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Abstract: Crop evapotranspiration (ETC) water demands are critical decision support information for
the sustainable use of water resources for optimum crop productivity. When measurements of ETC at
all locations are not feasible, the prediction of ETC and crop growth from weather and soil–water–
crop management data using state-of-the-science cropping system simulations is a viable alternative.
This study compared soybean (Glycine max (L.) Merr.) ETC quantified using the eddy covariance
(EC) method against simulations from two models, (i) the CSM-CROPGRO-soybean module within
the Decision Support System for Agroecology Transfer (DSSAT) and (ii) CSM-CROPGRO-soybean
module within the Root Zone Water Quality Model v2.0 (RZWQM) for a grower’s field in the
Mississippi Delta, USA, during 2017, 2018, and 2019 growing seasons. The measured soybean grain
yields during the three seasons, respectively, were 4979 kg ha−1, 5157 kg ha−1, and 5665 kg ha−1.
The DSSAT and RZWQM simulated yields deviated from the measured yields by −10.8% and 15.4%
in 2017, −24.0% and 1.56% in 2018, and −6.22%, and 9.98% in 2019. Simulated daily ETC values were
less than EC estimates by 0.33 mm, 0.29 mm, and 0.23 mm for DSSAT and 0.05 mm, 0.42 mm, and
0.24 mm for RZWQM, respectively, for the three seasons. EC-quantified seasonal values of ETC were
584 mm, 532 mm, and 566 mm, respectively, for three seasons. Similarly, simulated seasonal ETC

values were less than EC estimates by 40 mm, 31 mm, and 16 mm by DSSAT, and 7 mm, 46 mm,
and 29 mm by RZWQM. The results obtained demonstrated that accuracy in the prediction of ETC
varied among models and growing seasons. When the magnitude of errors in daily ETC simulations
does not deter its applications in tactical irrigation water management decisions, a higher degree of
agreement between measured and simulated ETC values at a seasonal scale is more promising for
strategical irrigation water management planning decision support. Further improvement of the
models for more accurate simulations of daily ETC can help in more confident applications of these
models for tactical crop-water management applications.

Keywords: Mississippi Delta region; leaf area index (LAI); growth stages; Decision Support System
for Agroecology Transfer (DSSAT); consumptive water use

1. Introduction

Water is a critical resource for optimizing crop physiological and reproductive growth,
the most limiting factor in agriculture. The amount of water consumed to reach crop growth
in a particular season depends on ambient weather conditions (incoming solar radiation,
vapor pressure deficit, wind speed, precipitation) and the water available in the soil profile
for plant root uptake [1,2]. For an agroecosystem, crop evapotranspiration (ETC) represents
the primary consumptive use of water in crop production, and its magnitude is critical in
the irrigated production scenario [3]. Cropping systems represent the sequential planting
of crops over time. Cropping system simulation models can play vital roles in estimating
the ETC, phenology, and crop yield from weather and other soil–water–crop management
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information to improve the irrigation scheduling for enhanced water use efficiency in the
sustainable intensification of agriculture [1,4]. The efficiency of these models in capturing
the water dynamics in the soil–crop system in the crop production processes needs to be
evaluated for successful applications in crop water management.

The Lower Mississippi Delta region (LMD), with a humid climate, has made a sig-
nificant contribution to the US economy, producing about 67% of the soybean, corn (Zea
mays), and cotton (Gossypium hirsutum) in the state of Mississippi [5]. Under a humid
climate, precipitation is, on average, enough to meet the crop ETC. In the LMD, averaged
over a century, rainfall during the soybean growing season was about 400 mm, accounting
for only about 31% of the annual rainfall [5]. In the LMD, the underlying Mississippi
River Valley Alluvial Aquifer (MRVAA) is in jeopardy as the water pumped for irrigation
surpasses its renewal [6]. There is an utmost need to improve irrigation water management
by scheduling irrigation based on reliable estimates of the ETC, which might prove to be a
reliable tool for making better irrigation management decisions.

