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Abstract: A flash flood is the most common natural hazard that endangers people’s lives, the economy,
and infrastructure. Watershed management and planning are essential for reducing flood damages,
particularly in residential areas, and mapping flash flood-sensitive zones. Flash flooding is an interface
dynamic between geoterrain system factors such as geology, geomorphology, soil, drainage density,
slope, and flood, rather than only water movement from higher to lower elevation. Consequently,
the vulnerability to flash floods necessitates an awareness of and mapping topographical features. A
flash flood vulnerable zones (FFVZ) map is essential for thorough flash flood risk assessment and
management to minimize its detrimental effects, particularly in residential areas, especially in cities
like Fujairah with seven wadis flowing into the city and even though it has two main dams and fifteen
breaker dams. So, in this work, eight satellite image-derived parameters rainfall, elevation, slope,
land use/land cover (LULC), drainage density, geology, geomorphology, and soil were combined to
predict the flash flood-vulnerable zones using a weighted overlay technique based on geographic
information systems (GIS). Each element of the thematic maps is ranked and weighted according
to how vulnerable it is to flash floods in the study area, with 55 km2 being classified as a very
highly vulnerable area, 78 km2 as a high-risk area, 9.3 km2 as a moderate risk area, 70 km2 as a low
vulnerable area, and 257 km2 as a very low vulnerable area. In addition, places with a very high
vulnerability level include the Fujairah Airport, Fujairah Port, some residential neighborhoods in the
city’s center, oil storage areas, two hospitals, and universities. Additionally, from 1990 to the present,
Landsat and Sentinel 2 data showed consistent changes in vegetation and built-up areas. Therefore,
in addition to helping policy and decision-makers make the best choices about the efficacy of the
study area’s protective structures against the risk of flash floods in the future, the results can also be a
valuable source of information.

Keywords: flash flood mapping; weighted overlay analysis; vulnerable zones; Geo-spatial analysis;
GIS; remote sensing

1. Introduction

The most frequent natural disasters globally are flash floods, which happen when a
lot of rain falls quickly and produces a lot of surface runoff [1–3]. Flood catastrophes have
frequently increased due to climate change and other environmental factors [4]. Since most
nations are susceptible to flooding, it seriously threatens human life worldwide [5–10].
Flash floods can inflict damage anywhere, but they are especially destructive close to rivers
and in agricultural areas, infrastructure, and human lives [11,12]. Globally, flash floods
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claim the lives of more than 5000 people each year [2,13]. Other factors, including drainage
density and slope and a lack of efficient mapping or precautionary measures, may also
contribute to this problem. Spatially explicit and catchment-scale flood models will be
needed to evaluate landscape change and rainfall runoff scenarios to reduce the effects of
flooding natural disasters and preserve healthy socio-ecological systems under changing
catchment and climate conditions [14].

According to Jackson and Bates [15] and Sen [16], the Arabic word wadi refers to a dry
valley stream generally found in desert regions, such as countries on the Arabian Peninsula.
Earlier rainfall in Wadis is primarily episodic, fluctuating greatly in time and space, and
many years go by without any rain. However, due to the effects of climate change, wadi
flash floods in arid places have recently increased in frequency and severity [17,18]. Accord-
ing to [19], who examined pre- and post-flood scenarios using remotely sensed data, flash
floods can produce enough runoff in direct response to intense and typically sudden rains
for wadis to flow for some distance within the basin. However, the flow frequently does
not reach the coast because of high transmission losses. According to the United Nations
Office for Disaster Risk Reduction [20] (UNISDR), throughout the past 30 years, several
disasters have affected Arabian countries, killed over 150,000 people and had an impact on
almost 10 million others [21,22].

Flash floods, particularly in Oman, are frequently brought on by extreme events, such
as tropical cyclones, that destroy enormous amounts of infrastructure and kill many people.
In addition, Oman was affected by severe tropical cyclone Gonu in July 2007, which caused
54 fatalities and $3.9 billion in property damage [23,24]. Egypt has also had a series of
flash floods in recent years, most notably in October 2019 and 2015. These floods caused
devastating losses in terms of lives lost and property damage in Alexandria, Sinai, and
Beheira [25,26]. The majority of the Middle East, including Jordan, Kuwait, Qatar, Saudi
Arabia, United Arab Emirates (UAE), and Oman, saw severe destruction in October 2018
due to the increased frequency of intense rainfall events linked to numerous flash floods.
These floods killed people and animals while destroying the primary infrastructures, includ-
ing buildings, villages, agricultural lands, roads, electricity towers, and pipelines [27,28].
Wadi flooding in 2018 resulted in 4000 tourists fleeing to safer areas less than an hour before
the peak flood hit Petra, Jordan’s ancient landmark [29].

Additionally, it has been alleged that a flash flood in March 1966 caused roughly
200 fatalities and 250 injuries. Further, 3000 individuals are left homeless [30]. In the last ten
years, severe flash floods have killed more than 113 people in Saudi Arabia and destroyed
10,000 dwellings [31]. Additionally, the northeastern section of the UAE, particularly
Fujairah, has had a maximum of 13 floods during the past 20 years [32].

To further the discussion, nations in the Arabian Gulf region have invested in weather
modification research and applications in response to the water resource problem, which is
worsened by the region’s expanding population and changing climate [33]. The UAE began
running cloud seeding missions for additional rains to fulfil the country’s expanding water
needs in the previous decade, inspired by the global cloud seeding initiatives. The first of
its sort began in the 1990s and modified how much precipitation clouds released [34]. The
UAE government’s official policy on cloud seeding began to be implemented significantly
in 2010. This was unavoidable for an arid nation like the UAE, where average rainfall is less
than 100 mm and high evaporation rates result in a lack of surface water and an overreliance
on non-renewable groundwater resources that have caused aquifers to be depleted [35].
The Hajar Mountains in the eastern part of the UAE were specifically identified as having
an apparent rise in rainfall intensities after comparing the pre-cloud seeding era (before
2010) and after [36]. Even though there is research available about the features of the UAE’s
rainfall, very few of these studies have looked into whether there is a connection between
recent cloud-seeding missions and the rising rainfall intensities and urban flooding that
have been seen.

The modeling of flash floods is a crucial tool for managing and mitigating floods [1,37–42].
Numerous studies have mapped flood-prone areas using a variety of methodologies, such
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as [9,43–46] have used traditional morphometric analyses. To prevent future property
damage and fatalities from flash floods, flood control design must consider the effects
of global warming, especially flash flood hazards in residential areas [47–49]. To initiate
the flash flood vulnerable zones mapping, researchers used several hydrologic, geologic,
biological, and climatic elements that affect flash floods in the catchment areas [3,13,39,50].
Geology, slope, LULC, drainage density, geomorphology, soil, distance to river, and rainfall
distribution map are among the characteristics that are most crucial [51–53]. Aster satellite
image data and GIS can be combined to create flood risk index maps, according to a study
by [54]. Remote sensing is a useful method to track flood occurrences and pinpoint the
hydrogeological settings without maps of flooded areas. The proliferation of satellites
has also improved the likelihood of locating flooded areas. Flood risk maps were verified
by [55] using free optical and radar satellite images. Eight characteristics, including rainfall,
slope, drainage, soil, geological structures, geology, geomorphology, and land use and
land cover, were utilized by [51] to simulate the flood danger. Getahun and Gebre [56]
employed six variables to simulate the risk of flooding in the Awash River basin in Ethiopia.
They used slope, elevation, rainfall, population density, land use, land cover, and soil
type. Samanta [57] employed four parameters—elevation, slope, land use, and distance
from the river—to create a model for flood danger maps in the vicinity of the Markham
River in Papua New Guinea. Mathew Kelly [58] studied thoroughly to assess flood risk
for Australia’s Hawkesbury-Nepean Catchment. The number of characteristics needed to
produce flood-vulnerable maps is generally not set; instead, it varies on the availability of
data, the location of the study region, and the significance of the element.

