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Abstract: Water ecosystems are highly sensitive to environmental conditions, including meteorologi-
cal factors, which influence dissolved oxygen (DO) concentrations, a critical indicator of water quality.
However, the complex relationships between multiple meteorological factors from various sites and
DO concentrations pose a significant challenge for accurate prediction. This study introduces an
innovative framework for enhancing DO concentration predictions in water bodies by integrating
multi-station meteorological data. We first construct a dynamic meteorological graph with station-
specific factors as node features and geographic distances as edge weights. This graph is processed
using a Geo-Contextual Graph Embedding Module, leveraging a Graph Convolutional Network
(GCN) to distill geographical and meteorological features from multi-station data. Extracted features
are encoded and then temporally merged with historical DO values to form time-series data. Finally,
a Temporal Transformer module is used for future DO concentration predictions. The proposed
model shows superior performance compared to traditional methods, successfully capturing the
complex relationships between meteorological factors and DO levels. It provides an effective tool for
environmental scientists and policymakers in water quality monitoring and management. This study
suggests that the integration of graph-based learning and a Temporal Transformer in environmental
modeling is a promising direction for future research.

Keywords: dissolved oxygen concentration prediction; multi-site meteorological data; graph
convolutional networks; temporal transformer; environmental modeling; Tianjin; China

1. Introduction

Dissolved oxygen (DO) plays a pivotal role in water environmental science, serving
as a critical indicator of the health and sustainability of aquatic ecosystems [1–4]. Oxygen
dissolved in water is essential for the survival and growth of aquatic life, including fish,
invertebrates, bacteria, and plants [5,6]. Maintaining a healthy balance of DO is essential,
as both excessive and inadequate levels can pose severe risks to the ecosystem [7]. High
concentrations of DO can lead to the excessive growth of an organism, thereby disrupting
the ecosystem balance [8]. Conversely, low DO levels can result in hypoxic conditions that
jeopardize aquatic life [9]. Predicting DO concentrations facilitates the management and
conservation of aquatic resources, aids in the planning and operation of water treatment
processes [10], and helps in the timely detection and mitigation of potential environmental
risks [11]. A precise prediction model can offer valuable insights into the future state of the
ecosystem, thus providing a powerful tool for decision makers in crafting effective strategies
for water resource management and pollution control [12]. Despite its significance, the
accurate prediction of DO levels remains a challenging task due to the complexity of aquatic
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ecosystems, the multifaceted interactions between numerous influencing factors, and the
spatiotemporal variability in DO levels [13].

Existing methods for predicting DO concentrations can generally be classified into
three categories: physical models, statistical models, and data-driven models [14]. Physical
models are developed based on the physical laws governing DO dynamics, such as the
Streeter–Phelps model [15]. These models utilize differential equations to represent the
oxygen balance in water, taking into account factors, like biochemical oxygen demand,
reaeration, photosynthesis, and respiration [16]. While these models are theoretically
sound, they often require a multitude of precise measurements and fail to account for the
complex interactions among various environmental factors, making their application, in
practice, quite challenging [17,18]. Statistical models, such as regression models, time-series
analysis, and Box–Jenkins models, have also been applied to DO prediction [19,20]. These
models rely heavily on historical data, and their success depends on the inherent linear
relationships among variables [21,22]. However, the interactions between different envi-
ronmental factors influencing DO levels are complex and often non-linear, which restricts
the accuracy and applicability of these models [23–25]. Data-driven models, including
machine learning and deep learning models, have gained popularity in recent years owing
to their capability to capture complex non-linear relationships and their adaptability to
various situations [26–28]. These models, such as artificial neural networks [29,30], support
vector machines [31,32], and random forest models [33,34], have shown promising results
in DO prediction. However, most existing data-driven models consider only temporal
dependencies, overlooking the spatial interactions among different locations, which can
lead to suboptimal prediction performance [13,35–37].

To mitigate the limitations of traditional models and incorporate spatial dependen-
cies, recent studies have turned to hybrid models, such as Convolutional Neural Net-
works (CNNs) combined with Long Short-Term Memory (LSTM) networks [38–40]. CNNs,
renowned for their success in image processing tasks, are used to capture spatial correla-
tions by considering the area of interest as an image-like structure [41–43]. Meanwhile,
LSTMs handle the temporal dependencies due to their unique architecture that can learn
and remember over long sequences [44], alleviating issues encountered with traditional
recurrent neural networks, like vanishing or exploding gradients [45].

However, these models present their own set of constraints [46]. Firstly, they usually
assume a Euclidean space to capture spatial dependencies [47], which might not accurately
reflect the geographical and topological properties of the real-world scenarios, where
different meteorological stations and bodies of water exhibit non-Euclidean relationships.
Secondly, the heterogeneity of data [48], which is often a combination of structured and
unstructured data (like temperature, wind speed, etc.) [49], presents a challenge. Existing
models may not fully capture the complex correlations between these different types
of data [50]. Moreover, the architecture of these models is rigid, which can hinder the
comprehensive incorporation of multiple meteorological factors [51]. These factors, such
as temperature, pressure, dew point, wind direction, wind speed, and precipitation, have
intricate and non-linear impacts on DO dynamics [52]. For instance, the fixed kernel sizes in
CNNs are not conducive to capturing these varying influences and interactions [53], leading
to insufficient consideration of environmental factors and, thus, inaccurate predictions.

In light of these limitations, there is a need for a more flexible and sophisticated mod-
eling approach. This approach should accommodate the complex, non-linear interactions
among various factors in non-Euclidean spaces and consider both temporal and spatial
dependencies simultaneously. This underpins the primary motivation of our study.

The realization of such a sophisticated modeling approach calls for the exploration
of advanced data representation and learning techniques. Recently, two techniques have
shown exceptional promise in various domains for handling data with complex dependen-
cies and non-Euclidean structures: Graph Embedding techniques [54] and the Transformer
model [55]. Graph Embedding techniques have the potential to capture non-Euclidean spa-
tial dependencies effectively [56]. By transforming the nodes of a graph into a continuous
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vector space while preserving the structural information of the original graph [57], these
techniques facilitate the understanding of complex inter-node relationships and topologi-
cal properties. They have been successfully applied in several domains, including social
network analysis [58], bioinformatics [59], and recommendation systems [60], yielding
significant improvements over traditional methods. On the other hand, the Transformer
model, a deep learning model primarily designed for natural language processing tasks [61],
presents a powerful tool for temporal dependency modeling. Its unique self-attention mech-
anism can effectively capture long-range dependencies in time-series data by weighing the
influence of different time steps based on their relevancy [62].