Several methods, such as lysimeters, eddy covariance, energy balance and Bowen
ratio, remote sensing, and scintillometers, are available to estimate the ETC [3,7]. These
different methods directly or indirectly estimate the ETC based on soil water and physical
characteristics of the air canopy, soil, and climatic variables [8]. Lysimeters contain a
small portion of the field with monolithic or reconstructed soil and can measure the soil
water balance, either weighing or non-weighing. Precision lysimeters are difficult and
expensive to construct and require special care to maintain. Factors such as the shape
and area of the lysimeter, variations in plant density and management on and around the
lysimeter, interruption of deep percolation and lateral flow, and heat flux distortions caused
by conductive walls could be potential sources of errors. It is critical to decide whether to
trust or question lysimeter data [9]. The Bowen ratio is measured by the air temperature
difference between two levels and the vapor pressure difference with air vapor pressure
measured at the same two levels [8]. The application of the Bowen ratio assumes energy
storage and advection to be ignored, which can be met only for a homogeneous surface
or longer than the daily interval [10]. The eddy covariance (EC) method requires high-
frequency sensor measurements with the simultaneous processing of data. Evaluation of the
eddy system is challenging due to the large fetch area with a highly variable open boundary
layer [11]. Satellite sensors have been used at the regional/continental scale to estimate
the ETC. Still, the main restricting factors are the tradeoff between spatial resolution and
revisiting frequency, cloud cover, physical interpretation of surface variables from satellite
images, latent heat flux evaluation, and near-surface meteorological acquisition data over
different satellite pixels [12,13]. However, applications of these methods require extensive
expertise and expensive specialized equipment for installation and operation; hence, they
are limited to selected locations and research applications. For these reasons, growers and
crop consultants usually have no practical way to use the crop ETC information output
from these measurements.

In this context, process-based models can be a potential alternative for developing
location-specific ETC data for scheduling irrigation and developing crop water-(ETC) pro-
duction functions for predicting irrigation water demand [14–16]. Particularly for soybean,
as a short-day plant, it would be challenging to parametrize soybean flowering and ma-
turity (temperature × photoperiod interactions) without sufficient data to calibrate and
evaluate models [15]. Moreover, many tools are available for daily ETC estimations from
weather and related environmental data. Some tools calculate reference or potential evap-
otranspiration (PET) using a daily or hourly time-step approach and crop coefficients to
compute the ETC [17]. For PET, some of these tools use temperature and solar radiation
alone [18]. Many other methods use multiple weather parameters such as wind speed,
solar radiation, temperature and relative humidity or dewpoint [17,19].

The daily ETC prediction for the initial phase of valuation of 29 maize (Zea mays)
simulation models, developed worldwide under the AgMIP program, showed up to
six-fold variations among models and days of the season evaluated [4]. Included in the
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cropping system models with intermediate complexity but which are widely used models in
the simulation of ETC are DSSAT [20,21] and RZWQM [14,22], which both have significant
success in predicting ETC and developing soil–crop–water management decision support
information. Simultaneous performance comparisons of multiple simulation models help
to understand their similarities and differences, enabling the identification of limitations in
crop models.

The accurate estimation of crop ETC using simulation models is essential to improve
irrigation management decisions. Still, before adoption, the simulation of the ETC should
be tested against a robust set of experimental and weather data [21]. The simultaneous
comparison of multiple models and evaluations can reveal the knowledge gap and pos-
sible areas of improvement. The main objectives of this study were to compare the two
most common simulation models, DSSAT and RZWQM, in predicting soybean phenol-
ogy, grain yield, and ETC with field observations and EC measurements under humid
climate conditions.

2. Materials and Methods
2.1. Field Experiments and Observations

The study was conducted on a grower’s field (area 500 ha) under continuous soybean
production located close to the USDA-ARS Crop Production Systems Research Unit’s
(CPSRU) farm in Stoneville, Mississippi, USA (33◦39′ N, 90◦59′ W, 42 m above mean sea
level). The study site has a humid subtropical climate with warm summers and mild
winters, with an annual rainfall of about 1300 mm. Soils were characterized as Dubbs silt
loam (fine-silty, mixed active, thermic Typic Hapludalfs). Deep tillage has been applied
once to crush claypans in three to four years. One to three passes of shallow tillage were
used annually to control weeds. Furrows were established for irrigation applications and
planting ridges. On 21 April, 28 April, and 1 May in 2017, 2018, and 2019, respectively,
Asgro 46X6, a soybean cultivar, was planted on banks of north–south rows at 97 cm spacing
with an average seeding rate of 407,550 seeds per ha (Table 1). The seedling emergence was
observed 7, 9, and 7 days after planting, and reached physiological maturity on 132, 128,
and 131 days (average 130 days) after seedling emergence (DAE) during 2017, 2018, and
2019, respectively.

