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Abstract: The ice flood phenomenon frequently occurs in frigid locations of high latitude and high
altitude, which triggers ice dam or ice jam flooding thus endangering personal and property safety.
Hence, a scientific risk evaluation with enough consideration of each factor is a basic and necessary
requirement for preventing ice flood disaster risks. This study establishes a risk evaluation system
for ice flood disasters based on the catastrophe theory and utilizes the Pearson correlation coefficient
to screen underlying indicators to evaluate the risk of ice flood in the upper Heilongjiang River
region. Considering the correlation between different indicators, a hierarchical cluster analysis is
invoked to simplify the indicator set and to select typical years. The results of the evaluation system
indicate that the catastrophe membership values in the Mohe, Tahe, and Huma regions from 2000 to
2020 ranged from 0.86 to 0.93. Based on the membership values and the actual disaster situations, a
four-level classification of risk ratings is conducted. The comparison between the results obtained
from the catastrophe theory evaluation method and the fuzzy comprehensive evaluation method
reveals similar risk levels, which verifies the effectiveness and practicality of the catastrophe theory
applied to the ice flood risk evaluation and presents a novel method for the study of ice floods.

Keywords: ice flood disaster; catastrophe theory; indicator preference; risk evaluation; Heilongjiang River

1. Introduction

Ice flooding is a unique hydrological phenomenon that occurs in frigid region rivers.
It is mainly manifested in the flow and evolution of river ice during the winter and spring
seasons, and due to a reduced overflow cross-section, ice jams and dams are formed,
resulting in backwater staging and a high upstream water level, which can rapidly create
a flooding hazard at short notice [1,2]. Due to the high backwater levels, extremely fast
ice flow rates, and complex formation mechanisms of ice-induced floods, showing the
relationship between floodwater levels and the probability of occurrence in hazardous
watersheds becomes more difficult [3]. Therefore, it is significantly important to ensure that
the risk evaluation of ice flood disasters is correct and has enough safety margin in regional
disaster prevention and mitigation capabilities. Ice-jam floods often cause issues such as
farmland submersion, building collapse, and embankment erosion. Additionally, these
disasters can also affect the sedimentation and release of chemical substances in river water
bodies [4,5]. Thus, ice floods are more likely than open-water floods to cause financial
costs and damage to humans and their habitats [6]. In an ice flood risk evaluation, both
the probability of occurrence, commonly quantified as the return period, and the damage
consequences of the flood hazard need to be considered to assess the annual expected
costs [7,8]. This is not only a necessary prerequisite for the prevention and control of natural
disasters in frigid regions but also a crucial assurance for national sustainable development
and the effective execution of significant programs.
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Numerous elements, including environmental changes, water flow conditions, river
borders, human activities, and socioeconomics, impact the evaluation of ice flood risk [8–13].
Due to its complicated hazard-inducing environment, various hazard factors, and fragile
hazard-bearing body, it has been a challenging and popular subject of disaster research. While
open-water flood hazard delineation and risk analysis are commonly used in traditional flood
management approaches, methodologies for ice-related flood hazard delineation and risk
analysis are not yet well established. This is due to the highly unpredictable and complex
nature of ice-related flood events, which present significant challenges for accurate evaluation
and assessment [14]. For this reason, some scholars have conducted a lot of research
on the study of causes of ice floods, the forecasting of ice-jam and ice-dam floods, the
delineation of flooding hazards, and flood risk calculation methods. The formation
and evolution of ice floods are extremely complicated, and most scholars are currently
studying the impact of various factors on the causes and disasters of flooding according
to the geographical environment, hydrology, meteorology, and engineering of rivers [15].
The hydrotechnical approach proposed is the most appropriate method for assessing the
risk of ice-jam floods in river systems when adequate historical and on-site data related
to ice blockage are available [16]. However, the reliability of hydrometric gauge data can
be compromised due to the extreme forces exerted by ice debris and blocks, which may
lead to the unavailability and inaccuracy of the data [17,18]. Meanwhile, due to the harsh
regional environments where severe ice floods occur, it is generally impossible to acquire
real-time, complete, and precise data from field observations [19]. Beltaos [20] used the
distributed-function method (DFM) to determine the frequencies and probabilities of ice-
jam floods. Several studies [21,22] have utilized an ice-jam numerical model (RIVICE) to
evaluate real-time ice-jam flood hazards along the Athabasca River at Fort McMurray, etc.
These studies can establish a basis for real-time ice-jam flood risk analysis and improve
our comprehension of the ice-jam flood risk of both property and inhabitants. Artificial
intelligence techniques, such as neural networks and fuzzy logic systems [13,23], show
promise in modeling the nonlinear processes underlying the formation of ice floods. In
particular, combining multiple models to predict backwater levels can improve accuracy
by 20–30%, albeit at a significant computational cost. Mahabir et al. [24–26] forecasted
breakup water levels using multiple linear regression and based on this evaluated
the application of soft computing in modeling the maximum water level during river
breakout in flood and non-flood event years through fuzzy logic and artificial neural
networks. Through the utilization of projection tracing, fuzzy clustering, and accelerated
genetic algorithm, Wu [27] created a comprehensive evaluation model of the ice disaster
risk that occurred in the Ning-Meng portion of the Yellow River. Luo [28] proposed the
GM (1,1) evaluation model, which introduces three-parameter interval gray numbers, to
simulate and anticipate the development trend of risk vectors. Numerous studies have
already been conducted on flood hazard delineation and risk assessment in the context
of managing the risk of ice floods [8,29–31].

