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Abstract: Precipitation is influential in determining runoff at different scales of analysis, whether in
minutes, hours, or days. This paper proposes the use of a multisite multivariate model of precipitation
at a daily scale. Stochastic models allow the generation of maximum precipitation and its association
with different return periods. The modeling is carried out in three phases. The first is the estimation
of precipitation occurrence by using a two-state multivariate Markov model to calculate the non-
rainfall periods. Once the rainfall periods of various storms have been identified, the amount of
precipitation is estimated through a process of normalization, standardization of the series, acquisition
of multivariate parameters, and generation of synthetic series. In comparison, the analysis applies
probability density functions that require fewer data and, consequently, represent greater certainty.
The maximum values of surface runoff show consistency for different observed return periods,
therefore, a more reliable estimation of maximum surface runoff. Our approach enhances the use
of stochastic models for generating synthetic series that preserve spatial and temporal variability
at daily, monthly, annual, and extreme values. Moreover, the number of parameters reduces in
comparison to other stochastic weather generators.

Keywords: multivariate stochastic model; extreme rainfall; rainfall-runoff; SCS-CN; probability
density functions

1. Introduction

The frequency analysis of extreme hydrological events to estimate the probability of
occurrence is required to design control and management systems [1]. Extreme hydrologi-
cal events have negative economic and social impacts on human populations. Protection of
these populations requires an optimal design of hydraulic structures in terms of a hypo-
thetical extreme event known as design flow or precipitation associated with a particular
return period [2].

Often, the return period associated with the design event of a hydraulic structure exceeds
the observation periods, and extrapolations must be assumed from the recorded values.
Frequency analysis, which relates the magnitude of extreme events to the probability of
occurrence using probability distribution functions, is often used to estimate this event [3–5].

A relevant problem in frequency analysis is the selection of the appropriate probability
distribution to describe the behavior of the observed data. There are several probability
distribution functions for frequency analysis, but none is universally accepted as the best
for analyzing hydro-climatological variables [6–8]. Some of the most used distributions in
hydrology are normal, log-normal, Gumbel, Weibull, General Extreme Value (GEV), Pear-
son, and log-Pearson type III [6–9]. In Mexico and Latin America, the Gumbel distribution
function has been widely applied as a distribution for evaluating extreme events [10–12].

The estimated values using probability distributions differ from each other. Therefore,
it is necessary to select which best fits the time series under analysis. Such a selection
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is generally based on goodness-of-fit tests which represent the agreement between the
empirical distribution of frequencies and theoretical distribution [13].

Traditionally, these studies to estimate maximum flows have been carried out based
on the design storm. However, it is known that this approach is uncertain since peak
discharges and hydrographs are strongly dependent on the initial conditions of the basin
and on the spatiotemporal distribution of the precipitation [14].

Recently, stochastic weather generators have been proposed to produce synthetic
rainfall series [1]. The most common stochastic model is the first-order Markov model with
two states, introduced by Gabriel and Newman [15]. The stochastic weather generator
MASVC [16] is a multisite multivariate stochastic model, which reproduces the main
statistics using normalization and standardization. The multisite standardized series are
calibrated by multivariate autoregressive parameters of the stochastic model [17]. Other
stochastic generators include: Weather GENerator (WGEN) [18], CLIMA [19], CLIMate
GENerator CLIMGEN [20], Long Ashton Research Station-Weather Generator (LARS-
WG) [21], École de Technologie Supériuere Weather Generator (WeaGETS) [22], Multi-site
Rainfall Simulator (MRS) [23], CLImate GENerator (CLIGEN) [24], among others.

The objective of applying the multisite multivariate model is to analyze the surface
runoff for different return periods [25]. The traditional process for estimating runoff for
ungauged watersheds is by using annual maximum rainfall. Subsequently, the best-fit
distribution functions are identified, as well as the temporal disaggregation of precipitation.
Finally, the maximum runoff is obtained. The present research focuses on acquiring various
runoffs through a multisite multivariate stochastic model. The purpose is to use daily scale
information and generate synthetic series that allow obtaining return periods associated
with the results of the stochastic model. In addition, the SCS-CN method determines the
runoffs and the runoff number for the study zones.

