
Citation: Kang, J.-K.; Kingkhambang,

K.; Lee, C.-G.; Park, S.-J. Optimization

of the Preparation Conditions of

Aluminum-Impregnated Food Waste

Biochar Using RSM with an MLP and

Its Application in Phosphate

Removal. Water 2023, 15, 2997.

https://doi.org/10.3390/w15162997

Academic Editors: Natalija Velić,
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Abstract: Phosphorus is an essential macroelement in plant growth and the human body, but
excessive water enrichment with phosphorus is a global threat to water quality. To address this
problem, the development of an efficient, affordable adsorbent for use in removing large amounts
of phosphorus from eutrophic water is necessary. Food-waste-based adsorbents offer a sustainable
solution because they utilize waste as a valuable resource. This study explored the use of food
waste biochar as a novel adsorbent with additional aluminum impregnation (Al–FWB) to enhance
its phosphate adsorption capacity. This study employed response surface methodology (RSM) to
optimize the synthetic conditions of the Al–FWB with the highest phosphate adsorption capacity.
To enhance the identification of the optimal conditions using RSM, this study employed quadratic
equations and a multi-layer perceptron (MLP). The pyrolysis temperature and Al concentration
significantly (p < 0.05) affected the adsorption capacity of the AL–FWB. The optimal conditions for the
preparation of the AL–FWB were a pyrolysis temperature, duration, and Al concentration of 300 ◦C,
0.5 h, and 6%, respectively, based on the quadratic equation and MLP models. X-ray photoelectron
spectroscopy revealed that phosphate was adsorbed on the surface of the AL–FWB via the formation
of AlPO4. The optimized AL–FWB (Opt-AL–FWB) removed 99.6% of the phosphate and displayed
a maximum phosphate adsorption capacity of 197.8 mg/g, which is comparable to those reported
in previous studies. Additionally, the phosphate adsorption capacity of the Opt-AL–FWB was
independent of the pH of the solution, and the presence of 10 mM SO4

2– decreased its adsorption
capacity by 15.5%. The use of the Opt-AL–FWB as an adsorbent provides not only efficient phosphate
removal but also green, economical food waste reusability. In summary, this study demonstrates
the potential of AL–FWB as an effective, sustainable, and affordable adsorbent for use in phosphate
removal from contaminated water.

Keywords: aluminum impregnation; biochar; food waste; phosphate removal; optimization; response
surface methodology; multi-layer perceptron

1. Introduction

Phosphorus is an indispensable macroelement in plant growth and the human body [1].
It is an essential plant nutrient for growth enhancement, development, and yield and is
thus applied as phosphate in soil in large quantities [2]. However, the unused phosphate
derived from agricultural fertilizers from non-point and point sources enters surrounding
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water bodies, causing eutrophication [3]. Phosphate pollution is a global threat because of
the effects of industrial and agricultural activities and the acceleration of eutrophication in
aquatic media [4]. Notably, eutrophication due to increasing algal overgrowth and oxygen
depletion may threaten human health, severely endanger aquatic ecosystems, and cause
effects such as the unpalatability of drinking water and declining waterway values [5].
Therefore, the remediation of phosphates in aqueous solutions is imperative because this is
a growing environmental concern.

Several techniques have been developed for use in the removal of phosphate ions
from aqueous solutions, including membrane [6–9] and activated sludge processing [10],
struvite formation [11–13], biological treatment [14], chemical precipitation [15], and
adsorption [16–18]. Among these, adsorption exhibits considerable potential in elimi-
nating phosphate from contaminated water [19–21], offering several advantages, such as
convenience, eco-friendliness, a simple design and low cost, and reusability. Several adsor-
bents have been studied and used to remove phosphate from water, including zeolites [22],
iron oxides [23], aluminum oxides [24], and activated carbon [25]. However, several of these
adsorbents exhibit undesirable adsorption properties; thus, efficient, low-cost adsorbents
should be developed.