In response to these challenges and opportunities, we propose a novel, sophisticated
model for accurate DO concentration predictions that effectively leverages the spatial and
temporal dependencies present in multiple meteorological factors across various meteo-
rological stations. Our approach comprises the following: a Meteorological Graph Con-
struction module, wherein meteorological stations are treated as graph nodes; a Geospatial
Graph Convolutional Embedding module, applying Graph Convolutional Networks and a
Multilayer Perceptron to obtain a comprehensive feature vector; a Feature Encoding and
Temporal Concatenation module for feature refining and sequence formation; and, finally,
a Temporal Transformer Prediction module, which uses the Transformer’s self-attention
mechanism for capturing long-term dependencies in data. Our proposed model, tested
and validated on real-world data, significantly outperforms existing models, effectively
demonstrating its utility in handling the complex, non-linear interactions in DO concen-
tration predictions. We anticipate that this work will contribute to environmental science
by improving our understanding of DO dynamics and advancing the predictive modeling
techniques in the field.

2. Materials
2.1. Study Area

The focus of this investigation is the city of Tianjin, located in the eastern coastal
region of North China, approximately 120 km southeast of the capital, Beijing. Encom-
passing an expansive geographic expanse exceeding 11,300 square kilometers, Tianjin
offers a diverse backdrop for studying various meteorological patterns and their impacts
on water quality parameters.

Positioned uniquely, Tianjin experiences a humid continental climate influenced by
monsoon winds. This climatic influence results in distinct seasonal variations—hot, rainy
summers juxtaposed with cold, dry winters. Such seasonality, especially the heavy rainfall
during the summer season, significantly influences the region’s water bodies. The intricate
interrelationship between meteorological factors and the hydrological characteristics of
Tianjin’s aquatic systems generates a complex environment for the study and prediction of
the dissolved oxygen concentrations in these bodies of water. Tianjin boasts a network of
diverse water bodies, including rivers, canals, and lakes, interconnected through the promi-
nent Haihe River that empties into the Bohai Sea. Notably, our research pays particular
attention to the Binhai New Area, specifically focusing on the Ji Canal Tide Gate within the
Haihe River Basin. Given the considerable influence of both natural and human-induced
activities on the Ji Canal Tide Gate, it represents a suitable site for examining the typical
water quality challenges in the region.

The urbanized nature of Tianjin city, together with its distinct hydrogeological features,
introduces multifaceted aspects to its water quality parameters. Our focus, the dissolved
oxygen concentrations—a crucial determinant of aquatic health—is impacted by an array
of factors. These factors span meteorological elements, including temperature, atmospheric
pressure, and wind dynamics, as well as precipitation levels. Moreover, these influencing
factors exhibit considerable spatial and temporal variability across Tianjin’s vast geography.

Through this investigation, we aim to elucidate the intertwined dynamics between
meteorological conditions and water quality, particularly the dissolved oxygen concen-
trations. This study intends to enhance the predictability of dissolved oxygen levels in
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Tianjin’s water bodies. We anticipate that the insights gleaned from this research will
contribute to the academic discourse on water quality prediction and pave the way for
more informed, sustainable water resource management practices in Tianjin, aligning with
both its ecological imperatives and urban development objectives. Figure 1 illustrates the
distribution of the research area and the locations of the data collection sites.

Figure 1. Overview of the study area in Tianjin, China. The left panel indicates Tianjin’s location
within China, while the right panel demonstrates the city’s internal administrative divisions. Key
features include the Jiyun River in the Haihe River Basin, the focus of our dissolved oxygen concentra-
tions study, and the 11 meteorological stations used for data collection. This illustration underscores
the geographic context of our research and the correlation between local meteorological conditions
and water quality.

2.2. Data Source and Collection

The objectives of this research necessitate the collection of detailed and well-documented
datasets from diverse sources. For this study, the data were aggregated from two primary
sources: the China National Environmental Monitoring Center (CNEMC) and the United
States National Climatic Data Center (NCDC).

The CNEMC, a respected repository of environmental data in China, provides the
critical water quality parameter—dissolved oxygen concentrations. The data were sys-
tematically harvested from the CNEMC’s official online portal (https://szzdjc.cnemc.cn/,
accessed on 8 February 2023). The period of data collection extended from 1 January 2021
to 31 December 2022. The data were registered with a temporal resolution of four hours,
affording a detailed perspective on the dynamics of dissolved oxygen concentrations over
the chosen period. The water quality monitoring station employed for gathering dissolved
oxygen concentration data is situated in the Binhai New Area within the Ji Canal Tide Gate
of the Haihe River basin, with geographical coordinates of 117.7274◦ E, 39.1185◦ N.

On the other hand, meteorological data were sourced from the NCDC (https://www.
ncei.noaa.gov/, accessed on 17 April 2023), a preeminent institution within the purview
of the National Oceanic and Atmospheric Administration (NOAA), USA. This research
incorporated a spectrum of meteorological parameters, including temperature, pressure,
dew point, wind direction and speed, and precipitation. Contrasting with the water quality
data, meteorological data were captured at a temporal resolution of three hours, thereby
yielding a more granular understanding of the atmospheric conditions. The acquisition of
meteorological data adhered to the same timeframe as the dissolved oxygen data. Notably,

https://szzdjc.cnemc.cn/
https://www.ncei.noaa.gov/
https://www.ncei.noaa.gov/
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the data from 2021 served as a foundation for subsequent model training, while the 2022
dataset was reserved for model validation and testing. These datasets, combined, will
help in building a robust and accurate predictive model, addressing the complex interplay
between water quality and meteorological parameters.

The geographical distribution of the monitoring stations is extensively detailed in
Table 1, specifying the monitoring areas, longitude, latitude, sensor altitude, and station
altitude for each station.

Table 1. Geographical distribution and characteristics of the monitoring stations.