2. Materials and Methods

This paper proposes a continuous multisite multivariate model of daily precipitation.
Stochastic models allow the generation of maximum precipitation and its association to
different return periods. The modeling is carried out in three phases. The first is the
estimation of precipitation occurrence by using a two-state multivariate Markov model to
calculate the non-rainfall periods. Once the rainfall periods of several storms have been
identified, the precipitation amounts are estimated through a process of normalization,
standardization of the series, acquisition of multivariate parameters, and generation of
synthetic series [16]. The maximum values show consistency for different return periods,
therefore, a more reliable estimation of the maximum discharge [25].

2.1. Multisite Multivariate Stochastic Model MASVC

Stochastic modeling of precipitation has been investigated mainly at a daily scale,
which can be simulated by a short memory model for both past and future cases [26],
and is used for runoff determination [27]. Precipitation data are necessary to determine
short-term hydrological variability [28], while temporal analysis of minutes to hours is
commonly applied [29,30]. On a daily scale, stochastic models have been developed for
rainfall analysis [31,32].

In essence, the stochastic modeling of different scales represents a general problem-
solving process. However, each stochastic model has its particularities, which will depend
on the analysis scale [33]. The general objective of the current investigation is to use the
multisite multivariate stochastic model MASVC [16]. This model simulates rainfall with
daily time dependence and analyzes rainfall in two phases, divided into occurrence and
amount. MASVC estimates rainfall occurrence, and the amount of rainfall model is a
first-order continuous autoregressive model, although it has been used to generate rainfall
and temperatures [16].

The purpose of utilizing the MASVC 1.0 software is to generate 1000 series of equal
lengths to obtain different return periods. Although it is common for stochastic models to
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present uncertainty in the extreme quartile [10], in this case, the stochastic model is consis-
tent with daily maximum precipitation data. Figure 1 displays the proposed methodology.
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MASVC applies a Wilks approach for the occurrence process [34] based on conditional
and critical normal probabilities, which depend on the previous day. The multivariate
occurrence process uses a spatially correlated normal matrix. A wet day is the normal
vector for a day greater than a critical probability. This transition matrix varies daily.

MASVC uses the random spatially correlated normal matrix n = [M]′[N] to produce
synthetic occurrence series. M′ is the lower triangular matrix, and N is the random normal
matrix. This matrix was used to generate multivariate precipitation occurrences.

The multivariate autoregressive coefficient’s matrix was calibrated for rainfall gen-
eration, resulting in the residual series (ετ = [φ]0

−1({z}τ − [φ]1{z}τ−1 ). Where ετ is the
residual series, [φ]0

−1 is the inverse lag-0 autoregressive coefficient matrix, [φ]1 is the lag-1
autoregressive coefficient matrix, {z}τ is the standardized vectors for day τ, and {z}τ−1
is the standardized vectors for the previous day τ − 1. All the units for the vectors and
matrices are non-dimensional. The residual series satisfied the mean, correlation, stan-
dard deviation, and skewness coefficient of the entire series within the confidence limits
according to 95% of normal distribution [35–37]. Next, a random number with a normal
distribution (ε) obtains the standardized series (zt) and inverse normalization (yτ

−1).

2.2. Probability Density Functions (PDF)

Traditional methods to obtain extrapolations for a return period use distribution func-
tions. However, they have a disadvantage in that they apply few precipitation records [38];
one per year. Therefore, they have higher uncertainty [1,39], and fitting PDFs’ distribution
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suffers from numerical stability [40]. The most common distribution functions are normal,
log-normal, gamma, log-Pearson type III, Gumbel, and log-Gumbel [2,38,41–46].