Even though they can be deadly, flash floods can also be helpful because they replenish
Fujairah City’s parched aquifers and moisten the areas damaged by the drought, as UAE has
limited conventional renewable water resources [59]. This type of natural hazard cannot be
prevented, but it can be successfully controlled with the help of effective flood management
strategies like harvesting floodwater and rainfall runoff for human and livestock use as
well as agricultural growth while building subterranean dams, artificial lakes, recharge
dams, and off-stream structures [25,60]. The main goal of this study was to identify the
likely flash flood risk zones by examining all potential resource maps. By observing satellite
images from the relevant period, the current work pinpoints areas prone to flash floods.
GIS facilitates the administration and integration of multi-thematic data. Rainfall, elevation,
slope, geology, geomorphology, LULC, soil, and drainage density are some of the thematic
layers generated and examined via weighted overlay analysis for this study to identify
potential flood-vulnerable areas. Flood-vulnerable maps provide local municipalities and
citizens with information on the degree of flood danger in their communities. They can be
utilized effectively as an evacuation guide during a flood event.

2. Study Area

With a total size of 1450 km2, Fujairah is the fifth-largest emirate in the UAE [61].
The Emirate of Fujairah, one of the seven Sheikhdoms of the UAE, is the only emirate
with its entire coastline situated on the Gulf of Oman and defined by a headland bay
configuration with several cliffs extending into the Gulf [62]. Fujairah City is the capital of
this emirate. The Hajar/Oman Mountains, which separate Fujairah from the Gulf of Oman
and the Eastern Coastal Plain, are an exceptional feature of the emirate. The research area’s
highest point is 1103 m above mean sea level. This mountain is the source of numerous
Wadis, including Wadi Hayl, wadi Saham, wadi Farfar, wadi Ham, wadi Yabsah, and Wadi
Madhab, which flows into Fujairah City. The largest and longest wadi in the UAE, Wadi
Ham, has a catchment area of 192 km2 and extends over 30 km from Masafi in the northwest
to the Wadi Ham Dam close to Fujairah City in the southeast. Wadi Saham, Wadi Farfar,
and Wadi Yabsah finally debouches in Wadi Ham Dam (Figure 1). Most of the year, the
wadi beds are dry, but when it rains, the dry wadi beds turn into rushing rivers, creating a
breathtaking spectacle.
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According to the demographic figures from the Fujairah Statistics Center (FSC) for
2023, 318,325 people are living in Fujairah, with Fujairah City (study area) housing over 77%
of the total population [32]. Most of Fujairah City’s urban areas are on low coastal plains,
making them more vulnerable to flash floods. The UAE Ministry of Energy and Industry, in
collaboration with the Ministry of Climate Change and Environment, has issued rules for
protection against floods to lessen the effects of flash floods. When planning or building any
residential area close to Wadis, they specified several requirements that had to be followed.
These communities and government bodies will benefit from this paper’s identification of
flash flood vulnerable zones.

Fujairah is regarded as one of the UAE’s most productive regions, along with the
Hajar Mountains, the plains, and some desert regions. Major wadis drop through the Hajar
Mountains on either side into the Fujairah, supplying significant floodwater to the neigh-
boring alluvial and coastal plains. Fujairah City, which covers an area of around 559.86 km2

between 25◦17’ 31.63 N and 25◦01’ 49.39 N and 56◦08’ 50.73 N and 56◦22’ 29.12 N, is in-
cluded in the current research area, which is a section of the Fujairah emirate that consists
of the catchment areas of the seven wadis. It mostly consists of the Fujairah City region, a
portion of the Sharjah Emirate’s Kalba and Khor Fakkan areas, and a 77 km2 area of the
Sultanate of Oman, as depicted in (Figure 1). In the northern and southern portions of the
study area, the Fujairah city area is characterized by narrow coastal plains that range in
width from 1 to 3 km and are at their widest in Al-Qurayyah and Skamkam. Lithologically,
the Jurassic to Cretaceous igneous and metamorphic rocks are found in the north and west,
and alluvial deposits at the foot of the mountains dominate the higher streams [63]. The
study area experiences various meteorological conditions, including cold to mild in the
winter and hot to humid in the summer. In the western mountainous regions, the annual
rainfall ranges from 80 mm to 160 mm [64]. Approximately 97% of the total yearly rainfall
in the northern section of the UAE was thought to fall over the eastern mountainous and
coastal regions [64]. The region typically has dry weather with 100–250 mm precipitation
per year [32,65–67]. During the winter and summer, Fujairah’s typical temperatures range
from 15 to 47 degrees Celsius.
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3. Factors Leading to Study and Mapping the Flash Flood Vulnerable Zones in
Fujairah City

The UAE has attracted many immigrants since its founding in 1973, who have signifi-
cantly changed the country’s geography. The demand for these individuals matched the
economic growth from the massive oil profits [68]. Before 1980, Fujairah had an insignifi-
cant demographic situation, with a population of only 32,000. At this time, the majority of
Fujairah city was made up of people who were mostly engaged in commerce and fishing.
Since the current economic boom began 43 years ago, Fujairah Emirate’s population has
multiplied dramatically (Figure 2). Fujairah had 32,000 residents in 1980; that number has
increased to 150,000 in 2010 and, by 2023, around 318,325. Based on its annual growth rate,
Fujairah’s population is among the fastest-growing in the region.
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Regarding the study area, I, e, Fujairah City, which is 560 km2, the Hajar Mountains
occupy roughly 403 km2 to the west. Therefore, the city of Fujairah’s constantly growing
population will have to reside in just 157 km2, which is considered a challenge. As was
already said, due to its closeness to the airport, schools, universities, shopping malls, and
other significant facilities, over 77% of the population of the Fujairah emirate resides in
Fujairah city [32].

Urban sprawl’s extensive and rapid growth is a crucial indicator of population
growth [69]. Increasing urban built-up areas and an increasing global population, particu-
larly in coastal regions, have given rise to large cities. The LULC maps created with Landsat
images from 1990, 2000, 2010, and Sentinel-2 from 2023 showed high levels of built-up
growth in Fujairah (Figure 3). Urban waterlogging regions are growing more quickly and
in size due to the expansion of urban sprawl, which has increased the impermeable surface
area that prevents rain from penetrating the underlying soil. Over the previous 30 years,
there has been a significant shift in the land use and cover in the Fujairah area (Figure 3),
which could have increased the runoff coefficient. In the past 23 years, Fujairah City has
seen more floods than any other place in the emirate of Fujairah, according to [32]. Other
flooding causes include the extension of residential areas, making it harder for natural
flows and drainage systems to remove surplus water after heavy rains. However, in recent
years, human interference has given it a new dimension [70,71].
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Figure 3. Maps showing the urban areas and vegetation in Fujairah City in (a) 1990, (b) 2000, (c) 2010,
and (d) 2023.

As seen in Figure 3, the study area’s built-up in 1990 covered an area of about 40 km2,
mostly in the south and northeastern parts of Fujairah City, mainly consisting of built-up
residential and plantation areas. Urban sprawl reached 51 km2 in 2000, with growth moving
further to the north-western corner of the study area consisting of residential and plantation
areas. The major change in the infrastructures (built-up) in the study area recorded from
2000 to 2023 is shown in Figure 4. The Fujairah Airport opened in 2010 due to tremendous
development in Fujairah. During this time, the area of the Fujairah port expanded, as well
as other significant commercial sectors, bringing the total built-up area to 88 km2. Finally,
the urban sprawl reached 115 km2 in 2023, with most construction focused on growing
residential areas to serve the continuously growing population, along with other facilities
like shopping centers, universities, schools, etc.
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The Northern part of UAE, which includes the study area, has recently seen multiple
flash flooding incidents. Lately, the Eastern parts of UAE, Ras Al Khaimah (200 mm),
Masafi (209.7 mm), and particularly Fujairah Port (inside the study area) recorded the
highest rainfall of 234.9 mm, and Fujairah Airport with (153 mm), between the 25 July and
28 July 2022, according to reports on [72] The Gulf Today and The National News [73],
respectively. Because of the unusually heavy rains and the presence of seven wadis in
Fujairah City, namely Wadi Hayl, wadi Saham, wadi Farfar, wadi Ham, wadi Yabsah, wadi
Madhab, and Wadi Safad (Figure 1), affecting total of 4225 people and were evacuated
with the help of 1638 personnel who got affected by the flooding that occurred within
these wadis and also water that was spilling over the southern side of the Wadi Ham Dam,
which is inside the Fujairah city (Figure 5). Approximately 870 individuals were saved, and
another 3897 people were given shelter [72] (Gulf Today, 2022). The world’s third-largest
fuel bunker canter, Fujairah Port, was also affected by widespread flooding [74].
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Figure 5. Water flowed over the Wadi Ham South Dam during the floods of July 2022.