Category Station ID Monitoring Area Longitude (◦E) Latitude (◦N) Sensor Altitude (m) Station Altitude (m)

Water Quality Parameter
(DO Concentrations) - Ji Canal Tide Gate 117.73 39.12 - -

Meteorological Factors

54428 Ji County 117.24 40.02 16.9 15.7
54523 Wuqing 117.01 39.23 5.7 4.5
54525 Baodi 117.17 39.44 6.3 5.1
54526 Dongli District 117.2 39.05 2.6 1.9
54527 Tianjin 117.03 39.05 4.3 3.5
54528 Beichen District 117.08 39.14 4.6 3.4
54529 Ninghe 117.49 39.21 5.1 3.9
54530 Hangu District 117.46 39.14 2.5 1.3
54622 Jinnan District 117.22 38.59 3.9 3.7
54623 Tanggu 117.43 39.03 5.7 4.8
54645 Dagang 117.28 38.51 3.4 2.2

Table 1 offers a detailed view of the distribution of monitoring stations across the
research region, with longitude and latitude allowing for precise geographical coordination.
The altitudes provide an indication of the vertical profile of the station locations, which may
influence certain meteorological and environmental factors. Further, Table 2 provides the
specifics of the collected parameters, their respective physical meanings, and their units.

Table 2. Detailed attributes of the collected parameters.

Category Parameter Physical Meaning Unit

Water Quality Parameter
(DO Concentrations) Dissolved Oxygen Concentrations The amount of oxygen dissolved

in a unit volume of water mg/L

Meteorological Factors

Temperature Degree or intensity of heat
present in the substance

◦C

Pressure The force exerted by the atmosphere
at a given point MPa

Dew Point
The atmospheric temperature below

which water droplets begin to condense
and dew can form

◦C

Wind Direction The direction from which the wind is coming ◦

Wind Speed The speed at which the air is moving horizontally m/s

Precipitation The amount of rain, snow, or other types of
water particles falling from the sky mm

Table 2 elucidates the physical meanings of the parameters, offering a comprehensive
view of their significance in environmental studies. The designated instruments ensure
precise data collection, crucial for subsequent data analysis and model development.

2.3. Data Preprocessing

Data preprocessing is a pivotal component in our study, as it ascertains the com-
pleteness, consistency, and accuracy of our dataset, thereby ensuring the credibility and
robustness of our model predictions.

Our dataset is gathered from two primary sources: meteorological stations and water
quality monitoring stations in Tianjin. However, due to various issues, such as equipment
failure, station maintenance, and technical complications, the raw dataset might contain
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missing and outlier values. To counter the potential negative impacts these factors could
exert on our analysis results, we implemented a two-step procedure:

• Elimination of missing values: Initially, we discarded records containing missing
values that could occur due to issues, like equipment malfunction, station maintenance,
or other technical problems. This ensures the completeness of our dataset, enhancing
the accuracy of our analysis.

• Removal of outliers: Subsequently, we excluded outlier values from the dataset,
i.e., readings significantly deviating from the normal range. Such readings could
occur due to equipment malfunction or transient, non-representative environmental
conditions. This step aids in reducing data noise and enhances the accuracy of the
model’s predictions.

Upon cleaning the data, we encountered a crucial issue: aligning data with different
time resolutions. Specifically, our meteorological data were recorded every three hours,
while water quality parameters (i.e., dissolved oxygen concentrations) were recorded every
four hours.

To address this, we adopted a straightforward yet effective method: resampling. We
sampled the data every 12 h. This not only solved the inconsistency in time resolution
but also made our data more manageable. For the water quality parameters, sampling
every 12 h meant that we had two samples each day. Over the span of two years, this
would yield approximately 1460 (365 days/year × 2 years × 2 samples/day) samples. The
meteorological factors were treated similarly, sampled every 12 h.

Through this, we could directly associate the meteorological conditions at each times-
tamp with the corresponding dissolved oxygen concentrations. Furthermore, through
resampling, we preserved the essential information, allowing us to account for temporal
variations in meteorological conditions impacting the dissolved oxygen concentrations.
This preprocessing step, hence, resolved the inconsistency in time resolution and enriched
our data, providing a more comprehensive and detailed input for subsequent analysis and
model prediction.

3. Methodology
3.1. Overview of the Model Architecture

Building predictive models to anticipate changes in critical ecological parameters, such
as dissolved oxygen concentrations, is a significant challenge in environmental science and
engineering. Addressing this complex task requires processing heterogeneous data sources
and accounting for spatial and temporal correlations between these data points.

In this study, we propose a comprehensive model architecture that integrates data from
eleven meteorological stations spread across Tianjin City. These stations provide a wealth
of meteorological information, including temperature, pressure, dew point, wind direction,
wind speed, and precipitation. Our aim is to predict the dissolved oxygen concentrations
in the “Production Circle Gate” section of the Tianjin Southern District. Figure 2 presents
the entire framework of the model, providing a comprehensive overview of its structure
and components.

In our modeling, the subscript notation t− t0 : t− 1 denotes the time window that
starts with t− t0 and ends at t− 1, encompassing meteorological data from multiple stations
and dissolved oxygen concentrations for analysis. Specifically, we denote the time series
of meteorological factors for each station i ∈ {1, 2, . . . , n}, where n = 11 corresponds to
the number of meteorological stations, as X(i)

t−t0:t−1. Here, t refers to the current time step,
and t0, which defaults to 5 in this study, defines the temporal window size. Furthermore,
Dt−t0:t−1 represents the historical dissolved oxygen levels at the “Production Circle Gate”
section during the same time window. The primary objective of our model is to predict the
future dissolved oxygen levels at time t, denoted by Ŷt.
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Figure 2. Architecture of the proposed model for predicting dissolved oxygen concentrations. The
figure illustrates the hierarchical structure of our predictive model, starting from the collection of
time-series meteorological data from eleven different stations (temperature, pressure, dew point,
wind direction, wind speed, precipitation) to the final prediction of dissolved oxygen concentrations.
The model includes four primary modules: The Geo-Contextual Graph Embedding Module (which
generates a unified feature vector that encapsulates the spatiotemporal characteristics and correlations
of the stations), the Feature Encoding and Temporal Concatenation Module (which combines this
feature vector with historical dissolved oxygen data at the target site), and the Temporal Transformer
Prediction Module (which inputs the combined feature vector into a Transformer model for future
dissolved oxygen level prediction). The modular design of the model allows it to capture complex
spatiotemporal dynamics in the data effectively.