Normal PDF. The expression that determines a normal distribution is given as follows
by Equation (1):

F(x) =
1

σy
√

2π
e
− 1

2 (
x−µy

σy )
2

(1)

where µy is the location parameter and σy is the scale parameter.
2-Parameter Log-Normal PDF. The mathematical expression that determines this

function is given by Equation (2):

F(x) =
∫ x

0

1
xσy
√

2π
e
− 1

2 (
In x−µy

σy )
(2)

where µy is the location parameter and σy is the scale parameter.
3-Parameter Log-Normal PDF. The mathematical expression corresponding to this

distribution is Equation (3):

F(x) =
∫ x

0

1
(x− x0)σy

√
2π

e
− 1

2 (
In (x−x0)−µy

σy )
(3)

where x0 is the location parameter, µy is the scale parameter, and σy is the shape parameter.
2-Parameter Gamma PDF. The 2-parameter gamma function is given by Equation (4):

F(x) =
∫ x

0

xβ−1e−
x
α

αβΓ(β)
dx (4)

where α is the scale parameter, β is the shape parameter, and Γ(β) is the complete gamma function.
3-Parameter Gamma PDF. For the 3-parameter gamma function (also known as Pear-

son) Equation (5) is considered:

F(x) =
∫ x

0

1
αΓ(β)

(
x− x0

α

)β−1
e−(

x−x0
α )dx (5)

where α is the scale parameter, β is the shape parameter, Γ(β) is the gamma function, and
x0 is the location parameter.

Log-Pearson III PDF. For this PDF the same expression that describes the 3-parameter
gamma function is used except that the base-10 logarithmic transformation of the series
is performed.

Gumbel PDF. This model is defined by Equation (6):

F(x) = exp−
[

exp
(
−
[

x− µ

α

])]
(6)

where µ is the location parameter and α is the scale parameter.
Log Gumbel PDF. The PDF log-Gumbel is defined by Equation (7):

F(x) =
1

αx
exp
{
−exp

[
− ln(x)− µ

α

]
− ln(x)− µ

α

}
(7)

where µ is the location parameter and α is the scale parameter.
For the PDF performance, the HidroEsta 2.0 software was used through the Kolmogorov–

Smirnov test, which compares the maximum absolute value of the difference between the
observed and the estimated probability density function [47–50].

D = max|FO(xm)− F(xm)|
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This value is compared with the significance level, so it needs to be less than the latter
to accept the null hypothesis.

2.3. Curves IDT

The curves’ intensity–duration–return period (IDT) was elaborated based on the
results of the stochastic multisite multivariate model and the PDFs. The hyetograms of
construction design were carried out using the method proposed by Kuichling [51]. This
method consists of the maximum daily precipitation associated with various return periods.
It associates the maximum intensity curves for different durations in which values such
as intensity (Id), maximum precipitation (Pd), and a constant to determine the duration
of a known rainfall (K) are estimated. The expressions that define the model are the
Equations (8)–(10):

Id =
K

(1− e)de (8)

Pd =
Kd1−e

1− e
(9)

K =
P(1− e)

241−e (10)

where Id is the intensity associated with a specific duration, Pd is the precipitation associ-
ated with a specific duration, K is the parameter associated with concentration time and
maximum rainfall, e is the coefficient defined as a function of concentration time, and d is
the interval of hours as a function of concentration time.

The Kirpich method can be applied in IDT analysis to estimate the rainfall intensity
for a given duration and return period. The Kirpich method estimates the concentration
time (Tc), which is the time it takes for the entire contributing area to generate runoff to a
specific point. In this study, Tc is considered equal to the rainfall duration. Furthermore, it
is an essential parameter in hydrological calculations to determine peak flow rates, design
stormwater management systems, and analyze flood potential.