Similarly, to this, the floods had a significant negative impact on residential areas,
agriculture/plantations, numerous automobiles, hospitals, schools, and electrical lines [75].
Since the majority of Fujairah City’s key districts were affected, it is crucial to investigate
the specific causes of these significant losses in addition to the high rainfall. This work
has been done to identify flashflood-sensitive zones in Fujairah City while considering the
seriousness of the problem.
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4. Materials and Methods

The delineation of LULC features from the remote sensing satellite image Sentinel-2,
2023, which offers a revisit time of 10 days and a spatial resolution of 20 m and is retrieved
from the Earth Resource Observation System, was the first of the eight thematic layers
needed for this study. The ArcGIS Spatial Analyst module created other resource maps,
such as drainage density, elevation, and slope, using SRTM DEM data. The additional
thematic maps, such as a comprehensive geomorphology layer, geology, and soil layers,
were created using Sentinel-2 images and referred to other works. The CHRS RainSphere
website was utilized to gather rainfall data for the research area during the previous
22 years, which was then used to create a GIS layer for our analysis.

The overall methodology used for this study involves both spatial and non-spatial
data collection. The spatial data are recorded in the database as several layers in digital
form and include maps of drainage density, elevation, slope, geology, geomorphology,
LULC, soil, and rainfall. All these layer integrations, queries, analyses, etc., are carried out
in a GIS context. As a result, the new maps are accurately created by simply merging these
layers and altering them to assess correlations between the selected features in the various
layers under consideration.

This research utilized satellite images from the Earth Resource Observation system,
specifically Landsat and Sentinel-2 images (Table 1). Landsat images from 1990, 2000,
2010, and Sentinel 2 for 2023 shed light on how the urban sprawl changed in Fujairah
City over the years. Bands used in Landsat 7 and Landsat 5 are Band 4 Near-Infrared
(0.77–0.90µm), Band 3 Red (0.63–0.69 µm), and Band 2 Green (0.52–0.60 µm) are used. For
Sentinel-2, the bands used are Band 2 (Blue: 490 nm), Band 3 (Green: 560 nm) and Band
4 (665 nm). The land use/Land cover features in the study area have been interpreted
and traced through onscreen digitization using level III standards of widely used National
Remote Sensing Center (NRSC) classification are extracted to the extent discernible from
these relatively high-resolution satellite images. All the Sentinel-2 images for the year
2023 were precisely geo-referenced, enhanced and smoothly mosaicked into a single image
covering the Fujairah City area. The image mosaic is then subsequently subset with the
study area layer.

Table 1. Data utilized for various parameters.

S. No Map Layer Data Used—Source

1 Rainfall CHRS RainSphere (http://chrs.web.uci.edu) (accessed on 18 May 2023)

2 DEM USGS-Earth Explorer website, 30 m resolution,
(https://earthexplorer.usgs.gov/) (accessed on 25 April 2023)

3 Drainage Density Derived from DEM

4 Elevation Derived from DEM

5 Slope Derived from DEM

6 Land use / Land cover

Sentinel-2 Satellite Image (2023), 20 m spatial resolution; dated 8 March 2023
Landsat 5 TM (1990) 30 m, spatial resolution; dated 19 Dec 1990
Landsat 5 TM (2000) 30 m, spatial resolution; dated 28 May 2000
Landsat 7 ETM (2010) 30 m, spatial resolution; dated 20 Sep 2010

7 Geology Sentinel-2 satellite Image 20 m spatial resolution

8 Geomorphology Sentinel-2 satellite Image 20 m spatial resolution

9 Soil UAE—Soil Museum, https://www.emiratessoilmuseum.org (accessed on 18 May 2023)

The weighted overlay analysis combines data from several data categories. It applies
analytical, statistical measurement, and other processes to the GIS data sets to turn the data
into information applicable to a particular application. Using appropriate choice criteria
and gradually layering one parameter over another, it is possible to integrate different

http://chrs.web.uci.edu
https://earthexplorer.usgs.gov/
https://www.emiratessoilmuseum.org
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themed maps. This operation entails computing regions, conducting logical operations,
and superimposing several thematic maps. Themes from several satellite images, SRTM
data, and supplementary data sets were translated into a raster format. Using ground
control points, these raster images were painstakingly geo-rectified before being digitized
on-screen with ArcGIS 10.4. To get better results from overlay analysis, these vectorized
themes were placed in a GIS environment with uniform projection coordinates. Flood
vulnerability maps were created based on each parameter’s ranking and weights applied
in overlay analysis [76]. Table 1 lists each layer’s phenomenon, requirement, and source
information. Final classifications include high, high, medium, low, and very low-risk areas
for flash floods.

4.1. Parameters Responsible for Flash Floods

The result covers the creation of several resource input maps and the assessment of
potential flood-vulnerable areas. To comprehend the flood dynamics of the research area,
it is necessary to evaluate rainfall, DEM, and its derivatives, including elevation, slope,
drainage density, LULC, geology, geomorphology, and soil.

4.1.1. Rainfall

The relationship between rainfall and flood occurrences in a region has been estab-
lished by a significant body of prior literature [36,77–81]. The exact degree to which an
increase in rainfall will result in flooding cannot be predicted [82]. Instead, it is possible
to assert that rainfall is the primary cause of floods in all environmental contexts [83].
Numerous studies worldwide have chosen rainfall as one of the key influencing factors
for mapping the risk of flash floods [14,84–86]. Rainfall in the study area ranges from
80 to 325 mm, with an average of 160 mm [87]. It is important to note that the rainiest
months in this region are Oct–Apr (Figure 6) (CHRS, Rainsphere). CHRS Rainsphere is an
integrated system for global satellite precipitation data and information developed by the
center for Hydrometeorology and Remote Sensing at the University of Colorado, Irvine.
From 2000 through 2022, the Fujairah City area’s annual and monthly data is accessed from
the website. When the annual data was closely examined (Figure 7), it was found that in
the total 22 years, 14 of the years had an average rainfall of more than 100 mm and above,
which is consistent with the flooding data given by [32] until 2018 and later also observed
in 2019, 2020, and 2022. To create the rainfall isohyet map with the aid of ArcGIS software,
the above rainfall data from the years 2000 to 2022 was used (Figure 8). The study area’s
298 km2 receives between 80 and 140 mm of rainfall, according to the rainfall isohyet map.
196 km2 of the study area will receive rainfall between 140 and 160 mm, with the remaining
65 km2 to the west of Fujairah City receiving more than 160 mm.
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4.1.2. Elevation

The classification is carried out using natural breaking in ArcGIS, and the elevation
map is created using SRTM DEM of 30 m spatial resolution. The DEM and its derivatives are
crucial in determining which regions are at risk of flooding. The research area’s elevation
and profile graph were produced from SRTM data and are displayed in Figure 9. Experts
say elevation is the main factor in a region’s ability to regulate floods [88–90]. Flat lowland
places may flood more quickly than higher altitudes because water continuously flows
from higher elevations to lower ones [91,92]. Most of the study area’s built-up regions
are lower than 50 m in elevation, rendering them more susceptible to flash flooding. In
the study region, the elevation varies from 0 to 1100 m. Given that increased elevation
decreases flash flooding risk, the entire range of elevation is divided into five rank classes
ranging from 1 to 5. The ranks are assigned to various sections of the research region based
on elevation for additional GIS analysis.
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4.1.3. Slope