Our model’s design is composed of a layered architecture, systematically processing
the data through a sequence of sequential operations represented by the composite function:

Ŷt = f
(

h
(

g
(

X(1)
t−t0:t−1, X(2)

t−t0:t−1, . . . , X(11)
t−t0:t−1

)
, Dt−t0:t−1

)
, Dt−t0:t−1

)
(1)

This function captures the hierarchical nature of our model concisely. Here,
g
(

X(1)
t−t0:t−1, X(2)

t−t0:t−1, . . . , X(11)
t−t0:t−1

)
represents the Geo-Contextual Graph Embedding

Module. It processes the time-series meteorological factors from the different stations
and generates a unified feature vector that encapsulates the spatiotemporal characteristics
and correlations of these stations. The function h

(
·, Dt−t0:t−1

)
denotes the Feature Encoding

and Temporal Concatenation Module. It encodes the feature vector output from the Graph
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Embedding Module along with the historical dissolved oxygen data at the target site into a
temporally concatenated feature vector. Finally, the function f

(
·, Dt−t0:t−1

)
corresponds to

the Temporal Transformer Prediction Module. The combined feature vector is input into a
Transformer model to predict future dissolved oxygen levels at time t.

By structuring our model into these modularized steps, we can account for the com-
plex spatiotemporal dynamics inherent in the meteorological and dissolved oxygen data.
The following sections provide a more detailed discussion of the inner workings and
motivations behind each module:

• Meteorological Graph Construction Module: This module forms the foundation of our
methodology. It capitalizes on the graph-based representation of the meteorological
data, enabling us to capture the spatial configuration of meteorological stations and
the intricate relations between their respective data.

• Geo-Contextual Graph Embedding Module: As the heart of our model, this module
provides a sophisticated mechanism for transforming the raw meteorological data into
a meaningful representation. It utilizes the power of Graph Convolutional Networks
to process and compress the high-dimensional meteorological data into a lower-
dimensional feature vector, capturing both local and global patterns.

• Feature Encoding and Temporal Concatenation Module: This module acts as a bridge
between the Geo-Contextual Graph Embedding Module and the Temporal Trans-
former Prediction Module. It prepares the model’s input data by encoding the meteo-
rological feature vector and combining it with the historical dissolved oxygen data,
creating a richly informative input for the final prediction module.

• Temporal Transformer Prediction Module: This module is the terminal point of our
model architecture. It leverages the potent capabilities of Transformer models in han-
dling sequential data and makes the final prediction of dissolved oxygen concentra-
tions, providing valuable insights for environmental management and policymaking.

Through the intricate combination of graph-based representation, convolutional pro-
cessing, and transformer-based prediction, our model offers a pioneering approach to
predicting dissolved oxygen concentrations using meteorological data. The proposed
model is designed to cope with the inherent challenges of environmental data, namely
its high dimensionality, complex dependencies, and spatiotemporal variability. With its
robust architecture and advanced components, our model stands as a promising tool for
environmental monitoring and management.

3.2. Meteorological Graph Construction Module

To harness the inherent spatial and temporal correlation between various meteorologi-
cal stations and effectively feed these into our model, we opt for a Graph Neural Network
(GNN)-based representation. GNNs offer a promising approach to capture non-Euclidean
characteristics, thereby overcoming the limitations of traditional Convolutional Neural
Networks (CNNs) that are primarily designed for Euclidean or grid-like data. Moreover,
GNNs are highly capable of embedding heterogeneous data types, which is particularly
advantageous given our diverse set of meteorological factors across multiple stations.

Within this framework, each meteorological station is represented as a node in our
graph, while the meteorological factors of each station serve as the node’s attributes. Let us
denote by X(i)

t−t0:t−1 the time series of meteorological factors for each station i ∈ {1, 2, ..., n},
where n = 11 corresponds to the number of meteorological stations, and t − t0 : t − 1
denotes the time window under consideration. Then, the attribute tensor Xt−t0:t−1 for our
graph can be formed as:

Xt−t0:t−1 =
[

X(1)
t−t0:t−1, X(2)

t−t0:t−1, ..., X(n)
t−t0:t−1

]
(2)

Furthermore, the connections between these nodes are determined based on the
geographic proximity of the stations. Here, we represent these connections using an
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adjacency matrix A. The matrix A is an n× n matrix, where Aij indicates whether there is
an edge between node i and node j.

The geographic proximity is calculated using the Haversine formula, which computes
the distance dij between two points, P1(lon1, lat1) and P2(lon2, lat2), on the Earth’s surface:

dij = 2rarcsin

(√
sin2

(
lat2 − lat1

2

)
+ cos(lat1)cos(lat2)sin2

(
lon2 − lon1

2

))
(3)

where r is the average radius of the Earth, approximately 6371 km. A threshold of 85 km is
then set. If the distance between two stations is less than or equal to this threshold, an edge
is created between these two nodes (i.e., Aij = 1). Otherwise, no edge is formed (Aij = 0).
Formally, the adjacency matrix A is defined as follows:

Aij =

{
1, if dij ≤ 85km
0, otherwise

(4)

The choice of an 85 km threshold was not made arbitrarily but was determined through
extensive experimentation. Figure 3 illustrates the connections between 11 meteorological
stations under the optimal threshold condition of 85 km. In Section 4, we present a
detailed discussion on the selection of the threshold, highlighting how various options
were evaluated to ensure the optimal representation of the spatial correlations between the
meteorological stations.

Figure 3. Visualization of the Meteorological Graph Construction Module. The figure illustrates
the network topology of eleven meteorological stations in Tianjin City, each depicted as a node
in the graph. Edges are established based on geographic proximity, connecting stations within a
85 km threshold. This diagram exemplifies how the model integrates spatial correlations among
meteorological stations into its predictive framework.

With the construction of the adjacency matrix and attribute tensor, our model can
efficiently exploit the spatial correlations among the meteorological stations. By leveraging
the intrinsic benefits of graph-based representation, the proposed architecture caters to the
complexities and nuances of environmental data, offering a sound basis for further stages
of the model, including feature encoding and temporal prediction.
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3.3. Geo-Contextual Graph Embedding Module

Graph embedding methods have garnered significant attention for their prowess in
encoding nodes from a graph into a continuous vector space. This facilitates the deeper
understanding of not only the graph structure but also the relationships and attributes
between nodes. In this research, we specifically harness the power of the Graph Convolu-
tional Network (GCN), a renowned variant of GNN methodologies. The GCN’s ability to
integrate localized information from the graph structure proves integral in our study.