Approximately 1.3 billion metric tons of food are wasted annually, resulting in a
significant amount of waste that is stored in landfills [26], thereby generating excess
greenhouse gases and environmental problems, such as odors and leachates [27]. Over the
years, the valorization of food waste into biochar via a circular economy has attracted the
attention of environmentalists, policymakers, and researchers [28]. Biochar is a carbon-rich
substance produced by pyrolyzing various biomass sources, such as agricultural waste,
wood chips, algae, manure, sewage sludge, and municipal solid waste [29]. Several studies
identified the potential advantages of using biochar in soil amendments, including waste
management, bioenergy production [30], and water remediation [31,32].

The physicochemical properties of biochar, including its surface area, pore size dis-
tribution, and functional groups, enable its sorption properties [33]. Furthermore, the
sorption characteristics of biochar are significantly influenced by modifications, and several
approaches have been reported, including those based on acids, alkalis, oxidizing agents,
and metal salts [4,34–38]. The preparation and modification of adsorbents with metals
are simple, efficient methods of removing phosphates from water [4,39–41]. However,
phosphate removal using aluminum-impregnated food-waste-based biochar (AL–FWB) is
not reported, although aluminum impregnation may enhance the phosphate adsorption
characteristics [42], which may vary significantly depending on the aluminum impregna-
tion conditions. Therefore, determining the optimal synthetic conditions and preparing
AL–FWB are crucial in effective phosphate adsorption. Response surface methodology
(RSM) is widely used to estimate optimal conditions and should be effective in preparing
AL–FWB for use in efficient phosphate adsorption.

The advantages of RSM over conventional experimental designs include the efficient
exploration of the response surface, identification of the optimal conditions, analyses of
interactions and nonlinear effects, statistical inference and model validation, and reduced
experimental costs and time [43]. These advantages render RSM a powerful tool in opti-
mizing experimental conditions and more effectively and efficiently realizing the desired
outcomes [44]. RSM is typically applied based on a polynomial equation, but the response
surfaces that may be accurately expressed solely with a polynomial model are inherently
limited. A multi-layer perceptron (MLP) is an artificial neural network comprised of
multiple layers of interconnected nodes known as neurons [45]. It offers advantages in opti-
mizing experimental conditions by leveraging its nonlinear modeling capacities, automatic
feature extraction, capacity to handle multivariate optimization, flexibility, adaptability to
noisy data, and efficiency in parallel processing [46]. Therefore, the use of a MLP instead of
the polynomial used in RSM may result in a response surface with a more flexible form,
enabling a comparison or potential replacement of the optimal condition obtained using
the polynomial model.
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This study investigates the effectiveness of AL–FWB as an adsorbent in phosphate
removal from aqueous solutions. Moreover, the main objectives are twofold: (1) optimize
the AL–FWB preparation conditions using RSM with not only a quadratic equation (QE),
but also MLP, and (2) investigate the sorption capacity and mechanisms of the adsorbent
via property analysis and batch studies.

2. Materials and Methods
2.1. Preparation of AL–FWB

Food waste was collected as a raw material for biochar from a processing facility
located in Seoul, South Korea [47]. At the facility, the food waste collected at household
level was subjected to steam boiling at 150 ◦C followed by crushing and sieving. The food
waste in this study was mainly composed of C (50.3%) along with inorganic constituents,
such as Na (8.2%), Mg (5.4%), S (1.6%), Cl (15.7%), K (10.1%), and Ca (8.8%). The food
waste processed in the facility was dried prior to use and then immersed in various AlCl3
(Samchun Chemicals, Pyeongtaek, Korea) solutions (2%, 4%, or 6%). The Al-impregnated
food waste was then pyrolyzed in a tube furnace at various temperatures (300, 450, or
600 ◦C) for various durations (0.5, 2.0, or 3.5 h). Anoxic conditions were generated by
injecting N2 gas into the tube furnace. The AL–FWB was sieved and stored in a drying
oven for further use.