Table 1. Cultivar parameters used for simulating soybean (MG 4.6, ecotype SB0401) using the
CSM-CROPGRO-soybean model using DSSAT and RZWQM.

Parameters Definition Values

CSDL Critical short-day length below which productive development progresses with no daylength effect (hr) 13.09
PPSEN The slope of the relative response of development to photoperiod with time (positive for short-day plants) (hr−1) 0.294
EM-FL Time between plant emergence and flower appearance (R1) (photothermal days) 19.4
FL-SH Time between first flower and first pod (R3) (photothermal days) 7.0
FL-SD Time between first flower and first seed (R5) (photothermal days) 15.0
SD-PM Time between first seed (R5) and physiological maturity (R7) (photothermal days) 34.00
FL-LF Time between first flower (R1) and end of leaf expansion (photothermal days) 26.00

LFMAX Maximum lead photosynthesis rate at 30 ◦C, 350 ppm CO2, and high light (mg CO2/m2s) 1.030
SLVAR Specific leaf area of cultivar under standard growth condition (cm2/g) 375
SIZLF Maximum size of full lead (three leaflets) (cm2) 180.0
XFRT Maximum fraction of daily growth that is partitioned to seed + shell 1.00

WTPSD Maximum weight per seed (g) 0.19
SFDUR Seed filling duration for pod cohort at standard growth conditions (photothermal days) 23.0
SDPDV Average seed per pod under standard growing conditions (#/pod) 2.20
PODUR Time required for cultivar to reach final pod load under optimal conditions (photothermal days) 10.0

THRSH Threshing percentage. The maximum ratio of (seed/(seed + shell)) at maturity. Causes seeds to stop growing as
their dry weight increases until the shells are filled in a cohort. 77.0

SDPRO Fraction protein in seeds (g(protein)/g(seed)) 0.405
SDLIP Fraction oil in seeds (g(oil)/g(seed)) 0.205

Leaf area index (LAI) data were collected between approximately 10.00 to 14:00 at
two-week intervals using an AccuPAR LP-80 Ceptometer (Decagon Devices, Inc., Pullman,
WA, USA). Soybean phenological stages were recorded as outlined by Hodges and French
(1985) [23]. Phenological growth stages across the field were not uniform as the cultivar,
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Asgro 46X6 (maturity group 4.6), like soybean plants, generally has indeterminate growth
characteristics. Each growth stage was documented when approximately 50% of the
soybean plants reached that stage.

Furrow irrigation was applied to maintain the soil moisture (50 cm soil layer) at 65%
of plant available water. About 60 mm irrigation was used three times on 51, 59, and
98 days after emergence (DAE) in 2017, two times on 29 and 82 DAE in 2018, and three
times on 83, 108, and 115 DAE in 2019. Soybean yields were determined by harvesting
the whole farm area (over 500 ha) about two weeks after reaching physiological maturity
and weighed using harvest combines. Soybean grain yield was adjusted to 0% moisture
content for comparison with the crop simulation model output grain yields at the same
moisture content.

2.2. ETC Measurements Using the Eddy Covariance System

The EC system was centrally located, so the sensors’ fetch was 200 m in all directions.
The EC systems comprised (i) a Gill New Wind Master 3D sonic anemometer (Gill Instru-
ments, Lymington, UK) for measuring the vertical transport of eddies at 10 Hz, (ii) an
LI-7500-RS open-path infrared gas analyzer (LI-COR Inc., Lincoln, NE, USA) for measuring
water vapor density in the eddies, (iii) an NR-LITE2 sensor (Kipp & Zonen B.V., Delft,
The Netherlands) for measuring net solar radiation, (iv) six HP01SC soil heat flux plates
(Hukseflux Thermal Sensor B.V., Delft, The Netherlands) for measuring soil heat flux,
(v) HMP 155 sensor (Vaisala, Helsinki, Finland) for measuring air temperature and relative
humidity, (vi) a Gill 2D-Sonic sensor (Gill Instruments, Lymington, UK) for wind speed and
direction, (vii) a HydraProbe sensor (Stevens Water Monitoring Systems, Inc., Portland, OR,
USA) for soil moisture and temperature within an 8 cm soil layer, and (viii) a TR 525 tipping
bucket rain gauge (Texas Electronics, Dallas, TX, USA) for precipitation measurements. All
the sensors were installed 2 m above the canopy in the constant flux layer (Figure 1).
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Figure 1. Eddy covariance unit with sensor cluster positioned 2 m above the canopy centrally located
in a large farm-scale soybean field.