The slope of the research area indicates a crucial role in controlling surface discharge
in hydrological assessment studies. The significance of this topographic feature has been
noted by several researchers [84,88,90,93]. The slope of an area and the surface flow velocity
have a significant positive link [91,94]. In addition, gradient influences infiltration to some
extent. As the gradient rises, the surface runoff rises noticeably as well, which causes
the infiltration to fall [91]. Due to the large amount of water that becomes immobile
and generates a severe flood situation, places with a sudden fall in slope have a higher
likelihood of flooding [88,95,96]. According to [97], a greater slope’s size may hasten
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precipitation-related runoff. With the help of the 3D Analyst module in ArcGIS, the slope
map is instantly generated from the SRTM DEM—the values of the slope range from 5% to
20%. The entire slope is divided into five classes, with the understanding that the lower the
slope, which is less than 5%, the higher the vulnerability of the area, as shown in Figure 10,
the higher the slope, more than <20% values lower the vulnerability wrt to flooding. Based
on this, the ranks are assigned to all the areas in the study region.
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4.1.4. Drainage Density

A key concept in hydrological analysis is drainage density, determined as the total
drainage length to the basin area. The drainage density is influenced by the permeability,
the capacity of surface materials to erode, vegetation, slope, and time. Overland flow
caused by inadequate drainage might choke drainage and water channels [98]. Equation 1
is used to calculate the drainage density:

D = L/A (1)

where D is the water drainage density, L is the drainage channel’s overall length, and
A is the water area. Higher drainage density values are significantly correlated with
a lower likelihood of floods in the region since it denotes greater surface runoff, while
lower drainage density values resemble higher vulnerability to flash floods. The prepared
drainage density map is shown in Figure 11 using the line density command in the ArcGIS
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Hydrology module. The drainage density map of the study area is generated from the
drainage network layer. According to [99], regions with higher drainage densities produce
more surface runoff than regions with lower drainage densities. Accordingly, the drainage
density, a crucial element for creating runoff [100,101], may depend on the expansion of
flood risk.
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4.1.5. Land Use/Land Cover

The structure of land use, the distribution of land cover, and its temporal evolution can
all have a significant impact on an area’s flood frequency [102,103]. The land use of an area
has a significant impact on hydrological responses at different times, according to [103].
Therefore, ref. [104] showed that changes in land use can increase a region’s likelihood
of flooding. This paper creates a detailed LULC map utilizing on-screen digitization of
Sentinel-2 data pertaining to 2023, as shown in Figure 12. There were mainly ten categories
were identified on the LULC map, and their areas are represented in Table 2, namely
Builtup-Residential, Builtup-Commercial, Builtup-Residential/Plantation, Builtup-Under
development, Builtup-Mining, Barren Lands, Builtup-Oil storage areas, Airport, Fujairah
Port, Beaches and Hajar Mountains. The Hajar Mountains occupy around 403 km2, while
the residential and plantation areas comprise 52 km2, and mining areas include 14 km2.
Fujairah port has a total area of 11.7 km2 and an oil storage area of another 5.7 km2. In
all these areas, Built-up residential and plantation areas, Fujairah Port, Commercial areas,
airports, oil storage areas, and beaches are given a high-risk value of 5. In contrast, Under-
development areas, plantation areas, under development areas are given a risk value of 4,
mining areas into 3, barren lands 2, and mountains 1, as shown in Table 3.



Water 2023, 15, 2802 14 of 30

Water 2023, 15, x FOR PEER REVIEW 14 of 31 
 

 

In contrast, Under-development areas, plantation areas, under development areas are 
given a risk value of 4, mining areas into 3, barren lands 2, and mountains 1, as shown in 
Table 3.  

 
Figure 12. Land Use/Land Cover Map of Fujairah City. 

Table 2. Land use land cover classification of the study area. 

S. No Land Use/Land Cover Class Area (Km2) 
1 Builtup-Residential 31.54 
2 Builtup-Commercial 6.48 
3 Builtup-Residential/Plantation 20.76 
4 Builtup-Under development 6.06 
5 Builtup-Mining 14.26 
6 Barren Lands 40.20 
7 Builtup-Oil storage areas 5.79 
8 Airport 5.9 
9 Beaches 0.91 

10 Fujairah Port 11.7 
11 Hajar Mountains 403.82 

Figure 12. Land Use/Land Cover Map of Fujairah City.

Table 2. Land use land cover classification of the study area.

S. No Land Use/Land Cover Class Area (Km2)

1 Builtup-Residential 31.54

2 Builtup-Commercial 6.48

3 Builtup-Residential/Plantation 20.76

4 Builtup-Under development 6.06

5 Builtup-Mining 14.26

6 Barren Lands 40.20

7 Builtup-Oil storage areas 5.79

8 Airport 5.9

9 Beaches 0.91

10 Fujairah Port 11.7

11 Hajar Mountains 403.82
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Table 3. Weights, classes, and scores for map layers.

S. No Map Layer Classes Rank Weightage (%)
1 Rainfall in mm 80–140 3 18.4

140–150 4
160> 5

2 Drainage Density 0–360 5 14.3
360–725 4

725–1088 3
1088–1450 2
1450–1800 1

3 Elevation in M 0–50 5 12.2
50–150 4
150–250 3
250–350 2

>350 1
4 Slope in (%) <5 5 13.4

5–10 4
10–15 3
15–20 2
>20 1

5 Geology Igneous and Metamorphic 2 10.1
Permian to Cretacious Sedimentary 2

Quaternary Alluvium in Wadis, Plains, Sands 4
Quaternary Coastal deposits 5

6 Geomorphology Alluvial Plains 4 9.0
Coastal Plains 5

Flood Plain 4
Beaches 5

Mountains 1
7 Land Use and Land Cover Builtup-Residential 5 14.5

Builtup-Commercial 5
Builtup-Residential/Plantation 4

Builtup-Under development 4
Builtup-Mining 3
Barren Lands 2

Builtup-Oil storage areas 5
Airport 5
Beaches 5

Fujairah Port 5
Hajar Mountains 1

8 Soil Aquisalids 5 8.1
Haplocalcids 4
Torriorthents 3

Rock outcrops 2
Mountains 1
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4.1.6. Geology

Due to geological variance, a region’s temporal flood has a high potential to change
the wadi profile [105], and it can be regarded as a significant factor since it increases the
severity of a flood occurrence [106,107]. Additionally, a region’s geology can provide
important details about the frequency of paleo-flood occurrences [108]. The infiltration
rate and a rock’s permeability are strongly correlated. To prevent floods, impermeable
rocks encourage surface drainage. The study area’s geology map was created based on
past research by [109,110], and it is split into four primary geological types: Igneous and
metamorphic rocks from the Jurassic to the Cretaceous Period; sedimentary rocks from the
Permian to the Cretaceous Period; alluvium from the Quaternary Period in Wadis, plains,
and sands; and Quaternary Coastal Deposits (Figure 13). Finally, larger infiltration rates
will result from a geological formation with higher permeability, whereas higher surface
runoff rates will result from an impermeable layer.
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4.1.7. Geomorphology

According to [109,111,112] Bullard and Livingstone (2002), Nash (2000), Colin F. Pain
et al. (2014), the interplay of wind and water is a major element in the geomorphology
of arid regions and has a significant impact on long-term landscape evolution in these
locations. Additionally, fine silt is transported to alluvial areas by rain and floods, where
it can be altered by aeolian processes [111]. Like how dust and sand are transported
by wind, they can be carried by water in channels or as a surface wash in alluvial and
sloped environments.

Therefore, one of the most crucial factors in assessing flash flood susceptibility is
geomorphological analysis. It is essential to the management of water resources and aids
in a variety of planning and development tasks, such as managing floodplains, building
recharge structures, and rerouting stormwater, among others. In the research region, there
are primarily five geomorphic features detailed in Figure 14 that was chosen as a reference
from [109]. Wadis, Flood Plains, and Alluvial Plains are examples of fluvial landforms.
Along with beaches, Coastal Plains comprise the other major landform in the study region.
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4.1.8. Soil

A natural resource that directly affects floods is soil because it regulates how much
water can permeate the soil and is the main element of the hydrological cycle [113], as
a result, how much water flows [114]. In dry locations with severe water scarcity, soil
information and maps are crucial for decision-making [115]. They provide a wealth of
information on its environmental applications and potential concerns. The ability of soils to
infiltrate water and behave as sponges will be significantly influenced by their structure and
infiltration capacity. Different types of soils hold and infiltrate water differently, impacting
flood susceptibility [116]. Reduced soil infiltration capacity leads to increased surface
runoff, which raises the risk of flooding. Flooding can occur when water is delivered at a
pace that exceeds the soil’s capacity for infiltration [117]. This is because the water rushes
down the slope at a rapid rate. The created soil map from [115] is depicted in Figure 15.
The study area’s soil comprises five types: Aquisalids, Haplocalcids, Torriorthents, Rock
outcrops, and Mountains.
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In coastal regions, aquisalids are extremely salinity-rich and poorly drained soils.
These soils are located toward the southwest of the research region and encompass an area
of 0.362 km2. In addition to having a high concentration of salts, some of these soils also
have a high concentration of gypsum. Salt concentrations are intense towards the surface
due to capillary rise and water evaporation. The extreme salinity of these soils causes
them to be physiologically dry despite groundwater, which only allows salt-tolerant plant
species to grow there.