2.2. Application of the QE and MLP in RSM to Optimize the Preparation Conditions of AL–FWB
for Use in Phosphate Removal

The concentration of the immersion solution and the temperature and duration of py-
rolysis are critical factors that influence the adsorption characteristics of metal-impregnated
biochar [48]. Therefore, three independent variables and their ranges were used: pyrolysis
temperature (300, 450, and 600 ◦C) and duration (0.5, 2.0, and 3.5 h) and Al concentration
(2%, 4%, and 6%) of the immersion solution. We thus used the Box–Behnken approach to
design 17 sets of AL–FWB preparation conditions. Phosphate adsorption batch studies
were performed to compare the phosphate removal rates of the AL–FWBs by reacting 0.3 g
of AL–FWB and 30 mL of a 300 mg/L phosphate solution for 24 h at 25 ◦C. This specific
condition was selected following preliminary tests, which exhibited significant variations
in phosphate adsorption capacities among the AL–FWB samples. We did not just select
the optimal AL–FWB of the 17 AL–FWBs; RSM was applied to optimize the AL–FWB
preparation conditions and determine the influence of each variable on the phosphate
adsorption capacity of AL–FWB. Therefore, the phosphate removal rate (%) using the
AL–FWB was a response variable in RSM. Before applying RSM, the independent variables
were normalized to exclude the effect of the relative magnitude of each variable using
Equation S1. The original ranges and normalized values of each variable are shown in
Table 1.

Table 1. Ranges of input variables and their values after normalization.

Input Variables
Normalized Value (−)

−1 0 1

Original value
Pyrolysis temperature (◦C, X1) 300 450 600

Pyrolysis duration (h, X2) 0.5 2.0 3.5
Al concentration (%, X3) 2 4 6

The models used in RSM, i.e., the QE and MLP, were applied. The QE (Equation (1)) is
optimized, and terms are selected with a backward selection algorithm using Design-Expert
v13 Trial (Stat-Ease, Minneapolis, MN, USA):

Y = a0 +
3

∑
i=1

aiXi +
3

∑
i=1

3

∑
j=i

ai,jXiXj (1)
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where Y is the phosphate removal rate predicted using the QE (−); a0 is the constant
coefficient; ai and ai,j are the parametric coefficients; and X1, X2, and X3 are the normalized
pyrolysis temperature and duration and Al concentration, respectively.

Before training the MLP using the 17 datasets, the optimal hyperparameters for each
dataset were identified using a grid search, and the detailed grid search conditions and
results are shown in Table S1. Once the optimal hyperparameters were selected, the
17 datasets were determined to be equally crucial for training the MLP model, and thus,
all 17 datasets were used for model training. The optimal synthetic conditions of the
AL–FWB (Opt-AL–FWB) were determined based on RSM by selecting the conditions that
were optimal in the QE and MLP models.

2.3. Characterization of Opt-AL–FWB

The surface area calculated using the Brunauer–Emmett–Teller plot was used to
characterize the specific surface area of the modified FWB using a surface area analyzer
(Quandrasorb SI, Quantachrome Instruments, Boynton Beach, FL, USA). Fourier-transform
infrared (FTIR) spectroscopy of the food waste biochar was conducted using a Nicolet iS10
Fourier-transform infrared spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).
Field emission scanning electron microscopy (FE-SEM, S-4700, Hitachi, Tokyo, Japan) was
employed to observe the morphologies of the Opt-AL–FWB surfaces, including pore devel-
opment. Additionally, the elemental composition of the Opt-AL–FWB was quantified using
an energy dispersive spectrometer (EDS) integrated with the FE-SEM. The state of the ad-
sorbed phosphate on Opt-AL–FWB was confirmed using X-ray photoelectron spectroscopy
(XPS, hv = 1253.6 eV, Sigma Probe with Al Kα radiation, Thermo Fisher Scientific).

2.4. Batch Studies for Evaluation of Phosphate Adsorption Characteristics of Opt-AL–FWB

The comparison results of phosphate adsorption among the pre-prepared AL–FWBs
informed both RSM and MLP techniques for identifying the optimal conditions for en-
hanced phosphate adsorption in Opt-AL–FWB. Following this optimization, Opt-AL–FWB
was synthesized. To comprehensively evaluate its phosphate adsorption, batch studies
were conducted to assess the characteristics of Opt-AL–FWB in phosphate removal. The
studies involved varying the Opt-AL–FWB dosage, reaction time and temperature, initial
phosphate concentration, initial solution pH, and the presence of coexisting anions. If no
specific experimental conditions are stated, the batch studies were conducted using 0.3 g of
Opt-AL–FWB and 30 mL of a 500 mg/L phosphate solution, which were added to a 50 mL
conical tube and agitated at 100 rpm for 24 h at 25 ◦C using a shaking incubator. The reacted
solutions were separated using 0.45 µm GF/C filters. The experiments were performed
in triplicate, and the phosphate concentrations in the initial and reacted solutions were
measured using a direct colorimetric method (United States Environmental Protection
Agency (EPA) Method 365.3).