In general, the process of nonlinear changes in ice-flooding behavior is a dynamic and
irreversible evolutionary process under the influence of the realistic environment. Therefore,
the ice flood disruption can be seen as an abrupt state catastrophe phenomenon driven
by the energy of the river ice system. This study focuses on the disaster risk evaluation
of ice floods using the catastrophe theory. Hazard-inducing environment, hazard factor,
hazard-bearing body, and anti-icing capability are considered the criterion layer of the
evaluation system, in order to research the indicators in the process of ice flood damage.
The catastrophe evaluation method is combined with the Pearson correlation coefficient
and hierarchical cluster analysis to solve the problem of index selection and optimization
in the evaluation model. The actual ice flood situations in Mohe, Tahe, and Huma regions
are taken as an example and are used in establishing the classification of the risk level of
the ice flood in the regions. Meanwhile, a comparison is made between the results of the
catastrophe theory evaluation method and the fuzzy comprehensive evaluation method,
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which verifies the efficacy and applicability of the catastrophe theory applied to the ice
flood risk evaluation and introduces a novel concept for the study of ice floods.

2. Materials and Methods
2.1. Catastrophe Evaluation Method

Calculus, as a mathematical tool, is well-suited for modeling and problem-solving in
natural phenomena characterized by continuity and differentiability. It enables the study
of continuous, gradual, and smooth changes, allowing for a deeper understanding of such
processes in nature. However, when a continuous development undergoes a transition
from gradual and quantitative changes to abrupt and qualitative changes, calculus becomes
inadequate for describing and addressing such phenomena. In order to solve the step
change process, René Thom, a French mathematician, initially introduced the catastrophe
theory in 1974 [32] to explore and research discontinuous changes and abrupt variations
in phenomena. He discussed the three basic forms of the system and the mathematical
principles of structural stability, singularity, and topology and described the transition from
continuous asymptotic and quantitative changes to discontinuous jump mutations and
qualitative changes using mathematical methods. The catastrophe theory utilizes potential
functions to classify the critical points of a system and investigates the characteristics
of discontinuous changes near each critical point. The properties of the discontinuous
state that are located around the crucial points are uncovered in order to conduct a more
in-depth investigation of the process underlying discontinuous occurrences [33]. There
are seven different major forms of catastrophe theory [34], as determined by the geometry
of the restriction criteria. Among them, different types of primary catastrophe models
are used which include the cusp catastrophe type, swallowtail catastrophe type, butterfly
catastrophe type, etc. The equilibrium surfaces and singular point sets associated with
these models are shown in Table 1 and Figure 1.

Table 1. Normalization formulae for the catastrophe theory.

Category Potential Function Normalization Formula

Cusp V(x) = x4 + ax2 + bx xa = a1/2, xb = b1/3

Swallowtail V(x) = x5 + ax3 + bx2 + cx xa = a1/2, xb = b1/3, xc = c1/4

Butterfly V(x) = x6 + ax4 + bx3 + cx2 + dx xa = a1/2, xb = b1/3, xc = c1/4, xd = d1/5

Note: The control variables a, b, c, and d can be viewed as factors influencing the system’s behavior state and are
decreasing in importance from a to d.
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It is worth noting that due to the four-dimensional and five-dimensional potential
functions of the swallowtail and butterfly catastrophe types, the equilibrium surfaces in
Figure 1b,c represent the projection of the original functions in three-dimensional space
after constraining the variables.

In the process of risk assessment and judgment, it is important to consider the charac-
teristics of each indicator layer and the actual situation. The choice should be made among
the following three evaluation principles:

1. Non-complementary criterion.

In cases where the control variables of the system cannot be substituted for one another,
the minimum value among the corresponding mutation values of the m control variables
(a, b, . . ., m) is selected as x, as follows:

x = min(xa, xb, . . . , xm) (1)

2. Complementary criterion.

If the variables of a system are mutually substitutable, the corresponding mutation
values of each indicator should be calculated according to the catastrophe model of the
system. Then, the average value of the variables should be computed as follows:

x =
(xa + xb + . . . + xm)

m
(2)

3. Over-threshold complementary criterion.

The over-threshold complementarity criterion is based on the analysis of extreme
events that exceed specific thresholds. It is used to estimate the tail probability or frequency
of events surpassing the threshold. These tail probabilities or frequencies are typically
low and are thus considered extreme events or exceptional circumstances. By analyzing
these extreme events, we can gain a better understanding of the risk characteristics of
the system and take appropriate measures for risk assessment and decision-making. The
control variables of the system must reach a certain threshold before they can complement
each other [33].