Water flux in terms of latent heat of water evaporation (LE, W m−2) was calculated to
estimate ETc using the EddyPro v 6.10 (LI-COR Inc., Lincoln, Nebraska) software and was
averaged at 30 min intervals. Post-processing of the Eddy covariance data was accomplished
using ToviTM software (LI-COR Inc., Lincoln, Nebraska). Data quality control of the weather
and LE data were achieved following the OzFlux methodology (Issac et al. 2017 [24]) to
correct implausible fluxes during rainfall events. Flux measurements during low, negligible
turbulence were removed following Mauder and Foken (2006) [25], implemented in the
EddyPro software (Fratini and Mauder, 2014) [26]. Using the energy balance residual, the
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sensible and latent heat fluxes data were corrected as outlined by De Roo et al. (2018) [27]. Gap
filling of data was then performed on the quality-controlled and corrected fluxes following
marginal distribution sampling techniques as outlined by Reichstein et al. (2005) [28]. To
compute ETC in mm from L.E. fluxes in W m−2, a constant conversion factor value of 0.00073
was applied.

2.3. Growing Season Weather Conditions

Growing season weather data (daily maximum and minimum temperature, incoming
solar radiation, and precipitation) were retrieved from the Stoneville Agricultural Weather
Station located within 2 miles of the experimental site (http://deltaweather.extension.
msstate.edu/, accessed on 25 February 2023) (Figure 2). For all three years, maximum and
minimum air temperatures during June–August were within the range of ±2 ◦C of normal
(Figure 2). Few extremes in air temperature were observed either in the early months,
April 2017, May 2018, or late, September 2019. Rainfall distribution varied extensively
throughout all three growing seasons. August was highly wet in 2017 and 2018, receiving
almost four times higher than average precipitation. The growing season of 2019 received
above-normal rain from May–August, receiving 227%, 177%, 138%, and 150% of average
monthly rainfall, respectively.
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2.4. Parametrization of Cropping System Models

Model inputs about cultural practices and crop management were similar to actual
practices as stated earlier. Soybean growth and potential evapotranspiration were simulated
using CSM-CROPGRO-soybean modules of DSSAT v. 4.8 [29,30] and RZWQM v. 2 [14].
For the CSM-CROPGRO-soybean model within DSSAT and RZWQM, parameters for
a maturity group 4 were used for the simulation (Table 1). Soil, water, and nitrogen
parameters were measured in the field or obtained from the National Cooperative Soil
Survey [2], presented in Table 2.

Table 2. Soil properties of Forestdale soil series used as model input for all three growing seasons.

Soil Depth
(cm)

Clay
%

Silt
%

OC
%

Total
N% pH CEC

(cmol kg−1)
θwp

(cm3 cm−3)
θfc

(cm3 cm−3)
θS

(cm3 cm−3)
BD

(Mg m−3)
KS

(cm hr−1)

0–15 40.0 50.0 2.0 0.12 7.5 22.0 0.211 0.350 0.463 1.20 0.39
15–30 40.3 52.5 1.2 0.05 7.3 23.7 0.228 0.350 0.463 1.20 0.29
30–60 42.1 51.4 1.0 0.07 6.6 24.7 0.228 0.330 0.435 1.30 0.29
60–90 41.9 50.0 1.0 0.06 5.1 26.6 0.228 0.400 0.418 1.30 0.29
90–120 40.0 50.0 0.5 0.07 5.9 26.0 0.228 0.350 0.418 1.35 0.19

120–150 40.0 50.0 0.5 0.04 6.0 29.4 0.249 0.406 0.459 1.35 0.19

Notes: θS: saturated soil water content; θwp: drained soil water lower limit, θfc: soil water upper limit, KS:
saturated hydraulic conductivity; CEC: cation exchange capacity; BD: bulk.