Dosage studies were performed by reacting different quantities of Opt-AL–FWB (0.05,
0.1, 0.2, 0.3, and 0.4 g) with 30 mL of the 500 mg/L phosphate solution. These studies were
performed to compare the effects of the dosage on phosphate removal. Kinetic studies
were conducted for 0.5, 1, 2, 3, 6, 12, and 24 h, and the initial phosphate concentrations
used in the equilibrium batch studies were 10, 25, 50, 100, 300, 500, and 700 mg/L. The
thermodynamic adsorption study involved using a reaction temperature of 15, 25, or 35 ◦C.
The effect of the initial pH was examined at pH 3, 5, 7, 9, and 11 via adjustment with
0.1 M HCl and/or NaOH solutions. To assess the effects of competing anions on phosphate
adsorption, Na2SO4, NaHCO3, or NaNO3 (Samchun Chemicals, Pyeongtaek, Korea) was
added at a concentration of 1 or 10 mM.

The results of the kinetic studies were analyzed using pseudo-first-order and pseudo-
second-order models (Equations (S3) and (S4)), and those of the equilibrium studies were
analyzed using the Langmuir and Freundlich models (Equations (S5) and (S6)). The
thermodynamic parameters were calculated using Equations (S7)–(S9), and all model
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parameters were estimated via nonlinear regression using the dynamic fit Wizard function
in SigmaPlot 10.0 (IBM, Armonk, NY, USA).

3. Results and Discussion
3.1. Optimization of AL–FWB Preparation for Use in Phosphate Adsorption via RSM with the QE
or MLP

Utilizing Equation 1, the QE model obtained without term selection demonstrated an
R2 value of 0.929 for the 17 datasets (Table S2). When excluding terms deemed insignificant
through backward selection among them, the R2 values of the QE and MLP models were
0.904 and 0.908, respectively. Therefore, utilizing both models to determine the optimal
synthetic conditions was deemed meaningful. The pair plots, sum of squares errors, and
R2 values of the 17 datasets obtained using the two models are shown in Figure S1. The
optimized QE is given by Equation (2).

Y = 0.7142 − 0.04900X1 + 0.02963X3 − 0.03110X1X3 + 0.04737X1
2 (2)

Based on the QE, the optimal conditions of AL–FWB preparation are a pyrolysis
temperature and Al concentration of 300 ◦C and 6%, respectively, and as there are no
terms related to pyrolysis duration, any value between 0.5 and 3.5 h may be sufficient. The
expected phosphate removal rate under these optimal conditions is 0.8713 (−). Unlike
the QE, which provides several optimized conditions, the MLP identifies a single optimal
synthetic condition with a pyrolysis temperature and duration and Al concentration of
300 ◦C, 0.5 h, and 6%, respectively. The expected response under the optimal conditions is
0.8701. The optimal conditions presented by the MLP are consistent with one of the optimal
conditions presented by the QE. Opt-AL–FWB synthesized under the optimal conditions
identified by the MLP was used for further study.

Figure 1 shows the response surfaces obtained using the QE and MLP, and the
similarity between the response surfaces generated with the two models is confirmed.
Increasing the Al concentration and decreasing the pyrolysis temperature increases
phosphate removal. In contrast, the thermal decomposition time exhibits a negligible
effect on the response.