2.4. Soil Conservation Service Curve Number Method (SCS-CN)

The Soil Conservation Service Curve Number (SCS-CN) method is applied to estimate
runoff from small-to-medium-sized watersheds. The SCS-CN method was established in
1954 by the USDA SCS and since then has been widely used [52–59] in GIS [60] for tropical
catchment [61]. This method is presented in Equations (11)–(14):

Pe =
(P− Ia)

2

(P− Ia) + S
(11)

where Pe is the accumulated precipitation excess, P is the accumulated rainfall, and S is
the potential maximum retention. From the experimental catchments analysis of results,
the SCS developed an empirical relation between Ia and S. This relation is the following
Equation (12):

Ia = 0.2S (12)

Therefore, the cumulative excess is considered as Equation (13):

Pe =
(P− 0.2S)2

(P− 0.8S)
(13)

The S is the potential maximum retention and is given by Equation (14):

S =
25400− 254CN

CN
(14)
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where CN is the curve number, which varies from 25 for permeable soils with high infiltra-
tion to 100 for bodies of water.

2.5. Case Study

The Rio Grande de Morelia watershed is located in the north-central portion of the
state of Michoacan in Mexico. The area belongs to the endorheic basin of Lake Cuitzeo in
the Lerma-Santiago Hydrological Administrative Region 12 (Figure 2). The basin has an
approximate area of 1565 km2. The region’s predominant climate is subhumid, with an
average annual rainfall of 815 mm. The main stream of the Rio Grande de Morelia and
its main tributaries (1 Itzicuaros, 2 Alberca, 4 Barajas, 5 Arroyo de Tierras, 6 Rio Chiquito,
8 Atapaneo, 12 Quinceo, 13 Mora Tovar, 14 Calabocito, 15 Calabozo, and 16 Carlos Salazar)
will be considered for the subbasins. The weather stations were obtained from the national
meteorological service belonging to the National Water Commission (CONAGUA), which
are available at https://smn.conagua.gob.mx (accessed on 20 January 2023). Four weather
stations with influence in the study area were identified: 16022, 16247, 16055, and 16081.
The available data for these stations are from 1980 to 2009 (Table 1).
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Figure 2. Location of the subbasins in Morelia. 1 Itzicuaros, 2 Alberca, 4 Barajas, 5 Arroyo de Tierras,
6 Rio Chiquito, 8 Atapaneo, 12 Quinceo, 13 Mora Tovar, 14 Calabocito, 15 Calabozo, and 16 Carlos
Salazar. Patzcuaro basin 1, Angulo basin 2, Cuitzeo basin 3, Zirahuen basin, Hydrologic Región 12.

Table 1. Stations considered in this study.

Station Latitude (◦) Longitude (◦) Elevation (msnm) Years
Total Annual
Precipitation

(mm/year)
Pmax * (mm/year)

16022 19.625 −101.281 2096 1980−2009 811.8 78
16247 19.675 101.392 2097 1980−2009 700.7 75.3
16055 19.652 −101.151 2180 1980−2009 1092.25 97
16081 16.289 −101.176 1913 1980−2009 772.21 80.1

Note: * Maximum precipitation per year.

https://smn.conagua.gob.mx
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3. Results

To estimate the main statistics for the case study, first, a minimum wet threshold was
assumed which can be the reading of the climate stations (0.1 mm). This limit was consid-
ered for the wet and dry days. The maximum 24 h rainfall for the Rio Grande of Morelia
basin is between 21 and 97 mm. The average annual precipitation is between 700.7 and
1092.25 mm for the various subbasins. The number of days with precipitation occurrence is
between 95 and 127 days per year with rainfall. The maximum 24 h precipitation for the
four stations is between 11 and 97 mm, while the average annual precipitation is between
700 and 1090 mm for the different subbasins.

3.1. Multisite Multivariate Stochastic Results

The transition probabilities for all stations are shown in Figure 3. This probability
indicates that the occurrence process is most likely on a wet day between 0.5 and 0.68. On
the other hand, for a wet day following a dry day, the probability decreases to 0.1 to 0.12.
The results indicate two consecutive wet days in wet seasonality are most common (June to
October). The dry seasonality is between November to May.
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Figure 3. Transition probabilities for all stations (a) p01 and (b) p11, (+) extreme data points consid-
ered outliers.