The selection of cultivar coefficients for the simulation of soybean in three cropping
system models was achieved by manually calibrating coefficients for a close match between
observed and predicted values for leaf area index (LAI), grain yield, time to reach 50%
flowering, and physiological maturity. Data collected in the 2017 growing season were used
to calibrate model parameters, and the remaining growing seasons, 2018 and 2019, were
used to evaluate the simulations. The model calibration based on the single-season data
was not further modified based on the simulations obtained for the remaining two seasons.

In DSSAT and RZWQM cropping system models, crop evapotranspiration (ETC) is
calculated by initially calculating its potential rate (potential evapotranspiration, PET)
under the given soil–plant–atmosphere conditions, and modifying it with actual plant
uptake, transpiration, and soil–residue–crop conditions affecting evaporation from the
soil surfaces [22,31,32]. In the procedure, calculated PET is first partitioned into potential
soil evaporation (PE) and potential transpiration (PT) using a competing method iden-
tified by modelers involved in those modules and applied as upper limits into actual
transpiration and soil evaporation loss from the system in the crop growth simulations.
When multiple methods and options are available for simulations of PET in the three
cropping system models, the Priestly–Taylor method with a modified ET extinction co-
efficient (Kep, the coefficient used for partitioning evapotranspiration into soil and plant
transpiration components) of 0.68 based on Boote et al. (2008) is used [33]. For RZWQM,
the Shutterworth–Wallace [31,34] model was used to calculate potential soil evaporation
(P.E.) and potential plant transpiration (P.T.). In all three models, the computed P.T. and
P.E. set the upper limits for actual transpiration and actual evaporation simulated in the
respective crop growth and simulation modules.

2.5. Model Performance Evaluation

The valuation of two models, CSM-CROPGRO and RZWQM, were compared based
on (i) phenological growth stages, (ii) grain yield, (iii) LAI, and (iv) ET. The performance
of simulation models was judged based on the root mean square error (RMSE), relative
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RMSE (RRMSE), percentage deviation (PD), and Nash Sutcliffe efficiency (E) using the
following equations.

MSE =
√

1
n

n
∑

i=1
(Pi −Oi)

2

RRMSE = RMSE
Oavg

100

PD =
{

(Pi−Oi)
Oi

}
× 100

E = 1−
n
∑

i=1
(Pi−Oi)

2

n
∑

i=1
(Oi−Oavg)

2

where Pi is the ith simulated value, Oi is the ith observed values, Oavg is the average of the
observed values, and n is the number of data pairs.

3. Results
3.1. Phenological Stages and Grain Yield

For DSSAT, RZWQM, and three growing seasons (2017–2019), the simulated number
of days from planting to seedling emergence, beginning seed, and maturity deviated from
the measured values between −13 to +6 d (Table 3). Over cropping seasons, the simulation
of the number of days from seed planting to emergence deviated from measured values
from −3 to −1 d for DSSAT and ±1 d for RZWQM. Beginning seed formation (R5) varied
from−3 to−13 d for DSSAT and−1 to 6 d for RZWQM. Finally, maturity varied from−5 to
−12 d for DSSAT, and−1 to 3 d for RZWQM. Grain yield ranged from 72 to−1384 kg ha−1

for DSSAT, and −360 to 490 kg ha−1 for RZWQM.

Table 3. Measured (M), simulated (S), and error (S-M) for critical phenological growth stages (in days
after planting, DAP), grain yield, and ETC of soybean during the 2017–2019 growing seasons.

Parameters Measured (M) DSSAT RZWQM
Day DAP S Error S Error

2017
Emergence 28 April 7 7 0 8 1
First flower 28 May 37 42 5

First pod 27 June 67 56 −11 62 2
First seed 15 July 85 72 −13 85 0

Physiological maturity 7 September 139 134 −5 142 3
Grain yield (kg ha−1) 4771 4843 72 5057 286

Average daily ETC (mm) 4.71 4.38 −0.33 4.66 −0.05
Cumulative ETC (mm) 584 544 −40 577 −7

2018
Emergence 7 May 9 6 −3 8 −1
First flower 9 June 42 35 −7

First pod 22 June 55 49 −6 56 1
First seed 9 July 72 65 −7 76 4

Physiological maturity 12 September 137 125 −12 136 −1
Grain yield (kg ha−1) 5783 4399 −1384 5423 −360