On the basis of the adjacency matrix and attribute tensor, as developed in Section 3.2,
we establish a graph representation G consisting of n = 11 nodes. These nodes embody
meteorological stations, each possessing a set of specific meteorological attributes. The
edges that connect these nodes are determined through geographical proximity and convey
the relational network among the stations. The nodes within the graph G are symbolized
by an attribute tensor Xt−t0:t with dimensions n× d, where d represents the dimension of
the meteorological factors at each individual station. The adjacency matrix of graph G,
labelled as A, features dimensions n× n. In this matrix, Aij reflects the presence of an edge
or connection between stations i and j.

Within the adopted GCN framework, a graph convolution operation can be mathe-
matically denoted as follows:

H(l+1) = σ
(

D−1 AH(l)W(l)
)

(5)

In this equation, H(l) signifies the features of nodes at layer l, with H(0) = Xt−t0:t

serving as the initial condition. W(l) acts as the weight matrix learned during the training
phase at layer l. D is the degree matrix with Dii = ∑j Aij, and σ(·) acts as a non-linear
activation function—in this research, the ReLU function.

The above operation signifies the dual process of feature transformation and neigh-
borhood information aggregation. The newly transformed feature H(l+1) for each node
amalgamates information from its immediate neighbors, providing a localised yet compre-
hensive summary of the node’s context within the graph. By performing this operation
over multiple layers, we ensure the assimilation of a more extensive array of contextual
information. The output derived from the GCN, denoted by H(L), embeds crucial geo-
graphical and meteorological contexts for each meteorological station, thereby acting as a
potent intermediate representation.

To further hone this intermediate representation, we introduce an additional transfor-
mation step facilitated by a Multilayer Perceptron (MLP). The MLP operates as a transfor-
mative function fMLP(·) that maps its input to a higher-dimensional feature space, thereby
introducing non-linearity that is capable of capturing complex patterns within the data.
The transformation operation of the MLP, which takes H(L) from the last GCN layer as its
input, is as follows:

V = σ
(

W(2)σ
(

W(1)H(L) + b(1)
)
+ b(2)

)
(6)

where, W(1), W(2) act as weight matrices, b(1), b(2) denote bias vectors, and σ(·) represents
an activation function. This configuration of the MLP facilitates the extraction of higher-
level features from the graph embeddings, transforming the information into a more
compact, information-rich representation. The resulting feature vector V encapsulates the
output of the Geo-Contextual Graph Embedding Module, melding the geographical and
meteorological context to provide a robust foundation for subsequent stages of our model.

In combining the GCN and MLP in this module, we effectively capture complex
spatiotemporal patterns that are inherent in environmental data, significantly enhancing
the representational power of the feature vector V. Our Geo-Contextual Graph Embedding
Module, through the adept combination of graph-structured data and multilayer neural
networks, heralds a novel approach to processing spatiotemporal environmental data.
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3.4. Feature Encoding and Temporal Concatenation Module

In this section, we delve into the Feature Encoding and Temporal Concatenation
Module, a critical stage that bridges the graph-embedded meteorological features and
the historical dissolved oxygen concentration measurements, laying the foundation for
the subsequent Temporal Transformer Prediction Module. The Geo-Contextual Graph
Embedding Module outputs a feature vector V for each meteorological station, which is of
dimension n× dv.

The first phase of this module entails the positional encoding of the feature vector V,
employing a one-dimensional Convolutional Neural Network (1D-CNN). The process aims
to uncover the latent spatial correlations within the meteorological features. For the feature
vector V, the 1D-CNN applies a convolution operation, followed by a non-linear activation
function; here, we consider the ReLU function. This can be represented mathematically as:

P = σ(Wcnn ∗V + bcnn) (7)

where Wcnn denotes the convolutional kernel, bcnn is the bias, ∗ represents the convolution
operation, and σ(·) is the ReLU activation function. The output P is the positionally
encoded feature vector of dimension n× dp, where dp is the dimension of the feature vector
after CNN encoding.

The next step integrates the positionally encoded feature vectors with historical mea-
surements of the dissolved oxygen concentrations. Let Dt−t0:t−1 be the historical dissolved
oxygen concentrations from time t− t0 to t− 1, which is of dimensions 1× t0. These histor-
ical measurements are appended to the positionally encoded feature vector P, forming a
temporally concatenated matrix T of dimensions n×

(
dp + t0

)
:

Z =
[
P, Dt−t0:t−1

]
(8)

where the brackets denote the concatenation operation, and the output Z represents the
temporally concatenated matrix.

The temporally concatenated matrix Z is a comprehensive time-series dataset that
fuses the positionally encoded meteorological features with historical dissolved oxygen
concentrations. The data are now prepared for the next module, the Temporal Trans-
former Prediction Module, that predicts the future dissolved oxygen concentrations. This
Feature Encoding and Temporal Concatenation Module effectively brings together the
meteorological data and dissolved oxygen history and instills a temporal facet to the model.

3.5. Temporal Transformer Prediction Module

The Temporal Transformer Prediction Module, drawing on the power of the Trans-
former model [55], forms the heart of our proposed system, synthesizing the preceding
stages’ outputs to predict future dissolved oxygen concentrations. The Transformer model’s
pivotal strength, the self-attention mechanism, demonstrates proficiency in modeling both
local and long-range dependencies in sequences, rendering it aptly suitable for our pre-
dictive task from the spatio-temporal environmental data. The Transformer architecture
can be conceptually segregated into two primary components, the Encoder and Decoder,
both of which are formed of multiple identical layers, each consisting of a self-attention
mechanism and a position-wise feed-forward network.

The Encoder operates as a complex, sequential data interpreter. The input to the
Encoder is the combined feature sequence Z, and its output is a high-dimensional represen-
tation of the input. This output is a result of the input sequence flowing through layers of
self-attention mechanisms and feed-forward networks.

A critical aspect of the self-attention mechanism within the Encoder is the implemen-
tation of a mask over the future time steps. This mask is applied to prevent the attention
mechanism from incorporating information about future dissolved oxygen concentrations
during the training process. This ensures that the predictions made by the model are based
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solely on past and current information, thereby preserving the temporal sequence’s integrity
and avoiding any data leakage that would artificially enhance the model’s performance.

Following the Encoder, the Decoder takes the encoded sequence and uses it alongside
its own prior outputs to generate the future sequence for dissolved oxygen concentration
levels. The Decoder has its own self-attention mechanism that allows it to recognize
patterns in the sequence it is generating while simultaneously considering the encoded
information. This dual mechanism enhances the prediction process by enabling the Decoder
to be aware of the broader context, thereby improving the overall predicting accuracy.