Haplocalcids are a type of soil where the upper layer of the subsoil contains calcium
carbonate. These soils cover 26.33 km2 in the research area, with the majority of them
situated in the center to the northwest region. These soil types can readily absorb surface
water since they are typically sandy or loamy. 12% of the city of Fujairah is covered by
these types of soils.

Most torriorthents contain more than 35% by volume of gravel. They are found
in wadis within mountain valleys, alluvial fans, and plains next to mountains. Other
Torriorthents are found on wadis or alluvial plains farther away from the mountains. They
are usually sandy and have little to no gravel, but within 100 cm, there may be one or
more strata with a loamy texture. The term “rock outcrops” refers to regions of rock
outcrop surrounded by soils rather than the vast amounts of rock outcrop that make up the
mountains. It comprises rounded hills with low relief and steep, rocky hills in some places.
The 3.643 km2 area of this map unit is covered by various outcrops made of sandstone,
conglomerate, limestone, gypsum, ophiolite, and gabbro, among other rock types.

5. Results
Evaluation of Probable Flash Flood Vulnerable Zones

In assessing the risk of flash flooding, GIS is increasingly important. A spatial database
is created using ArcGIS 10.4. The study of raster overlays is crucial in assembling the data
needed to portray the phenomena. One of the simplest ways to join distinct layers is
by using “Yes” or “No” rules from Boolean logic. Most Boolean logical-based overlay
processes used in GIS do not consider the fact that variables may not be equally important
and that threshold value determinations are sometimes arbitrary. The mathematical Overlay
approach was therefore used to quantify the analysis’s parameters. The result is a raster
layer with a value assigned to each grid cell due to the productive overlay procedure.

By combining the spatial data of rainfall, drainage density, elevation, slope, LULC,
geology, geomorphology, and soil, a map of flood risk zones has been created. The pa-
rameter’s weight value is displayed as a percentage between 0% and 100%. The list of the
intended parameters, their weights, and their ranks are shown in Table 3. The class values
are ranked from 1 to 5 per scientific norms and presumptions after calculating the criteria
value ranges [118]. Rankings were given from 1 to 5, with 5 representing the most signifi-
cant element and 1 representing the least important. The proper weights were assigned
based on the features and characteristics of the strata shown in Table 3. Figure 16 illustrates
the creation of the flash flood vulnerable map for the study area using information from
Table 3. The very high, high, moderate, low, and very low vulnerable zones, which account
for 11.7%, 16.6%, 1.9%, 25.5%, and 44.3% of the research area, respectively, are shown on
the flood-vulnerable map. Because mountains with heights greater than 80 m above mean
sea level encompass most of the study area, 71.7% of it falls under moderate to very low
vulnerable zones. The remaining 28.3% comprises high and very highly vulnerable areas.
This includes the heavily inhabited, low-lying districts overlooking the Gulf of Oman in
Fujairah City, which has encroached into topographically delicate territory prone to flash
floods. Additionally, as seen in Figure 3, the steady increase of built-up areas in the Fujairah
City region expands the area of impermeable infrastructure, which reduces infiltration and
increases runoff in the event of significant rainfall over a brief period.



Water 2023, 15, 2802 20 of 30Water 2023, 15, x FOR PEER REVIEW 21 of 31 
 

 

  
Figure 16. Flash flood vulnerable zones of Fujairah City. 

6. Discussion 
The results of this study concur with those from previous studies employing machine 

learning [4] and weighted analytical techniques [32]. They determined that among the 
chosen factors, elevation and slope carried the most weight. Flash floods were mostly 
caused by elevation, with slope and rainfall coming in second and third. Another study 
from Ethiopia, by [126], determined that slope is the main reason for flash floods. Addi-
tionally, ref. [51] stated that the primary characteristics of their study include rainfall, DD, 
elevation, and slope. The findings of previous research [127] and ref. [98] demonstrated 
the critical role that elevation and slope play in influencing the movement of the overflow 
route. Also [32] included LULC in their analysis. The current analysis emphasizes assign-
ing high weightage for rainfall, DD, elevation, slope, and LULC while considering all the 
previous studies.  

To develop flash flood risk zones, weighted sum overlay analysis fusion methodolo-
gies were used. These can forecast flood risk areas thanks to the many different classifica-
tion criteria. A flash flood vulnerability map was produced by incorporating eight condi-
tional parameters through GIS-based weighted overlay analysis, normalization, and ex-
pert opinion technique, as discussed in previous research [128–130]. A larger weight indi-
cates high flooding vulnerability. Lower weight levels, on the other hand, suggest that 
flooding is less likely to happen. The outcome map was separated into five zones using 
the natural break method: very high, high, moderate, low, and very low (Figure 16), cov-
ering areas of 55 km2, 78 km2, 9.3 km2, 120 km2, 207 km2 (Figure 16). Fujairah City has been 
identified as one of the locations with the highest risk of flooding. This results from the 
Fujairah city’s quick development, encroaching on topographically delicate regions vul-
nerable to flash floods. In addition, building and road construction in urban areas expands 
the area of impervious infrastructure, which reduces infiltration and increases runoff, 
leading to flash floods in the event of heavy rain that falls over a short time. The much 
more significant causes of flood vulnerability in these areas are human activities that re-
sult in considerable changes in the geometry of the watershed, such as elevation changes 
in the topography, existing drainage modifications, and a rise in the number of 

Figure 16. Flash flood vulnerable zones of Fujairah City.

Nearly 90% of the images from earlier flood events taken on the field, discovered
in areas with highly vulnerable zones for flooding (Figure 16), were used to confirm the
accuracy of the flash flood vulnerability map along with the reference from [4,32]. This
shows that the GIS model output and the earlier flash flood occurrences had a significant
degree of consistency. The map of flash flood vulnerable zones is a useful tool for planning
flood defences and safeguarding the safety of persons residing in extremely high and very
highly vulnerable areas. For instance, since it was discovered that more vulnerable areas are
located along the low coastal plains, which regrettably are areas of high population density,
preventive measures, such as the incorporation of planning regulations, the avoidance
of development near highly vulnerable areas, the construction of embankments, raising
public awareness, and the establishment of early warning systems by the installation of
flow meters with alarms, can be taken into consideration. By adding additional storage
dams, raising the heights of the current ones, and clearing the silt from them, more water
can be saved, groundwater can be recharged, and people can be protected from flash
floods [119,120]. To use the estimated 150 million m3 per year from 15 major catchment
areas in the UAE, the Ministry of Environment and Water built 113 recharge and storage
dams [121]. To lessen the impact of flooding, an early warning system for flash floods is
essential. Additionally, remote sensing data might supplement rain gauge data for real-time
precipitation estimation [122–125]. This would allow researchers to determine whether a
rainstorm event will suddenly cause low-lying areas to flood.

6. Discussion

The results of this study concur with those from previous studies employing machine
learning [4] and weighted analytical techniques [32]. They determined that among the
chosen factors, elevation and slope carried the most weight. Flash floods were mostly
caused by elevation, with slope and rainfall coming in second and third. Another study
from Ethiopia, by [126], determined that slope is the main reason for flash floods. Addi-
tionally, ref. [51] stated that the primary characteristics of their study include rainfall, DD,
elevation, and slope. The findings of previous research [127] and ref. [98] demonstrated
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the critical role that elevation and slope play in influencing the movement of the overflow
route. Also [32] included LULC in their analysis. The current analysis emphasizes assign-
ing high weightage for rainfall, DD, elevation, slope, and LULC while considering all the
previous studies.