Wet days series are known to skew to the right. To remove the skew, a log-gamma
normalization was applied and the confidence limits of 95% were verified (Figure 4). The
daily skewness coefficient of the historical rainfall is between 0.55 to 1.02 for all stations.
After normalization, the skewness coefficient was ±0.059. These results can be considered
the log-gamma transformation, which removes the skew of historical rainfall.

Standardization was performed using the normalized mean and standard deviation.
MASVC uses the Fourier series to reduce the number of parameters. After standardization,
multisite multivariate autoregressive coefficients were calculated by Cholesky decomposi-
tion to generate synthetic series.

The main statistics of the residual series were calculated. The mean, standard deviation,
skewness coefficient, and lag-one autocorrelation are presented in Table 2. Moreover, the
normal function was calculated and the results of the residual series were evaluated
(Figure 5). The residual series has a mean near zero, the maximum standard deviation
error is 0.0895, the skewness coefficient is between −0.1212 and 0.5622, and the lag-one
autocorrelation is around −0.0581 and 0.0461. The mean, standard deviation, and lag-one
autocorrelation are within the confidence limit of 95%. The skewness coefficient is within
the confidence limit of 99%.
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Table 2. Normality analysis for residual series for both M1 and M2 (wet threshold 0.001).

Statistical/Station 16055 16081 16022 16247

Mean −0.0084 −0.0035 0.080 −0.078
Standard deviation 1.0431 1.0843 1.3315 1.0895

Skewness coefficient −0.1212 0.3246 0.5622 −0.0939
Lag-one autocorrelation 0.0239 0.0420 0.0461 −0.0581

AIC −2145 −1995 −4733 −2652
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distribution (blue) and residual (bars).

Finally, the synthetic series were generated. A total of 1000 synthetic series were made
considering the same length as the sample (30 years). The statistical sum and mean were
estimated for both synthetic and historical series. The sum of the number of rainy days
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in 30 years was calculated for the historical series. The results offer a good correlation
between the observed and simulated values.

The occurrence of multisite multivariate synthetic series for the four weather stations
were obtained. Figure 6 represents the sum of wet days in 30 years. For the simulated series,
the mean of the sum of wet days were calculated. Afterward, the K–S test was performed
to verify that the results came from the same distribution considering 95% confidence. For
all analyzed stations, daily occurrences vary from the 1:1 line ±5 days (Figure 6). The
variation of precipitation occurrence with regard to the number of rainy days presents a
variability due to the number of parameters used in the transition matrices p01 and p11 (4).
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for the four stations: (a) 16022, (b) 16247, (c) 16055, and (d) 16081.

The precipitation for the four stations was generated by the log-gamma transformation,
which produced the best results (Figure 7). For the daily precipitation amount (without
zeros), the mean and standard deviation of 1000 synthetic series were calculated. The
observed precipitation is in the range of confidence limits at 95%.

The multisite multivariate stochastic model for mean daily precipitation has a devia-
tion of±10 mm. The observed and generated series are not significantly different according
to the K–S test, which indicates that they came from the same distribution. In addition,
they have the same average according to the t-test and the same median according to the
Wilcoxon test.

The maximum precipitation of each year was extracted from 30 data and assigned
with their respective return period to obtain the maximum historical series. In the case of
the generated synthetic series, the maximum of each year was extracted for 1000 series,
and the average was obtained as being equal to 30 years. The results of the multisite
multivariate stochastic model are shown in Figure 8. The different graphs were constructed
for the four stations: 16022, 16247, 16055, and 16081. The results indicate that for station
16022, there are underestimates for a Tr less than 8 years (10 mm), and for the rest of the
period, there is an adequate adjustment. For station 16247, there is a suitable adjustment
for return periods between 1 and 15. Subsequently, it tends to overestimate the maximum
precipitation by 11 mm. Station 16055 presents an acceptable trend for the different return
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periods but nevertheless overestimates return periods between 10 and 20. Station 16081
displays underestimates for return periods less than 10 and presents a proper adjustment
for return periods up to 30.
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3.2. PDFs