The self-attention mechanism can be formulated as:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (9)

where Q, K, and V represent the query, key, and value matrices, respectively, and dk is
the dimensionality of the keys. The mechanism calculates attention scores based on the
compatibility of each query with each key. These scores are then used to form a weighted
sum of the values.

The final step of the Temporal Transformer Prediction Module is the application of a
linear transformation layer on the output from the Decoder. This transformation produces
the corresponding prediction for the future dissolved oxygen concentrations:

DOpred = Wo ·D + bo (10)

where Wo and bo represent the weight matrix and the bias term of the final linear layer,
respectively. The length of the predicted sequence DOpred equals the predicting step of the
dissolved oxygen concentrations, which forms the final output of the Temporal Transformer
Prediction Module.

In summary, the Temporal Transformer Prediction Module effectively captures and
utilizes local and global spatio-temporal dependencies in the input data to provide accurate
predictions of future dissolved oxygen concentrations. This contributes to effective water
quality prediction and holds substantial potential in aiding environmental science research
and water quality management.

3.6. Model Configuration and Experimental Framework

In the preceding subsections, we detailed the construction of our novel environmental
data prediction model, which comprises four main modules: the Meteorological Graph
Construction module, the Geo-Contextual Graph Embedding module, the Feature Encoding
and Temporal Concatenation module, and the Temporal Transformer Prediction module.
Herein, we designate this model as the Meteorological Graph and Temporal Transformer,
abbreviated as MegaTT, to accurately describe its primary features and functionality. Table 3
provides an overview of the key parameter settings for each module in the MegaTT model.

Table 3. Overview of key parameter settings in the MegaTT model.

Module Parameter Setting

Meteorological Graph
Construction Module Number of Neighbors 5

Geo-Contextual Graph
Embedding Module Embedding Size 64

Feature Encoding and Temporal
Concatenation Module

Encoded Feature Size 128
Temporal Window Size 5

Temporal Transformer
Prediction Module

Number of Attention Heads 4
Size of Hidden States 256

Number of Encoder Layers 2
Number of Decoder Layers 2
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In addition to the MegaTT model’s architectural parameters, the optimization
strategies utilized during the training process also play a significant role in determining
the predictive performance. This section delineates the particular parameters associated
with the training procedure, ranging from the selected loss functions to optimizers. The
dataset, which was employed for model training and testing, spans from 1 January 2021
to 31 December 2022, furnishing a total of 1460 data samples with the assumption of two
collected samples per day. The chronological segmentation of the data into training and
testing sets involved utilizing the first year’s data for training and the subsequent year’s
data for model validation.

A sliding window approach was incorporated during the model’s training, wherein
each window consisted of five sequential data samples (equivalent to a 2.5-day duration)
employed to forecast the following data sample. This approach determined the prediction
window and step length to be equivalent to one data sample or a half-day duration,
indicating that the previous 2.5 days of meteorological data were utilized to forecast the
weather conditions for the following half-day duration.

The selection of the optimizer, loss function, and other related training parameters is
crucial for securing optimal model performance. These parameters were ascertained based
on a systematic series of optimization trials. Table 4 displays some of the settings used
during the model training, providing details on the specific configurations and parameters.

Table 4. Configuration specifics utilized for training the MegaTT model.

Training Parameter Value

Optimizer Adam
Loss Function Mean Squared Error
Learning Rate 0.001

Batch Size 64
Training Parameter Value

In the wake of the aforementioned training and optimization, we employ several
key metrics to evaluate the predictive performance of our model, MegaTT. These include
the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of
determination, R2. Both RMSE and MAE provide us with measures of prediction error,
while R2 provides a measure of the explanatory power of the model. Their equations are
as follows:

RMSE =

√
1
n ∑n

i=1 (yi − ŷi)2 (11)

MAE =
1
n ∑n

i=1 |yi − ŷi| (12)

R2 = 1− ∑n
i=1
(
yi − ŷi)

2

∑n
i=1 (yi − y)2 (13)

where yi is the actual value, ŷi is the predicted value, y is the average of the actual values,
and n is the total number of observations.

In the upcoming Section 4.1, we will conduct a comparative study between our
MegaTT model and other extant models for dissolved oxygen concentration predic-
tions. This comparison will focus on contrasting the predictive performance, thereby
underscoring the superior attributes of the MegaTT model. In Section 4.2, we delve
into the discussion on how variations in the distance threshold in meteorological graph
construction impact model performance. Section 4.3 outlines an ablation study of the
meteorological module, assessing the spatial impact of meteorological features on by
using only the Temporal Transformer for dissolved oxygen concentration predictions.
Additionally, we investigate the model’s behavior using the nearest single-station ap-
proach, focusing on the impact of the nearest meteorological station within the deep
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learning method. This exploration will help us better understand the key drivers of
model performance and potential avenues for optimization.

4. Results and Discussion
4.1. Performance Analysis and Model Comparison

In this section, we provide a detailed comparison of our proposed model, MegaTT,
with a series of established benchmark models extensively utilized in the field of envi-
ronmental data prediction. For the sake of transparency, reproducibility, and fairness in
our experimental setup, each model’s specific architectural configurations and principal
parameters are comprehensively explained.

• Support Vector Machine (SVM) [32]: The SVM model implemented in this study
utilized the Radial Basis Function (RBF) kernel to map the input space into a
higher dimension. The penalty parameter C and kernel coefficient gamma, both
essential to the SVM’s operation, were finetuned through a grid search in the range
of {0.1, 1, 10, 100}, with the goal of minimizing the prediction error on a separate
validation set.

• Random Forest (RF) [33]: The RF model, a robust ensemble learning method, was
employed with varying numbers of decision trees. The optimal number of trees,
chosen from the set {100, 200, 500, 1000}, was determined via cross-validation to
mitigate overfitting and to ensure that the model generalized well to unseen data.

• Extreme Gradient Boosting (XGBoost) [37]: The XGBoost model, renowned for its
predictive power and efficiency, was configured with a learning rate of 0.1, a maximum
tree depth of 5, and 100 estimators. Further finetuning of these parameters was
performed based on a validation set to optimize the balance between learning speed
and prediction accuracy.

• Long Short-Term Memory (LSTM) [34]: The LSTM model was implemented with a two-
layer architecture, each layer comprising 50 units, to capture temporal dependencies.
A dropout rate of 0.2 was introduced to control overfitting, thus preventing the model
from excessively relying on particular features or training instances.