To develop flash flood risk zones, weighted sum overlay analysis fusion methodologies
were used. These can forecast flood risk areas thanks to the many different classification
criteria. A flash flood vulnerability map was produced by incorporating eight conditional
parameters through GIS-based weighted overlay analysis, normalization, and expert opin-
ion technique, as discussed in previous research [128–130]. A larger weight indicates high
flooding vulnerability. Lower weight levels, on the other hand, suggest that flooding is
less likely to happen. The outcome map was separated into five zones using the natural
break method: very high, high, moderate, low, and very low (Figure 16), covering areas of
55 km2, 78 km2, 9.3 km2, 120 km2, 207 km2 (Figure 16). Fujairah City has been identified as
one of the locations with the highest risk of flooding. This results from the Fujairah city’s
quick development, encroaching on topographically delicate regions vulnerable to flash
floods. In addition, building and road construction in urban areas expands the area of
impervious infrastructure, which reduces infiltration and increases runoff, leading to flash
floods in the event of heavy rain that falls over a short time. The much more significant
causes of flood vulnerability in these areas are human activities that result in considerable
changes in the geometry of the watershed, such as elevation changes in the topography,
existing drainage modifications, and a rise in the number of impervious surfaces in the City
area (Figure 3). All of these factors have raised the risk of floods and flooding of essential
infrastructure, which increases the chance of fatalities and financial loss [2]. Despite the
high-risk area, change detection maps showed the significant changes that have occurred
in urban and vegetation areas since 1990 (Figure LULC alterations). 2010 to 2023 saw a
significant improvement in Fujairah City’s infrastructure.

In general, flood risk maps are helpful for local citizens, decision-makers, and com-
petent authorities. They can help select the best flood risk reduction measures for water-
sheds [131–133]. It is simpler to locate the danger areas with flood risk mapping. Addition-
ally, there will be consistency in deciding how and where to reduce urban expansion in
the risk zones with a methodical technique like weighted overlay analysis. The growth
of urban areas near floodplain areas and the presence of many facilities may enhance the
flood intensity. The findings of this study demonstrated that urbanization has an impact on
hydrological processes as well, reducing groundwater infiltration and increasing runoff.

6.1. Hazard Management, Field Observations and Recommendations

We learnt that the Wadi Ham South Dam experienced water overflowing during the
floods of July 2022 (Figure 5), which caused the neighboring areas to flood. We have
thus examined the wadis that are to blame for this flood in this regard. Two wadis, wadi
Farfar and Wadi Saham, where Wadi Saham joins with Wadi Farfar and later both the
wadis empties into the Wadi Ham main dam, are to blame for the increased flood water
accumulation in the Wadi Ham south dam. Wadi Saham has a width of 67 m before joining
Wadi Farfar, and Wadi Farfar has 236 m width before reaching the Wadi Ham main Dam.

After thorough field visits, these two wadis have no breaker dams or artificial lakes,
so they are the source of the additional flood water. Furthermore, Wadi Saham’s bed slope
(Figure 17c) is quite steep, causing the water to surge into Wadi Fafar before rejoining the
Wadi Ham main dam. The field photos were collected during the most recent floods in July
2022 (Figure 5). The Wadi Safad and Wadi Madhab both have steep slopes (Figure 17e,f)
that will cause the flow strength to grow and flood the downstream areas. Due to the
abrupt power of the water from upstream that defines the steep slopes in the wadi bed,
there were destroyed roads and culverts downstream of Wadi Safad (Figure 18).
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Before reaching the Wadi Ham main dam, Wadi Ham has a 330 m width, which is
claimed to be the widest of all the wadis in the analysis of Wadi bed widths. Its width is
roughly 45 m, close to the starting point. The Wadi Safad has a maximum width of 119 m
close to the Safad Dam, and as you descend toward the downstream breaker dam near Al
Qurayyah, that breadth increases to 280 m.
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Monitoring flood-prone areas can reduce the likelihood of flooding [134], and flood
mitigation strategies can be divided into non-structural and structural approaches [134,135].
Non-structural measures do not require engineering, such as boosting preparation through
early warnings, controlling land use and development, planning and managing flood
control reservoirs, and more [135,136]. In-depth ecosystem-specific methods, including
restoring natural conditions or conventional measures like dams and levees can be used as
structural defence tactics [135]. In addition, structural improvements may be crucial for
controlling dangerous floods and managing water [137,138].

According to [134,139], successful flood mitigation techniques should consider the
following factors: (1) a proper flood control implementation strategy; (2) a suitable site
for facility installation; (3) a suitable facility size; and (4) efficient facility maintenance and
operation. Most of the roads and other infrastructure in Fujairah City have been built
across wadis that encircle the main city. Although complete flood protection is impractical,
the risk of a flood disaster could be decreased by (1) reducing exposure by stopping or
shifting development activities in floodplains and other high-hazard areas, (2) reducing
vulnerability by establishing resilient infrastructure standards and designs, and (3) reducing
the hazard itself, in some cases, by building flood mitigation measures.

6.2. Essential Physical Structural Procedures

Structured mitigation strategies can be divided into scattered and concentrated strate-
gies according to the spatial scale. Distributed structural measures for flood mitigation
have been considered in several previous research [140–145]. According to [141,145], the
major objective of dispersed structures is to ease the flow peak and store extra floodwaters
upstream of wadis to lessen the discharge in downstream areas. Fujairah has implemented
several methods to reduce flash floods, including integrating retention and breaker dams
and man-made lakes, resulting in water management and flood mitigation. Following a
thorough analysis of all the wadis in Fujairah City by researchers, it was discovered that
15 breaker dams have 4 m in height built on three Wadis, in addition to 2 main dams of
12 m each built on the wadi Ham and wadi Safad (Figure 1). Also, there should be one
breaker dam built each on the Wadi Saham and Wadi Farfar. Therefore, to control flash
floods and water harvesting, which in turn helps to improve the groundwater aquifers
of Fujairah City, some breaker dams and artificial lakes should be proposed based on the
expected volume of flood water, risk and hazard degree, and their return periods.

6.3. Necessary Solutions without Any Physical Structures

By altering land use, issuing early warnings, and lowering flood susceptibility and
exposure, non-structural flood control strategies have been widely used to lower the
flow peak [136,146–148]. Additionally, socioeconomic developments and governmental
structures impact how effective non-structural flood control techniques are [149]. On the
other hand, non-structural control measures offer adaptable flood mitigation strategies for
considering changes in Wadi systems, climate change, and socioeconomic effects, which
might impede the establishment of a sustainable environment [150].

7. Conclusions

Numerous flash floods have affected Fujairah City and its residents, some of which
have been quite catastrophic and have left lasting harm in their wake, as was shown by the
most recent flooding on 28 July 2022. After carefully examining the various geomorphic
features of the research region, it became apparent that seven wadis flowed into Fujairah
City and that roughly 17 dams, including two significant dams and additional breaker
dams, had been built to hold water. To analyze and manage flash flood hazards, it is crucial
to create a flash flood hazard map. After normalization and weighting by implementing
expert opinions, several parameters, mostly derived from remote sensing data, such as
slope, elevation, land use, land cover, geomorphology, geology, soil, rainfall, and drainage
density, were combined to map flood-vulnerable areas. The information made it possible to
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assess the impact of the floods on Fujairah City and identify the areas that were most at risk.
The Fujairah City Flash Flood susceptible zones model identified very high susceptible
areas (11.72%), highly vulnerable areas (16.63%), moderate (1.9%), low (25.58%), and very
low (44.13%) vulnerability.

Because it is largely steep terrain, the western section of the study area is less suscep-
tible to flash floods. Due to the flat coastal plain and impermeable regions, the eastern
portion, where the metropolitan areas are situated, is extremely vulnerable to flooding. The
model findings were verified and compared to the flood that occurred on 28 July 2022, and
they nearly matched the vulnerability map’s final results. As approximately 27% of the
study region, which includes mining sites, underdevelopment areas, residential areas, and
other built-up areas, is subject to significant hazards due to floods, the research’s findings
can help to lessen the risks that flood catastrophes offer to the local people. The weighted
overlay method and GIS analysis used in this study to create the flood vulnerable map
provide municipality officials with crucial information that they can use to explain the risks
of flooding and develop emergency preparedness and mitigation strategies for various
target groups, particularly for residents of high-risk neighborhoods.