The results of the analysis of variance (ANOVA) of the QE model are shown in
Tables 2 and S3. The F-value (28.35) indicates that the developed regression model is
significant, and the p-value (<0.0001) also indicates the validity of the optimized model.
The statistical analysis reveals that the terms X1, X3, X1×3, and X1

2 are statistically
significant (p < 0.05), indicating that pyrolysis temperature and concentration are crucial,
not only individually, but also to the phosphate removal characteristics of the AL–FWB.
In contrast, no pyrolysis duration-related terms are significant. The pyrolysis duration
is considered sufficient even at 0.5 h (the smallest pyrolysis duration within the Box–
Behnken design range), and extending the pyrolysis duration displays no effect. As
presented in Table S3, an R2 value of 0.904 for the 17 datasets suggests that the model is
good for predicting the phosphate removal rate based on the evaluated experimental
conditions. Therefore, the predicted R2 value of 0.776 is consistent with the adjusted
R2 value of 0.872, confirming that the predicted values are reliable and close to the real
values. An adequate precision of 18.4, which is >4, indicates that this model is sufficient
to navigate the design space [49,50].
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Figure 1. Response surfaces of phosphate removal rate estimated using the optimized quadratic
equation (QE) and multi-layer perceptron (MLP): Effects of pyrolysis temperature and duration based
on the QE (a) and MLP (b), pyrolysis temperature and Al concentration based on the QE (c) and MLP
(d), and pyrolysis duration and Al concentration based on the QE (e) and MLP (f).

Table 2. Results of the analysis of variance of the optimized quadratic equation used in predicting
the phosphate removal rate of AL–FWB prepared using Box–Behnken designed conditions.

Source Sum of Squares Degree of Freedom Mean Square F-Value p-Value
Prob. > F

Model 0.040 4 9.9 × 10−3 28.35 <0.0001
X1 0.019 1 0.019 55.01 <0.0001
X3 7.0 × 10−3 1 7.0 × 10−3 20.12 0.0007

X1X3 3.9 × 10−3 1 3.9 × 10−3 11.08 0.0060
X1

2 9.5 × 10−3 1 9.5 × 10−3 27.21 0.0002
Residual 4.2 × 10−3 12 3.5 × 10−4

Lack of fit 4.1 × 10−3 8 5.1 × 10−4 21.31 0.0050
Pure Error 9.6 × 10−5 4 2.4 × 10−5

Total 0.044 16
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3.2. Characteristics of Opt-AL–FWB

The FE-SEM image shows that the pores on the Opt-AL–FWB surface do not develop
significantly (Figure 2a). The specific surface area and pore characteristics also indicate
that the pores are not significantly developed (Table 3), potentially due to blockage via
impregnation, which is also reported in other studies [51]. Several particles on the surface
are aluminum or salts. Based on the elemental composition results from EDS, Opt-AL–FWB
mainly comprises C and O, but Na and Cl derived from food waste and Al derived from
Al impregnation are also observed (Table 3).
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Figure 2. FE-SEM image (a) and FTIR spectrum of Opt-AL–FWB (b) and XPS spectra of phosphate-
adsorbed Opt-AL–FWB: C 1s (c), O 1s (d), and P 2p (e).

Table 3. Elemental composition, specific surface area, and results of pore analysis of Opt-AL–FWB.

Adsorbents

Elements (Wt%) Specific Surface Area and Pore Analyses

C O Al Cl Na Ca
Specific

Surface Area
(m2 g−1)

Pore
Volume

(cm3 g−1)

Average
Pore Diameter

(nm)

Opt-AL–FWB 42.0 ± 13.8 23.4 ± 5.5 12.1 ± 5.7 14.5 ± 6.6 4.8 ± 0.4 2.6 ± 0.3 10.4 0.031 12.1



Water 2023, 15, 2997 8 of 17

The FTIR spectrum of Opt-AL–FWB is shown in Figure 2b with the peak at 3300 cm–1

ascribed to the –OH stretching of water molecules [52,53]. The peaks at 2924 and 2852 cm–1

may be attributed to CH2 asymmetric/symmetric stretching [54,55], and several peaks at
1600~1300 cm–1 correspond to C=C, C–H, and O–H vibrations [56]. The peak at 1104 cm–1

is attributed to C–O or skeletal C–C vibrations [57,58]. Based on these peaks, Opt-AL–FWB
appears to be a carbonaceous material. The broad peaks at <700 cm–1 are due to Al–OH
bending [59], indicating that Al is impregnated well in Opt-AL–FWB.