Different distribution functions evaluated for the maximum annual rainfall were
estimated using the Smirnov–Kolmogorov test for each of the PDFs. These results indicated
that for station 16055, the best fitting function was log-Gumbel p = 0.0871. For station
16081, the most acceptable was Gumbel p = 0.045. For station 16022, it was log-normal of
3 parameters (p = 0.0696), and for station 16247, log-normal of 2 parameters. The results
for the different stations are presented in Table 3. The basin is affected by extreme rainfall
events such as heavy rainfall, storms, and tropical cyclones. These events often exhibit high
variability in their occurrence and intensity, leading to localized flooding, landslides, and
other hydrological hazards (Appendix A). This is the main reason why different distribution
functions are adjusted (Table 4).

Table 3. Smirnov–Kolmogorov test for each of the PDFs fitted to the maximum 24 h precipitation
series for each station.

Function/Station 16055 16081 16022 16247

Normal 0.1977 0.1138 0.1932 0.1193
Log-Normal 3P 0.1064 0.0592 0.0696 * 0.1044
Log-Normal 2P 0.1187 0.0618 0.1164 0.0907 *

Gamma 2P 0.1427 0.0798 0.1433 0.1025
Gamma 3P N/A 0.05595 N/A 0.09575

Log Pearson III 0.09761 0.0511 N/A N/A
Gumbel 0.1347 0.045 * 0.1478 0.0994

Log Gumbel 0.0871 * 0.0596 0.079 0.0924
Note: * Best fit.

Table 4. Comparison of MASVC versus PDFs for all stations.

Model TR 16022 16247 16055 16081

MASVC

2 34.99 40.05 47.73 31.65
5 43.78 50.47 59.49 47.45
10 58.26 64.33 71.87 59.36
20 69.58 79.31 84.41 72.07
50 87.33 99.25 101.34 91.33

100 102.25 112.2 116.51 105.23

PDF

2 40.66 41.01 31.27 42.7
5 52.61 56.2 43.61 53.75
10 61.63 66.27 54.35 61.07
20 71.03 75.93 67.13 68.09
50 84.27 88.49 88.23 77.18

100 95.02 98 108.28 83.99

3.3. SCS-CN

The contribution subbasins of each of the streams under study were delimited by
applying ArcGIS 10.5. For this purpose, a digital elevation model (DEM) that covers the
entire study area was used. In this process, the DEM provided by INEGI, with a resolution
of 15 m extracted from the Mexican Elevation Continuum, was utilized as input. Once
the DEM was obtained and the exit points of each subwatershed were defined using
geographic information systems (GIS), the subbasins were delineated (Figure 9. Afterward,
their geomorphological characteristics were determined, as well as the area (km2), height
difference (m), length of the main channel (m), slope (%), and concentration time (h).
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Figure 9. Urban subbasins in Morelia. 1 Itzicuaros, 2 Alberca, 4 Barajas, 5 Arroyo de Tierras, 6 Rio
Chiquito, 8 Atapaneo, 12 Quinceo, 13 Mora Tovar, 14 Calabocito, 15 Calabozo, and 16 Carlos Salazar.

To determine the runoff number, information from the INEGI Soil Use and Vegetation
chart scale 1:250,000 (E14-1) was used to identify the different land uses. In addition, the
Edaphological chart scale 1:250,000 (E14-1) was applied, from which different soil textures
were extracted. Using ArcGIS 10.5, the maps were reclassified, and runoff numbers were
assigned. For the watershed study, there are curve number (CN) values between 44 and 87.
The lowest values are located in infiltration zones, very permeable soils, and thick forests.
The high CN values are found in the urban area of Morelia, where the soil characteristics
are fine with little infiltration capacity. The mean CN for all subbasins is 83.03, which
indicates an urban basin. Figure 10 shows all the reclassifications for the subbasin under
study, and Table 5 shows the values for each subbasin. Urban subwatersheds tend to have
CN values greater than 80, contrary to headwater micro-watersheds which include larger
non-urbanized areas and greater infiltration capacity due to soil and vegetation.
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Table 5. Geomorphological characteristics and curve number of the subbasins study.