• Gated Recurrent Unit (GRU) [21]: The GRU model, a variant of the recurrent neural
network, was utilized with a single hidden layer composed of 100 units. Similar to
LSTM, a dropout rate of 0.2 was applied to maintain model generalization.

In order to ensure a fair and unbiased comparison, all models were trained and
evaluated using an identical dataset. The determination of hyperparameters was guided
by grid search, coupled with cross-validation on the training data. The performance of the
models was gauged using the same metrics RMSE, MAE, and R2, providing a holistic and
comprehensive evaluation of their prediction accuracy and generalizability.

Figure 4 provides a visual time-series analysis, highlighting the comparative predictive
accuracy of MegaTT and the benchmark models. It can be observed that the MegaTT model
captures the variations in dissolved oxygen concentrations effectively, closely following the
observed values. In comparison, although all models demonstrate competence in capturing
the general trend, they fail to capture sudden changes or maintain consistent accuracy
across the time span, a challenge efficiently tackled by our proposed MegaTT model.

The comparative error distribution of all models is illustrated in Figure 5. Here, we can
observe that MegaTT’s prediction errors are mostly concentrated in lower error intervals,
implying higher prediction accuracy. In contrast, other models demonstrate wider error
distributions, indicating less stable predictive performances.

The comparative performance metrics are further tabulated in Table 5. These results
provide quantitative evidence to the superiority of MegaTT over the benchmark models.
Specifically, MegaTT outperforms all other models with the lowest RMSE and MAE and the
highest R2 score. This implies that our MegaTT model achieves superior precision, lower
tendency of large errors, and better consistency with the observed data.
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Figure 4. A Comparative time-series analysis of predicted and observed dissolved oxygen con-
centrations for 2022. Each sub-figure demonstrates the predictive accuracy of a specific model: (a)
Meteorological Graph and Temporal Transformer (MegaTT), a novel approach utilizing graph embed-
dings of meteorological stations coupled with a temporal transformer for optimized predictions; (b)
Support Vector Machine (SVM); (c) Random Forest (RF); (d) Extreme Gradient Boosting (XGBoost);
(e) Long Short-Term Memory (LSTM); (f) Gated Recurrent Unit (GRU). The composition of these
individual models in one figure allows for a rigorous and direct comparison of their predictive
performance.

Figure 5. Histogram of prediction errors for different models. The x-axis represents different ranges
of prediction errors while the y-axis shows the frequency within each range. Each range of errors
includes six bars, each corresponding to a different model: Meteorological Graph and Temporal
Transformer (MegaTT), Support Vector Machine (SVM), Random Forest (RF), Extreme Gradient
Boosting (XGBoost), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). The bars’
heights in each range indicate the frequency of errors falling within that range for the respective
model. The midpoints of the tops of the MegaTT bars across all error ranges are connected by a line,
providing a visual representation of the error distribution specific to the MegaTT model.



Water 2023, 15, 3029 16 of 23

Table 5. Comparative performance metrics of MegaTT and other models.

Model RMSE MAE R2

MegaTT 0.754 0.601 0.936
SVM 1.502 1.180 0.749
RF 1.634 1.238 0.711

XGBoost 1.480 1.137 0.756
LSTM 1.484 1.113 0.753
GRU 1.411 1.069 0.775

In conclusion, through the rigorous comparisons in this section, it is unequivocally
demonstrated that our proposed MegaTT model outperforms a variety of established
models in the field. The superior performance is evident in both the time-series analysis
and the error distribution, and it is further corroborated by the performance metrics. This
suggests that our novel approach of employing the graph embeddings of meteorological
stations, coupled with a temporal transformer for optimized predictions, provides a more
robust and accurate tool for predicting dissolved oxygen concentrations in water bodies.

4.2. Impact of Meteorological Graph Connectivity Variation on Model Performance

The role of meteorological graph connectivity in enhancing the prediction perfor-
mance of the MegaTT model is explored in this section. In an effort to understand the
effects of varying graph connectivity on the model’s performance, we incrementally
adjusted the spatial threshold from zero (signifying no connections among vertices) up
to 170 km (a distance surpassing the longest inter-station gap, thereby resulting in a fully
connected graph).

Figure 6 serves as a heatmap of the spatial distances between the 11 meteorological
stations and the resultant impact on model performance is illustrated in Figure 7 and Table 6.
Figure 7’s boxplot indicates the absolute prediction errors of the model corresponding to
each spatial threshold. Each box’s median value is linked to visualize the trend of error
variation with the changing threshold.

Table 6. Performance metrics of the model under different spatial thresholds.

Threshold (km) RMSE MAE R2

r = 0 1.333 1.069 0.824
r = 17 1.345 1.078 0.822
r = 34 0.967 0.742 0.899
r = 51 0.841 0.676 0.919
r = 68 0.790 0.624 0.931
r = 85 0.754 0.601 0.936
r = 102 0.809 0.628 0.927
r = 119 0.793 0.627 0.928
r = 136 0.844 0.663 0.922
r = 153 1.212 0.952 0.849
r = 170 1.196 0.948 0.845

Notably, as the spatial threshold increased from 0 to 85 km, the model’s Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE) exhibited a general
downward trend, despite slight fluctuations. Concurrently, the coefficient of determi-
nation (R2) increased. This outcome suggests that, within this range, expanding the
spatial threshold—thus broadening the information exchange between meteorological
stations—enhances the model’s predictive accuracy for dissolved oxygen concentra-
tions. It could be due to the fact that meteorological stations within this range likely
capture similar atmospheric conditions, which contribute significantly to the dissolved
oxygen concentration levels in the associated water bodies.
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Figure 6. Heatmap of distances between meteorological stations. This figure presents a distance
matrix as a heatmap, where each cell represents the distance in kilometers between pairs of meteoro-
logical stations. The station pairs are identified by their unique Station ID. Colors in the heatmap
range from light (representing shorter distances) to dark (representing longer distances). The diagonal
line from the top-left to the bottom-right, which shows the self-distance of each station, is colorless as
it represents a distance of zero.

However, when the spatial threshold extended beyond 85 km, the RMSE and MAE
began to climb while the R2 declined. This suggests that an excessively high threshold,
leading to a fully connected graph, may introduce irrelevant associations. For example,
meteorological stations that are geographically distant might not share similar atmospheric
conditions, and forcibly connecting them could introduce noise into the model. Conse-
quently, this unnecessary information exchange may distort the model’s learning, causing
a decline in prediction performance.