Figure 2c–e show the deconvoluted XPS spectra of the phosphate-adsorbed Opt-AL–
FWB. The three peaks detected for C 1s may be attributed to carbide, C–O, and graphitic
carbon with respective binding energies of 283.2, 284.6, and 286.2 eV. This finding is
consistent with those of previous studies in terms of biochar C 1s deconvolution [60–62].
The O 1s peaks are similarly deconvoluted into peaks representing O–H, AlPO4, and C–O
at 530.7, 531.6, and 532.1 eV, respectively, as reported in previous studies regarding the
deconvolution of the O 1s peaks of biochar by Reguyal and Sarmah [62] and Lindblad
et al. [63]. The peak representing O–H in the spectrum may be due to the presence of
adsorbed water or moisture [64]. In the P 2p spectrum, the P 2p peak is attributed to AlPO4
(133.9 eV) [63], which may be formed via the precipitation of Al3+ from Opt-AL–FWB. At
pH 7, the rate of phosphate removal via precipitation, depending on the concentration of Al
(dosage = 10 g/L, initial phosphate concentration = 500 mg/L), was calculated using Visual
MINTEQ (version 3.1, Swedish University of Agricultural Sciences, Uppsala, Sweden), as
shown in Figure S2. When considering that the Al content of Opt-AL–FWB is 2.6 wt.%, and
the batch study is conducted with a dosage of 10 g/L, the concentration of Al when all Al
in Opt-AL–FWB is dissolved is approximately 0.01 M. Under these conditions, a significant
portion of the phosphate generally precipitates. Notably, however, in practical applications,
assuming the complete dissolution of all Al and subsequent precipitation is challenging,
and thus, other adsorption mechanisms should be involved in phosphate removal.

3.3. Effect of Adsorbent Dosage

The results of the dosage studies are shown in Figure 3. The experimental results
show that the phosphate removal efficiency increases from 76.8% to 99.6% as the adsorbent
dosage increases from 1.7 to 6.7 g/L, whereas the phosphate adsorption capacity decreases
from 230.5 to 74.7 mg/g. No significant increase in the removal efficiency is observed at
dosages of >6.7 g/L, and the phosphate adsorption capacity is also inversely proportional
to the dosage when the dosage is >6.7 g/L. The decrease in the phosphate adsorption
capacity with increasing adsorbent dosage may be attributed to the presence of unsaturated
active sites [65].
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3.4. Effect of Contact Time

The results of the contact time study and fitting using the pseudo-first-order and
pseudo-second-order models are shown in Figure 4 and Table S4, respectively. As shown in
Figure 4, the phosphate adsorption precipitously increases to 111.7 ± 1.2 mg/g within 0.5 h
and reaches 134.0 ± 0.8 mg/g at 24 h. This rapid phosphate adsorption at the beginning
of the process may be attributed to its initial adsorption on the exterior surface of the
biochar followed by diffusion into the pores and adsorption on the interior surface [66].
The phosphate adsorption capacities at equilibrium are 126.5 and 130.0 mg/g, according
to the pseudo-first-order and pseudo-second-order models, respectively, while the R2

of the pseudo-second-order model (0.993) is higher than that of the pseudo-first-order
model (0.983). The calculated approaching equilibrium factor (Rw) from Equation (S5) was
found to be 0.004. This value indicates that the adsorption characteristic curves fall within
Zone 3 classification [67]. The superior fit of the experimental data to the pseudo-second-
order model suggests that adsorption is dominated by chemisorption or chemical bonding
between the active sites of the adsorbent and phosphate [68]. The pseudo-second-order
kinetic model suggests that chemical adsorption occurs at a slower rate, thus governing the
surface adsorption processes [38]. This suggests that phosphate may exchange with the
hydroxyl groups on the surface of the metal oxide to form AlPO4, as confirmed with the
XPS. This indicates a particular affinity between phosphate and the adsorbent, resulting in
a high adsorption strength. However, this high affinity may render the regeneration of the
adsorbent challenging [69].
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3.5. Effect of Initial Phosphate Concentration