Subbasin * Area (km2)
Height

Difference (m)
Length of the Main

Channel (m) Slope (%) Concentration
Time (h) CN

1 308.32 898 30,833.01 2.41 3.62 76.35
2 47.62 1132 16,106.46 5.72 1.56 78.36
4 24.3 459 11,451.81 5.32 1.49 84.47
5 26.67 561 12,862.88 4.58 1.58 83.14
6 86.79 416 21,086.86 1.13 3.13 77.03
8 18.85 230 9394.3 2.46 1.55 84.16

12 40.19 792 14,307.83 4.77 1.56 85.09
13 10.01 258 4614.52 5.14 0.65 86.87
14 6.11 220 4114.46 3.95 0.61 86.02
15 11.3 671 9878.71 3.67 1.08 84.67
16 10.71 1.93 453.54 0.43 0.29 87.21

Note: * 1 Itzicuaros, 2 Alberca, 4 Barajas, 5 Arroyo de Tierras, 6 Rio Chiquito, 8 Atapaneo, 12 Quinceo, 13 Mora
Tovar, 14 Calabocito, 15 Calabozo, and 16 Carlos Salazar.

Once the model parameters were obtained, the design hyetograms corresponding
to the analyzed periods for each subbasin were estimated with MASVC 1.0 software and
Hidroesta 2.0 software. Finally, the surface runoff was calculated.

3.4. Determination of Surface Runoff for All Subbasins

After the design hyetograms were obtained, hydrographs were calculated using the
curve model formulated by the U.S. Soil Conservation Service (SCS-CN), which determines
runoff thresholds as a function of runoff curve number. Table 6 displays different return
periods and the maximum surface runoff for each subbasin. The main results indicate
the surface runoff is lower for return periods 2, 5, and 10 for MASVC-SCS-CN. For return
periods of 20 to 100, the MASVC-SCS-CN surface runoff is higher than PDF-SCS-CN, a
consequence of the subestimation of 24 h precipitation for return periods less than 20.

Table 6. Surface runoff for all subbasins MASVC-SCS-CN and PDF-SCS-CN.

Model * Subbasin/Tr 2 5 10 20 50 100

MASVC-
SCS-CN

1 9.68 35.01 88.48 166.82 298.97 394.90
2 0.32 1.49 9.86 20.72 44.11 68.85
4 0.11 1.45 5.39 11.93 25.73 38.10
5 1.45 6.11 13.08 22.26 36.62 53.63
6 4.38 13.76 28.25 47.08 78.03 110.21
8 0.11 1.17 25.30 30.72 38.93 44.85
12 0.93 2.51 9.08 19.89 42.50 62.65
13 0.05 0.47 2.86 7.39 17.72 27.20
14 0.02 0.10 1.75 4.29 10.12 16.44
15 0.01 0.12 1.93 4.64 10.78 17.52
16 0.23 0.94 2.95 6.09 12.43 17.95

PDF-
SCS-CN

1 10.56 52.59 104.17 142.81 217.25 280.62
2 0.98 7.06 16.79 25.42 44.15 62.26
4 0.91 4.24 5.08 7.64 17.92 23.30
5 0.33 1.11 5.81 11.47 28.00 48.51
6 2.21 3.06 13.73 25.48 59.66 101.38
8 0.67 3.16 3.79 5.68 13.39 17.45
12 1.40 6.67 7.99 12.02 28.33 36.87
13 0.11 1.73 2.15 3.72 10.53 14.29
14 0.10 0.90 2.74 4.70 8.98 13.24
15 0.06 1.34 3.74 6.01 11.05 16.06
16 0.60 2.29 2.61 3.91 8.65 11.06

Note: * 1 Itzicuaros, 2 Alberca, 4 Barajas, 5 Arroyo de Tierras, 6 Rio Chiquito, 8 Atapaneo, 12 Quinceo, 13 Mora
Tovar, 14 Calabocito, 15 Calabozo, and 16 Carlos Salazar.
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4. Discussion

Temporal and spatial variability studies of extreme precipitation are challenging for
risk assessment [62]. Probability density functions (PDFs) and stochastic weather generators
are two approaches used in hydrology to model and simulate maximum rainfall events.
PDFs represent the statistical distribution of maximum rainfall events based on observed
data, which does not provide doubtful information [63]. Furthermore, PDFs overestimate
precipitation events [64,65]. However, PDFs alone do not provide a temporal sequence
of rainfall events, nor do they capture the temporal correlation and patterns of rainfall
occurrence [1,62].