Average daily ETC (mm) 4.84 4.55 −0.29 4.42 −0.42
Cumulative ETC 532 501 −31 486 −46

2019
Emergence 8 May 7 6 −1 8 1
First flower 13 June 43 37 −6

First pod 22 June 52 52 0 58 6
First seed 11 July 71 68 −3 77 6

Physiological maturity 14 September
2019 136 128 −8 136 0

Grain yield (kg ha−1) 4909 4986 77 5399 490
Average daily ETC (mm) 4.64 4.41 −0.23 4.40 −0.24

Cumulative ETC 566 550 −16 537 −29
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3.2. LAI

The maximum observed LAI values were 5.2, 5.8, and 5.8 observed on 102 d, 107 d,
and 88 d after emergence (DAE) for 2017, 2018, and 2019 seasons, respectively (Figure 3). In
2017, DSSAT and RZWQM simulated maximum LAI values of 5.82 and 6.10, observed on
70 DAE and 71 DAE, respectively. The simulation of LAI with DSSAT and RZWQM resulted
in RRMSE values of 45.0% and 37.8%, respectively. In 2018, DSSAT and RZWQM simulated
maximum values were 5.71 (65 on DAE) and 6.08 (on 68 DAE), with corresponding RMSE
values of 1.30 and 1.05, respectively. The simulation of LAI with DSSAT and RZWQM
resulted in RRMSE values of 34.5% and 27.8%, respectively. In 2019, DSSAT and RZWQM
predicted maximum LAI values of 5.85 (on 67 DAE) and 6.14 (on 67 DAE), respectively.
The RRMSE values for DSSAT and RZWQM were 17.9% and 17.0%, respectively.
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3.3. Crop Evapotranspiration (ETC)

In 2017, the cumulative ETC value using the EC method was 584 mm. In contrast,
the simulated values were 544 mm and 577 mm for DSSAT and RZWQM, respectively
(Figure 4). The average observed daily ETC value was 4.71 mm, and DSSAT and RZWQM
predicted 4.38 mm and 4.66 mm, respectively. The highest observed ETC was 7.75 mm;
DSSAT, and RZWQM had the highest values of 7.19 and 8.08 mm, respectively. For DSSAT
and RZWQM, the RMSE values were 1.96 mm and 1.39 mm, with corresponding RRMSE
values of 41.6% and 29.6%, respectively.
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In 2018, the cumulative ETC value quantified using the EC method was 532 mm,
whereas the predicted values were 501 mm and 486 mm for DSSAT and RZWQM, respec-
tively. The average observed daily ETC values were 4.84 mm, when DSSAT and RZWQM
predicted 4.55 mm and 4.42 mm, respectively. The highest observed daily ETC was 7.69 mm,
whereas DSSAT and RZWQM simulations had the highest daily ETC values of 7.26 mm
and 9.69 mm, respectively. DSSAT and RZWQM had RMSE and RRMSE values of 1.82 and
37.7%, and 2.13 and 44.0%, respectively.

In 2019, the cumulative ETC was 566 mm, and the simulated values were 550 mm
and 537 mm for DSSAT and RZWQM, respectively. The average observed daily ETC was
4.64 mm, but the average simulated values were 4.41 mm and 4.40 mm for DSSAT and
RZWQM, respectively. The highest observed ETC value was 7.61 mm, while DSSAT and
RZWQM had the highest simulated values of 7.21 mm and 9.49 mm, respectively. Two
models had RMSE and RRMSE values of 2.14 and 46.0%, and 2.56 and 55.1%, for DSSAT
and RZWQM, respectively.

Considering all three growing seasons, the observed average daily ETC was 4.73 mm,
where the DSSAT and RZWQM simulated values were 4.44 mm and 4.49 mm, respectively.
The three-year average of observed cumulative ETC was 560 mm, and for DSSAT and
RZWQM the simulated values were 532 mm and 533 mm, respectively.