The experimental results and fitting using the Langmuir and Freundlich models are
shown in Figure 5 and Table S5, and the Freundlich model is more consistent (R2 = 0.995)
with the observed data than the Langmuir model (R2 = 0.982). The 1/n of the Freundlich
model is 0.369, which is <0.5, indicating that the binding between phosphate and the food
waste biochar is strong with multi-layer adsorption [70,71]. The maximum phosphate
adsorption capacity is 197.8 mg/g according to the Langmuir model, which is in the upper-
middle level compared to that reported in previous studies of phosphate removal using
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biochar (Table 4). Food waste may be pyrolyzed and used as biochar, and optimizing
the conditions of Al impregnation confirms that Opt-AL–FWB may be used to effectively
remove phosphate.
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Cottonwood Mg/Al LDH 410.0 Zhang and Gao [73]

Thalia dealbata MgCl2-alginate 46.6 Cui et al. [74]
Laminaria japonica Calcium-alginate beads 620.7 Jung and Ahn [75]

Sugarcane harvest
residue MgO 121.3

Li, Wang, Zhou,
Awasthi, Ali, Zhang,
Gaston, Lahori, and

Mahar [4]
Sugarcane leaves Mg/Al LDH 81.8 Li et al. [76]

Oak Lanthanum 46.4 Wang et al. [77]
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and Gao [41]

Food waste Aluminum 197.8 This study
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3.6. Effect of Temperature

The calculated thermodynamic results and parameters are shown in Figure 6 and
Table S6. The positive change in enthalpy (∆H◦) (19.6 kJ/mol) indicates that phosphate
adsorption is endothermic, and thus, adsorption increases with increasing temperature.
This is due to enhanced mass transport, as the increase in temperature reduces the energy
barriers of the reactions between the phosphate ions and Opt-AL–FWB [78]. The posi-
tive change in entropy (∆S◦) (83.4 J/mol·K) indicates an increase in the randomness of
the system at the solid–solution interface, which facilitates phosphate adsorption on the
surface of Opt-AL–FWB [79]. The negative changes in Gibbs free energy (∆G◦) (–6.0 to
–4.4 kJ/mol) indicate that adsorption is spontaneous and thermodynamically favorable at
all investigated temperatures [79].

Water 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 6. Thermodynamic adsorption analysis for quantifying the enthalpy and entropy. 

3.7. Effect of Solution pH 
The results of the pH studies and the phosphate species distributions predicted using 

Visual MINTEQ are shown in Figure 7a,b. At pH 3–11, the adsorption capacity is 129.0–
138.7 mg/g with no drastic difference. When the solution pH is lower than the zero-charge 
pH of the modified AL–FWB, the biochar surface is positively charged [80]. However, 
phosphate mostly occurs as a neutral species (H3PO4) at pH 2.12, and thus, predicting 
phosphate adsorption via electrostatic attraction at very low pH values (<2.12) is challeng-
ing. However, as phosphate mostly occurs as H2PO4– at pH 3–7, the adsorption capacity is 
partially improved as the pH is lowered within this range, which is attributed to the en-
hancement of adsorption via electrostatic attraction. Nevertheless, the major species of 
phosphate vary depending on the pH, and the adsorption capacity is constant even at pH 
11 when the surface charge should be negative, indicating that electrostatic attraction is 
not the main adsorption mechanism. Instead, ligand exchange between phosphate 
(H2PO4–, HPO42–, and PO43–) and Al–OH or Al–O appears to be the main mechanism [42], 
which is consistent with the adsorption mechanism described above. 

3.8. Effect of Competing Anions 
Figure 7c shows the results of the investigation of phosphate adsorption on Opt-AL–

FWB in the presence of competing anions, such as sulfate (SO42–), bicarbonate (HCO3–), or 
nitrate (NO3–). Regardless of the identity of the competing anion, increasing its concentra-
tion leads to decreased phosphate removal, as observed during the study. The inhibition 
differs significantly according to the identity of the competing anion in the order of HCO3– 
< NO3– < SO42–. In the absence of oxide anions, the adsorption capacity is 134.1 mg/g, but 
in the presence of HCO3–, NO3–, or SO42– at a concentration of 10 mM, the adsorption ca-
pacity decreases to 130.2, 127.7, or 113.4 mg/g, respectively. The inhibition of phosphate 
adsorption by SO42–, which exhibits the highest valence among those of the competing 
anions, may be an ion-exchange reaction, which may be one of the mechanisms of phos-
phate adsorption on the material [42,68]. However, the adsorption capacity decreases by 

Figure 6. Thermodynamic adsorption analysis for quantifying the enthalpy and entropy.