Using maps and satellite images procured at distinct points in time and at different
scales can lead to attribute and positional mistakes, leading to technical limits in any GIS-
related procedures. As a result of generalization, there can be probable inaccuracies in
the classification of land uses. For instance, even though they are categorized as built-up
residential areas under the law of the majority, built-up regions also include many green
spaces. The Shuttle Radar Topography Mission (SRTM) is the foundation for the elevation
data. One-arc second data (30 m) is the resolution of the source data cells. Since no other
topographical data were available, the SRTM data, which is typically not appropriate for
flood modeling [151], was used in this work.

Furthermore, it is inaccurate to categorize elevation based just on bare ground. If an
area has a good drainage system, especially in metropolitan areas, it may not be true that
low ground has a high likelihood of flooding. The growth of new highways and urban
areas, as well as climate change, will cause changes to the flash flood vulnerability map
over time [152]. As a result, the present flood vulnerability map created here should only
be used as a basic guide. It should not be utilized to make long-term decisions.

Author Contributions: Conceptualization, S.P.; methodology, S.P.; software, S.P.; validation, S.P.,
A.A., A.A.E. and M.S.; formal analysis, S.P., A.A.E. and M.S.; investigation, S.P., A.S., S.B.M. and F.L.R.;
resources, S.P., S.B.M. and F.L.R.; data curation, S.P. and A.S.; writing—original draft preparation,
S.P.; writing—review and editing, S.P. and A.A.; visualization, S.P.; supervision, S.P., M.S. and A.A.E.;
project administration, S.P., A.S., S.B.M. and F.L.R. All authors have read and agreed to the published
version of the manuscript.

Funding: The National Water and Energy Center of the United Arab Emirates University has
supported this research. The authors thank the journal’s editorial board and reviewers for their
professional assistance.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abdelkareem, M. Targeting flash flood potential areas using remotely sensed data and GIS techniques. Nat. Hazards 2017,

85, 19–37. [CrossRef]
2. Pham, T.; Avand, M.; Janizadeh, S.; Phong, T.V.; Al-Ansari, N.; Ho, L.S.; Das, S.; Le, H.V.; Amini, A.; Bozchaloei, S.K.; et al. GIS

Based Hybrid Computational Approaches for Flash Flood Susceptibility Assessment Binh. Water 2020, 12, 683. [CrossRef]
3. Waqas, H.; Lu, L.; Tariq, A.; Li, Q.; Baqa, M.F.; Xing, J.; Sajjad, A. Flash flood susceptibility assessment and zonation using an

integrating analytic hierarchy process and frequency ratio model for the Chitral District, Khyber Pakhtunkhwa, Pakistan. Water
2021, 13, 1650. [CrossRef]

4. Elmahdy, S.; Ali, T.; Mohamed, M. Flash flood Susceptibility Modeling and Magnitude Index using Machine Learning and
Geohydrological Models: A Modified Hybrid Approach. Remote Sens. 2020, 12, 2695. [CrossRef]

https://doi.org/10.1007/s11069-016-2556-x
https://doi.org/10.3390/w12030683
https://doi.org/10.3390/w13121650
https://doi.org/10.3390/rs12172695


Water 2023, 15, 2802 25 of 30

5. Taylor, J.; Man, L.K.; Davies, M.; Clifton, D.; Ridley, I.; Biddulph, P. Flood management: Prediction of microbial contamination in
large-scale floods in urban environments. J. Environ. Int. 2011, 37, 1019–1029. [CrossRef]

6. Oruonye, E.D. Socio-economic impact assessment of flash flood in Jalingo metropolis, Taraba State, Nigeria. Int. J. Environ. Sci.
2012, 1, 135–140.

7. Zhang, D.; Quan, J.; Zhang, H.; Wang, F.; Wang, H.; He, X. Flash flood hazard mapping: A pilot case study in Xiapu River Basin,
China. Water Sci. Eng. 2015, 8, 195–204. [CrossRef]

8. Abdelkareem, M.; El-Baz, F. Analyses of optical images and radar data reveal structural features and predict groundwater
accumulations in the central Eastern Desert of Egypt. Arab. J. Geosci. 2015, 8, 2653–2666. [CrossRef]

9. Abdelkareem, M.; Al-Arifi, N. The use of remotely sensed data to reveal geologic, structural, and hydrologic features and predict
potential areas of water resources in arid regions. Arab. J. Geosci. 2021, 14, 704. [CrossRef]

10. Mansour, A.M.; El-Sadek, M.S. Risk Assessment of Climate Change on the Coastal area of Quseir, Red Sea, Egypt. In Climate
Change Management through Adaptation and Mitigation; Privitera, R., La Rosa, D., Pappalardo, V., Martinico, F., Eds.; Open Access
Creative Commons license CC BY-NC-ND 4.0 International Attribution; Maggioli Editore: Santarcangelo di Romagna, Italy, 2021;
pp. 64–69.

11. Kron, W. Keynote lecture: Flood risk = hazard × exposure × vulnerability. In Flood Defence 2002; Science Press Ltd.: New York,
NY, USA, 2002; pp. 82–97.

12. Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case
study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [CrossRef]

13. Bui, D.T.; Panahi, M.; Shahabi, H.; Singh, V.P.; Shirzadi, A.; Chapi, K.; Khosravi, K.; Chen, W.; Panahi, S.; Li, S.; et al. Novel Hybrid
Evolutionary Algorithms for Spatial Prediction of Floods. Sci. Rep. 2018, 8, 15364. [CrossRef]

14. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility analysis and its verification using a novel ensemble support vector
machine and frequency ratio method. Stoch. Environ. Res. Risk Assess 2015, 29, 1149–1165. [CrossRef]

15. Jackson, J.A.; Bates, R. Glossary of Geology: Alexandria; American Geological Institute: Alexandria, VA, USA, 1997; p. 769.
16. Sen, Z. Wadi Hydrology; CRC Press: New York, NY, USA, 2008.
17. Khan, Q.; Kalbus, E.; Zaki, N.; Mohamed, M.M. Utilization of social media in floods assessment using data mining techniques.

PLoS ONE 2022, 17, e0267079. [CrossRef] [PubMed]
18. Subraelu, P.; Sefelnasr, A.; Yagoub, M.M.; Sherif, M.; Ebraheem, A.A.; Raj Sekhar, A.; Nageswara Rao, K. Global warming cli-mate

change and sea level rise: Impact on land use land cover features along UAE coast through remote sensing and GIS. J. Ecosyst.
Ecography 2022, 12, 329.

19. El Bastawesy, M.; White, K.; Nasr, A. Integration of remote sensing and GIS for modelling flash floods in Wadi Hudain catchment,
Egypt. Hydrol. Process. 2009, 23, 1359–1368. [CrossRef]

20. UNISDR. Terminologies on Disaster Risk Reduction—United Nations International Strategy for Disaster Reduction Geneva, Switzerland;
UNISDR: Geneva, Switzerland, 2009.

21. Guha-Sapir, D.; Below, R.; Hoyois, P. EM-DAT: The CRED/OFDA International Disaster Database. 2016. Available online:
https://www.emdat.be/ (accessed on 17 April 2023).

22. De Vries, A.J.; Ouwersloot, H.G. Identification of tropical-extratropical interactions and extreme precipitation events in the Middle
East based on potential vorticity and moisture transport. J. Geophys. Res. Atmos. 2018, 123, 861–881. [CrossRef]

23. Al Khatry, A.; Helmi, T. The effect of Gonu cyclone on recharging groundwater aquifers—Sultanate of Oman. In Proceedings of
the 1st International Conference on Water Resources and Climate Change in the MENA Region, Muscat, The Sultanate of Oman,
2–4 November 2008; Available online: https://www.researchgate.net/publication/329034781_The_Effect_of_Gonu_Cyclone_on_
Recharging_Groundwater_Aquifers_-_Sultanate_of_Oman (accessed on 21 July 2023).

