil runoff increased significantly (p < 0.05), and the hydraulic
erosion effect of precipitation production on the soil increased correspondingly. The impact
of rainwater carries a large amount of sediment, which triggers the effect of soil nutrient
loss. The ridge direction of the cross-slope can not only reduce the slope runoff, but also
reduce the washing of the soil surface and the sediment-carrying capacity, increase water
infiltration in the soil, improve the soil structure, and reduce soil erosion. It is particularly
noteworthy that the increase in rainfall intensity will enhance the loss of soil nitrogen
and phosphorus under various tillage modes; however, with the increase in the soil slope,
the carrying capacity of rainfall-runoff on soil nitrogen has decreased, which confirms that
the increase in the rainfall production flow rate has no significant effect on the erosion
process of soil nitrogen. The comprehensive analysis results show that the individual
regulation of the cultivated land slope, ridge direction, and precipitation intensity has
a significant impact on the soil water and fertilizer loss, and the degree of influence is
closely related to the soil itself and the regulation mode, while the mechanism of the multi-
factor combination on the soil erosion effect is weakened.

Although the one-way analysis of variance method can be used to effectively analyze
the migration pattern of soil nitrogen and phosphorus in hilly diffuse arable land during
rainfall runoff, there is also room for improvement, going forward For example, in the farm-
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land nonpoint source pollution diffusion path identification problem, farmland water
and soil environment health control, which requires accurate diagnosis and identification
technology to improve the accuracy of the description of the pollution-migration process.
In addition, the complexity of hydrological process in cold regions also increases the un-
certainty of pollutant diffusion. Therefore, there is a need for more effective identification,
prediction, and management technology, such as artificial intelligence theory, mechanism
model simulation, and a policy support system, which can help to effectively prevent the pol-
lution effects of human agricultural activities on the soil and water environment, and allow
the cultivated land of the northeastern black soil slopes to be healthy and sustainable.
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