Stochastic weather generators reduce the uncertainty of the calculated floods [1]. More-
over, stochastic weather generators reproduce long series of extreme precipitation [66].
MASVC simulates continuous synthetic rainfall sequences based on statistical properties
of observed weather data. This generator captures the temporal correlation and pat-
terns of weather variables, as well as rainfall. MASVC uses a combination of statistical
parametrization to represent the characteristics of weather variables and their interrelation-
ships. MASVC incorporates multiple statistical parameters, including mean, variances, au-
tocorrelation, and other higher-order moments. By simulating synthetic rainfall sequences,
MASVC can generate long-term, time-series rainfall data that captures the statistical prop-
erties of historically extreme rainfall events. They are applicable for hydrological modeling,
flood forecasting, and water resources management, as they provide realistic representa-
tions of rainfall patterns and capture rainfall variability over time [67–69]. MASVC was
applied to semiarid and humid regions with good performance [70]. The limitations of
MASVC are that it requires 30 years of historic rainfall and does not consider snow in the
stochastic model.

The stochastic rainfall generator MASVC can simulate temporal and spatial character-
istics of rainfall, capturing the variability and patterns in real-world rainfall data [71–73].
It considers the timing, duration, intensity, and occurrence of rainfall events, allowing for
the generation of realistic rainfall sequences that provide the behavior of observed data.
In contrast, PDFs offer information about the statistical distribution of rainfall but do not
inherently capture temporal and spatial variability [74].

This approach significantly simplifies the process of generating precipitation data,
which implies a relevant advantage and versatility concerning other stochastic generators
and PDFs. The reduction of parameters is an essential factor addressed in this approach
to determine the maximum rainfall amounts, in addition to considering the continuous
modeling for all days, months, and years of simulation. Furthermore, the SCS-CN method
is widely used for hydrologic studies in an ungauged basin for the National Water Com-
mission (CONAGUA) [75–88].

5. Conclusions

This article presents a multisite multivariate stochastic model for generating daily
rainfall consistent to mean and maximum precipitation. MASVC is a two-step model
that first produces the multivariate occurrence process. Afterward, a nonzero amount of
rainfall is generated using a continuous nonparametric multisite multivariate stochastic
autoregressive first-order model. This model can reproduce daily maximum, monthly, and
total annual precipitations. The approach is an efficient algorithm for the entire range of
precipitation. Moreover, MASVC is a continuous semiparametric model that can reduce
the number of parameters compared to other generators and is capable of reproducing
maximum and minimum precipitation.

Finally, the surface runoff using the proposed methodology MASVC-SCS-CN is de-
termined and compared with the PDF-SCS-CN. The main difference between the MASVC
and PDFs is the scale analysis. MASVC uses the daily series for the entire historical period
and generates multiple equiprobable synthetic series that can occur in the study area. The
greater the number of synthetic series, the longer the return periods can be extended. On
the other hand, PDFs use a limited number of data, only one per year.
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This approach significantly improves the process of generating surface runoff with
greater occurrence confidence, which implies an overall advantage and versatility concern-
ing PDF-SCS-CN.
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Appendix A

Regional analysis of the maximum precipitation in the Rio Grande Basin are presented
in Figure A1. This shows different patterns of maximum rainfall and regional changes for
the subbasins. The grid interpolation uses inverse distance weight interpolation (IDW). QQ
plot of PDFs is shown is Figures A2–A6.
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