Table 6 corroborates the observations from Figure 7, revealing an optimal threshold
of 85 km for constructing the meteorological graph, a key factor in the MegaTT model’s
performance. This optimal threshold is vital for capturing the spatial-temporal structure of
multi-site meteorological data. When the threshold was below 85 km, suburban meteorolog-
ical stations 54622, 54645, and 54428 gradually disconnected from the main central city area
meteorological graph, impacting the prediction accuracy. Conversely, when the threshold
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exceeded 85 km, the connections became overly dense, introducing noise and distorting the
model’s learning. An 85 km threshold allowed for connections that were neither too dense
nor too sparse, achieving the highest prediction accuracy for dissolved oxygen concentra-
tions in the target area, located in the central city. This finding underscores the importance
of a well-defined threshold for the meteorological graph, emphasizing the significance of
balanced connections between remote suburban and central city meteorological stations.
It not only enhances the prediction of dissolved oxygen concentrations but also provides
essential guidance for future research on graph-structured environmental data analysis,
laying a foundation for a more precise and robust modeling of environmental phenomena.

Figure 7. Impact of varying spatial thresholds on model performance. The boxplots represent the
distribution of absolute prediction errors of the MegaTT model at different spatial thresholds. The line
linking the medians of each boxplot visualizes the trend of error variation with the changing threshold.
The figure illustrates how the model’s performance varies with spatial thresholds, highlighting the
existence of an optimal threshold that maximizes predictive accuracy.

4.3. Ablation Study of Meteorological Module and Impact of Nearest Single-Station Approach

In this section, two principal experiments are designed to evaluate the effectiveness of
the proposed MegaTT model in capturing meteorological factors that influence dissolved
oxygen concentration predictions in water bodies.

• The first experiment involves a comparison between the full MegaTT model and its
reduced form, referred to as the Temporal Transformer (TT) model. By eliminating
all meteorological station inputs and retaining only the Temporal Transformer Predic-
tion Module, this comparison serves to highlight the contributions of the integrated
meteorological modules in the MegaTT model.

• The second experiment emphasizes a specific configuration, where only the meteoro-
logical factors from the nearest station are retained in the MegaTT model (NS-MegaTT).
Table 7 lists the distances between 11 meteorological stations and the target water
quality monitoring site, highlighting the proximate relationships. Among them, sta-
tion 54529 is identified as the closest to the target water quality monitoring site. By
employing data exclusively from this nearest meteorological station, the analysis aims
to assess the impact of nearest single-station information on the model’s capability in
predicting dissolved oxygen concentrations accurately.
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Table 7. Distances between the water quality monitoring station located at Ji Canal Tide Gate and
11 meteorological stations.

Station ID Monitoring Area Distance (km)

54428 Ji County 108.599
54523 Wuqing 63.071
54525 Baodi 59.831
54526 Dongli District 46.154
54527 Tianjin 60.674
54528 Beichen District 55.894
54529 Ninghe 22.857
54530 Hangu District 23.189
54622 Jinnan District 73.375
54623 Tanggu 27.494
54645 Dagang 77.979

Figure 8 provides a visual representation of the absolute errors for each model. The
grey dashed lines marking the MAE in each subplot further elucidate the differences
between the models.

Figure 8. Time-series plots of the absolute errors between predicted and actual dissolved oxygen
concentrations for each sample point in the test dataset, depicted for three distinct models: Temporal
Transformer (TT), Nearest Single-Station MegaTT (NS-MegaTT), and full MegaTT. Each subplot
presents the error over time, with a grey dashed line marking the Mean Absolute Error (MAE) for
the corresponding model. The comparison illustrates the efficiency and accuracy of the models
in predicting dissolved oxygen concentrations, highlighting the contribution of the meteorological
modules in the MegaTT model.



Water 2023, 15, 3029 20 of 23

The TT model, without meteorological inputs, displays higher errors (RMSE: 1.427,
MAE: 1.154) and a relatively lower determination coefficient (R2: 0.798). NS-MegaTT,
which incorporates data only from the nearest meteorological station, improves perfor-
mance slightly (RMSE: 1.236, MAE: 0.973, R2: 0.848). The full MegaTT model shows
substantial improvements with the lowest errors (RMSE: 0.754, MAE: 0.601) and the highest
determination coefficient (R2: 0.936). The comparison emphasizes the contribution of multi-
station meteorological data in predicting dissolved oxygen concentrations. The MegaTT
model’s superiority is apparent, with significantly better performance in terms of error
minimization and R2 value.

The results of the ablation study offer profound insights into the importance of mete-
orological data integration. The MegaTT model’s significant enhancement in prediction
accuracy underscores the effectiveness of the dynamic meteorological graph construction.

5. Conclusions

This study aimed to enhance the prediction of dissolved oxygen concentrations in
water bodies through a novel approach, the Meteorological Graph and Temporal Trans-
former (MegaTT) model. This model effectively exploited the spatial-temporal structure
of multi-site meteorological data, providing a comprehensive understanding of the water
bodies’ characteristics and their impacts on dissolved oxygen concentration predictions.

Our MegaTT model outperformed traditional machine learning models, includ-
ing Support Vector Machine (SVM), Random Forests (RFs), Extreme Gradient Boosting
(XGBoost), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), demon-
strating its superiority in handling complex geospatial and temporal patterns.

Furthermore, the study determined an optimal distance threshold of 85 km for con-
structing the meteorological graph, achieving the highest prediction accuracy for dissolved
oxygen concentrations in the target area. This threshold maintained a balanced connection
between remote suburban and central city meteorological stations. This finding emphasizes
the importance of carefully defining connections within the graph and provides essential
guidance for future research on graph-structured environmental data analysis.

An ablation study further underscored the essential role of the meteorological module,
with the MegaTT model significantly outperforming its reduced versions, namely the Tem-
poral Transformer (TT) model and the Nearest Single-Station MegaTT (NS-MegaTT). This
in-depth analysis provided a robust justification for integrating multi-station meteorological
data, leading to improved dissolved oxygen prediction accuracy.

The MegaTT model presented in this paper opens up a new perspective on dissolved
oxygen concentration predictions. It not only shows promising results but also paves
the way for the potential incorporation of other environmental factors, advancing the
development of holistic and effective water quality management strategies. Future research
directions could involve exploring other types of environmental data and applying the
MegaTT model to different water quality parameters, which would be of great significance
for environmental management and policymaking.
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