4. Discussion

As expected in simulating crop phenology, grain yield, and ETC in response to manage-
ment and weather information, the simulated soybean phenology and grain yield deviated
from the measured values but within the error limits commonly reported in the litera-
ture [4,35]. In this investigation, simulating the soybean crop growth during 2017–2019
in the humid LMD region, the extent of deviations of simulated processes depended on
the particular model used and growing season characteristics. The weather data showed
that the amount and distribution of rainfall varied extensively during the three growing
seasons. During the wet years, high-intensity precipitation events increase run off, water
infiltrations and deep drainage losses. When such large variations in weather during the
crop growth season drive the cropping system simulation models, it becomes extremely
difficult for accurate crop growth simulations. However, such errors typically observed
are comparable to the extent of errors that can occur in the precise quantification of those
natural processes. This is usually reflected in crop simulation results.

For simulating crop growth and yield, accurate simulations of crop phenology are
desired [36]. In soybean growth simulations using two cropping system models in this
study, simulated crop phenology controls most crop physiological processes such as leaf
area, biomass accumulation and partitioning, and biological N fixation [15]. Indeterminate
soybean varieties showed considerable overlap between visual growth stages; as such,
observations usually are subjected to substantial human error. Simulations of growth stages,
that is, seedling emergence from the soil, first flower, beginning seed, and physiological
maturity, showed an overall variation of −13 to +6 d (Table 3). However, the magnitude of
errors in phenological simulations did not reflect the same extent in ETC and grain yield
(Table 3).

For the grain yield prediction, both models overpredict grain yields during 2017 and
2019 and underpredict grain yield for 2018. Using RZWQM v 2.0, Anapalli et al. (2019)
reported an overestimation of simulated grain yield data collected for other locations in
the LMD by 283 (5%) kg ha−1 and 727 kg ha−1 (+15%) during the 2016 and 2017 growing
seasons, respectively [14]. Battisti et al. (2018) observed that the soybean grain yield
prediction had a higher rate of reduction when rainfall was diminished than when rainfall
was increased when comparing four models, AQUACROP, MONICA, DSSAT, and APSIM,
in Southern Brazil [20].

Both crop models simulated LAI values that closely followed observed values from
emergence to 40 DAE, but overpredicted LAI during 53–78, 48–78, and 58–78 DAE during
2017, 2018, and 2019, respectively. Over time, soybean cultivars have changed rapidly
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in their genetic makeup and growth traits, which respond differently to the amount of
available water for plant uptake and the stress induced on plant growth processes from a
deficit or excess of water [36].

Overestimation of LAI might be associated with overestimating ETC, particularly
during the reproductive growth phase. Da Silva et al. (2022) also observed an overpre-
diction of E.T. late during the growing season [21]. They attributed the outcome to an
overestimation of LAI between 60–100 days after planting (DAP) for Priestly–Taylor and
FAO56 Pennman–Monteith PET methods for the CSM-CROPGRO-soybean model. Singer
et al. (2010) found that the E + T method overestimated E.T. from 0.68 to 1.58 mm when
comparing evaporation plus transpiration versus ETC from the eddy covariance system [7].
For corn, soybean, and cotton cropping systems in the LMD, Anapalli et al. (2019) found
RMSEs between 0.9 and 1.4 mm and RRMSEs between 21 and 37% between the simulated
daily ETC from EC and energy balance estimates, due to 2 to 12% of the variation in incom-
ing and outgoing energies in the EC system [14]. Several studies [1,3,37] emphasized that
the crop coefficient (KC) often showed considerable variation from FAO-56 values due to
wetting events and suggested improvement in KC values for the irrigated system due to
frequent soil surface wetting by rain or irrigation.

5. Conclusions

This study emphasized the evaluation of cropping system models for simulations
of ETC over multiple growing seasons. Cropping system models help predict crop ETC
from location-specific weather–soil–crop management information to develop tactical and
strategic water management decision support data for optimizing location-specific crop
water use. We evaluated the DSSAT and RZWQM models for simulations of ETC against
those quantified using the EC method. Seasonal cumulative ETC simulations by both
models compared well with EC measurements. The two models evaluated were seen to
carry a high potential for strategic water management in irrigated production systems.
Due to the indeterminate growth habits of the soybean crop, the evaluation of phenology
simulations across models is often challenging. Besides accurate ETC measurements and
soil properties, datasets should include profile soil moisture measurements and in-season
biomass accumulation over several growth stages to capture the water dynamics in the sys-
tem arising out of varying rainfall distributions within and across crop seasons. However,
the study revealed that the two models evaluated have a high potential for applications in
sustainable water management decision support development in field crop agriculture.
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