24. Al Barwani, A. Flash flood mitigation and harvesting Oman case study. In Proceedings of the 1st International Symposium on
Flash Floods (ISFF), Kyoto, Japan, 14–15 October 2015.

25. Abdeldayem, O.M.; Eldaghar, O.; Mostafa, M.K.; Habashy, M.M.; Hassan, A.A.; Mahmoud, H.; Morsy, K.M.; Abdelrady, A.;
Peters, R.W. Mitigation Plan and Water Harvesting of Flashflood in Arid Rural Communities Using Modelling Approach: A Case
Study in Afouna Village, Egypt. Water 2020, 12, 2565. [CrossRef]

26. Aly, M.M.; Refay, N.H.; Elattar, H.; Morsy, K.M.; Bandala, E.R.; Zein, S.A.; Mostafa, M.K. Ecohydrology and flood risk management
under climate vulnerability in relation to the sustainable development goals (SDGs): A case study in Nagaa Mobarak Village,
Egypt. Nat. Hazards 2022, 112, 1107–1135. [CrossRef]

27. Murata, M.; Ozawa, H. Post Aswan High Dam flash floods in Egypt: Causes, consequences and mitigation strategies. Bull. Cent.
Collab. Community Naruto Univ. Educ. 2015, 29, 173–186.

28. Abdel-Fattah, M.; Kantoush, S.A. Rainfall-runoff modeling for extreme flash floods in Wadi Samail, Oman. J. Jpn Soc. Civ. Eng.
Ser. B1 Hydraul. Eng. 2018, 74, I_691–I_696. [CrossRef]

29. Jordan: Flash Floods Kill 12 and Force Tourists to Flee. 2018. Available online: https://www.theguardian.com/world/2018/nov/
10/jordan-flash-floods-kill-eleven-and-forced-tourists-to-flee (accessed on 18 May 2023).

30. Al-Qudah, K.A. Floods as water resource and as a hazard in arid regions: A case study in southern Jordan. Jordan J. Civ. Eng.
2011, 5, 148–161.

31. Youssef, A.M.; Sefry, S.A.; Pradhan, B.; Alfadail, E.A. Analysis oncauses of flash flood in Jeddah city (Kingdom of Saudi Arabia)
of 2009 and 2011 using multi-sensor remote sensing data and GIS. Geomat. Nat. Hazards Risk 2016, 7, 1018–1042. [CrossRef]

https://doi.org/10.1016/j.envint.2011.03.015
https://doi.org/10.1016/j.wse.2015.05.002
https://doi.org/10.1007/s12517-014-1434-7
https://doi.org/10.1007/s12517-021-06942-6
https://doi.org/10.1016/j.jhydrol.2016.03.037
https://doi.org/10.1038/s41598-018-33755-7
https://doi.org/10.1007/s00477-015-1021-9
https://doi.org/10.1371/journal.pone.0267079
https://www.ncbi.nlm.nih.gov/pubmed/35468157
https://doi.org/10.1002/hyp.7259
https://www.emdat.be/
https://doi.org/10.1002/2017JD027587
https://www.researchgate.net/publication/329034781_The_Effect_of_Gonu_Cyclone_on_Recharging_Groundwater_Aquifers_-_Sultanate_of_Oman
https://www.researchgate.net/publication/329034781_The_Effect_of_Gonu_Cyclone_on_Recharging_Groundwater_Aquifers_-_Sultanate_of_Oman
https://doi.org/10.3390/w12092565
https://doi.org/10.1007/s11069-022-05220-2
https://doi.org/10.2208/jscejhe.74.5_I_691
https://www.theguardian.com/world/2018/nov/10/jordan-flash-floods-kill-eleven-and-forced-tourists-to-flee
https://www.theguardian.com/world/2018/nov/10/jordan-flash-floods-kill-eleven-and-forced-tourists-to-flee
https://doi.org/10.1080/19475705.2015.1012750


Water 2023, 15, 2802 26 of 30

32. Yagoub, M.M.; Alsereidi, A.A.; Mohamed, E.A.; Periyasamy, P.; Alameri, R.; Aldarmaki, S.; Alhashmi, Y. Newspapers as a
validation proxy for GIS modeling in Fujairah, United Arab Emirates: Identifying flood prone areas. Nat. Hazards 2020, 104,
111–141. [CrossRef]

33. Flossmann, A.I.; Manton, M.; Abshaev, A.; Bruintjes, R.; Murakami, M.; Prabhakaran, T.; Yao, Z. Review of advances in
precipitation enhancement research. Bull. Am. Meteorol. Soc. 2019, 100, 1465–1480. [CrossRef]

34. Malik, S.; Bano, H.; Rather, R.A.; Ahmad, S. Cloud Seeding; Its Prospects and Concerns in the ModernWorld-A Review. Int. J.
Pure App. Biosci. 2018, 6, 791–796. [CrossRef]

35. Mazroui, A.A.; Farrah, S. The UAE Seeks Leading Position in Global Rain Enhancement Research. J. Weather Modif. 2017, 49, 54–55.
[CrossRef]

36. Almheiri, K.B.; Rustum, R.; Wright, G.; Adeloye, A.J. Study of Impact of Cloud-Seeding on Intensity-Duration-Frequency (IDF)
Curves of Sharjah City, the United Arab Emirates. Water 2021, 13, 3363. [CrossRef]

37. Jin, H.; Liang, R.; Wang, Y.; Tumula, P. Flood—Runoff in semiarid and sub-humid regions, a case study: A simulation of Jianghe
Watershed in Northern China. Water 2015, 7, 5155–5172. [CrossRef]

38. Tehrany, M.S.; Kumar, L.; Jebur, M.N.; Shabani, F. Evaluating the application of the statistical index method in flood susceptibility
mapping and its comparison with frequency ratio and logistic regression methods. Geomat. Nat Hazards 2019, 10, 79–101.
[CrossRef]

39. Yariyan, P.; Avand, M.; Abbaspour, R.A.; Haghighi, T.A.; Costache, R.; Ghorbanzadeh, O.; Janizadeh, S.; Blaschke, T. Flood
susceptibility mapping using an improved analytic network process with statistical models. Geomat. Nat. Hazards Risk 2020, 11,
2282–2314. [CrossRef]

40. Chen, N.; Zhang, Y.; Wu, J.; Dong, W.; Zou, Y.; Xu, X. The trend in the risk of flash flood hazards with regional development in the
Guanshan River Basin China. Water 2020, 12, 1815. [CrossRef]

41. Vivekanandan, N. Comparison of probability distributions in extreme value analysis of rainfall and temperature data. Environ.
Earth Sci. 2018, 77, 201. [CrossRef]

42. Monsef, H.A.E. A mitigation strategy for reducing flood risk to highways in arid regions: A case study of the El-Quseir–Qena
highway in Egypt. J. Flood Risk Manag. 2018, 11, S158–S172. [CrossRef]

43. Sujatha, E.R.; Selvakumar, R.; Rajasimman, U.A.B.; Victor, R.G. Morphometric analysis of subwatershed in parts of Western Ghats,
South India using ASTER DEM. Geomat. Nat. Hazard Risk 2013, 6, 326–341. [CrossRef]

44. Bhatt, S.; Ahmed, S.A. Morphometric analysis to determine floods in the Upper Krishna Basin using Cartosat DEM. J. Geocarto Int.
2014, 29, 878–894. [CrossRef]

45. Abdel-Fattah, M.; Kantoush, S.; Sumi, T. Integrated management of flash flood in wadi system of Egypt: Disaster prevention
and water harvesting. In Proceedings of the 1st International Symposium on Flash Floods in Wadi System—Disaster Risk
Reduction and Water Harvesting of Flash Floods in the Arab Regions, Kyoto, Japan, 14–15 October 2015; Available online:
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/210044/1/a58b0p54.pdf (accessed on 22 July 2023).

46. Farhan, Y.; Anaba, O.; Salim, A. Morphometric Analysis and flashfloods assessment for drainage basins of the RasEnNaqb Area
South Jordan Using GIS. J. Geosci. Environ. Protect. 2016, 4. [CrossRef]
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