3.7. Effect of Solution pH

The results of the pH studies and the phosphate species distributions predicted us-
ing Visual MINTEQ are shown in Figure 7a,b. At pH 3–11, the adsorption capacity is
129.0–138.7 mg/g with no drastic difference. When the solution pH is lower than the
zero-charge pH of the modified AL–FWB, the biochar surface is positively charged [80].
However, phosphate mostly occurs as a neutral species (H3PO4) at pH 2.12, and thus,
predicting phosphate adsorption via electrostatic attraction at very low pH values (<2.12)
is challenging. However, as phosphate mostly occurs as H2PO4

– at pH 3–7, the adsorption
capacity is partially improved as the pH is lowered within this range, which is attributed to
the enhancement of adsorption via electrostatic attraction. Nevertheless, the major species
of phosphate vary depending on the pH, and the adsorption capacity is constant even at pH
11 when the surface charge should be negative, indicating that electrostatic attraction is not
the main adsorption mechanism. Instead, ligand exchange between phosphate (H2PO4

–,
HPO4

2–, and PO4
3–) and Al–OH or Al–O appears to be the main mechanism [42], which is

consistent with the adsorption mechanism described above.
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3.8. Effect of Competing Anions

Figure 7c shows the results of the investigation of phosphate adsorption on Opt-AL–
FWB in the presence of competing anions, such as sulfate (SO4

2–), bicarbonate (HCO3
–), or

nitrate (NO3
–). Regardless of the identity of the competing anion, increasing its concentra-
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tion leads to decreased phosphate removal, as observed during the study. The inhibition
differs significantly according to the identity of the competing anion in the order of HCO3

–

< NO3
– < SO4

2–. In the absence of oxide anions, the adsorption capacity is 134.1 mg/g,
but in the presence of HCO3

–, NO3
–, or SO4

2– at a concentration of 10 mM, the adsorption
capacity decreases to 130.2, 127.7, or 113.4 mg/g, respectively. The inhibition of phosphate
adsorption by SO4

2–, which exhibits the highest valence among those of the competing an-
ions, may be an ion-exchange reaction, which may be one of the mechanisms of phosphate
adsorption on the material [42,68]. However, the adsorption capacity decreases by only
15.5% even when 10 mM SO4

2– is present, which may be because ligand exchange remains
the main adsorption mechanism.

4. Conclusions

The Box–Behnken design was employed to prepare AL–FWB and optimize the prepa-
ration conditions to yield the maximum phosphate adsorption capacity. By applying RSM
with a QE and a MLP to the phosphate adsorption capacities of various AL–FWBs, the
optimal conditions were obtained to ensure the maximum phosphate removal in an aque-
ous solution. The ANOVA revealed that the pyrolysis temperature and Al concentration
significantly affected the phosphate removal characteristics, whereas the pyrolysis duration
was not a factor after 0.5 h. Both the QE and MLP indicated that the optimal preparation
conditions for Opt-AL–FWB were a pyrolysis temperature and duration of 300 ◦C and
0.5 h along with an Al concentration of 6%. Opt-AL–FWB demonstrated a remarkable
maximum sorption capacity of 197.75 mg/g, as per the Langmuir model. The optimal fit
of the pseudo-second-order kinetics indicated that phosphate was adsorbed via chemical
bonding between the phosphate and active sites. The results of property analysis, such
as those of pH and competition studies and the XPS spectra, indicated that phosphate
adsorption on Opt-AL–FWB could be partially caused by electrostatic attraction but mostly
caused by ligand exchange. Therefore, the use of Opt-AL–FWB as an adsorbent provides
not only efficient phosphate removal but also green, economical food waste reusability. This
may provide valuable data for engineers for use in preparing modified biochar, expanding
biochar technology to manage waste biomass, and mitigating environmental pollution to
maintain sustainable environments.
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