2.2. Data Preprocessing

The extreme value method is employed to standardize the preliminary selection
indicators, aiming to mitigate the impact of diverse indicator data and their magnitudes
on the indicator screening process and to enable effective comparison between indicators.
Equation (3) is applicable in situations where larger values of the indicator are more
advantageous for analysis. Equation (4) is applicable in situations where smaller values
of the indicator are more advantageous for analysis. Assuming that the system indicators
can be described by the state variables xij, the following extreme value normalization
transformation formula can be used:

yij =

xij − min
1≤i≤m

{
xij
}

max
1≤i≤m

{
xij
}
− min

1≤i≤m

{
xij
} (3)

yij =

max
1≤i≤m

{
xij
}
− xij

max
1≤i≤m

{
xij
}
− min

1≤i≤m

{
xij
} (4)

where yij represents the normalized value of the state variable xij, min
1≤i≤m

{
xij
}

represents

the minimum value of xij, and max
1≤i≤m

{
xij
}

represents the maximum value of xij, i = 1, 2, 3,

. . ., m (m is the designation of years); j = 1, 2, 3, . . ., n (n is the designation of indicators).
Then yij is the dimensionless data and between 0 and 1.
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2.3. Pearson Correlation Coefficient

The Pearson correlation coefficient is a statistical measure that quantifies the strength
and direction of the linear relationship between two continuous variables and is widely
used in various fields of research and data analysis.

• STEP 1: Determine the constraints of Pearson correlation:

- There is a linear relationship between the two variables;
- The variables are continuous variables;
- The variables are normally distributed, and the binary distribution is also nor-

mally distributed;
- The two variables are independent.

• STEP 2: Calculate the Pearson correlation coefficient between Xi and Yi. The Pearson
correlation coefficient is represented by the symbol “r” and takes values between −1
and 1. The coefficient is calculated based on the covariance between the two variables
and the product of their standard deviations. The formulation of the correlation
coefficient can be described as follows:

r =
∑
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
∑n

i=1
(
Yi − Y

)2
(5)

where Xi and Yi are the individual data points in the two variables, X and Y are the means
of the two variables, and Σ denotes summation over all data points.

The resulting value of “r” indicates the strength and direction of the linear relationship
between the variables:

- If “r” is close to 1, it indicates a strong positive linear relationship, meaning that as
one variable increases, the other variable also tends to increase;

- If “r” is close to −1, it indicates a strong negative linear relationship, meaning that as
one variable increases, the other variable tends to decrease;

- If “r” is close to 0, it indicates a weak or no linear relationship between the variables.

It is noteworthy that in correlation analysis, we typically aim to determine whether the
observed correlation coefficient is significantly different from zero, indicating the statistical
significance of the correlation relationship. These significance tests are designed to evaluate
whether the observed correlation coefficient is sufficiently large to reject the presence of
correlation due to random sampling errors [35]. During significance testing, it is necessary
to choose an appropriate significance level (typically 0.05) to determine whether to reject
the null hypothesis. If the null hypothesis is rejected, it can be concluded that the observed
correlation is significant.

2.4. Hierarchical Cluster Analysis

Cluster analysis is commonly used in scientific research to identify group associations
and assess the affinity among different variables [36–39]. Hierarchical cluster analysis is
a data analysis technique used to identify groups or clusters within a dataset based on
their similarity or proximity. It is a form of unsupervised learning, as it does not rely on
predefined class labels or target variables. Hierarchical cluster analysis, specifically, is used
to determine associations between different parameters and ultimately identify the sources
and processes related to them [40].

Ice flood disasters encompass various parameters from different disciplines, and
there exists a significant correlation among these parameters. This correlation leads to a
substantial increase in the time and computational resources required for data collection
and processing.

In this study, the hierarchical cluster analysis method is employed to demonstrate
the interrelationships among the variables under investigation [41]. Based on the criterion
of the sum of distances, the typical years are selected by identifying the cluster centroids.
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This approach guarantees the comprehensiveness of the evaluation index system while
mitigating potential issues, such as result distortion caused by redundant indicators.

2.5. Fuzzy Comprehensive Evaluation Method

The fuzzy comprehensive evaluation method is a mathematical approach used to
assess complex systems or phenomena that involve uncertainties and imprecise informa-
tion [42,43], including the following steps:

• STEP 1: Assuming that there are n years to be evaluated to form a sample set, and
based on the eigenvalues of m indicators, the eigenvalue matrix of ice flood risk to be
evaluated can be expressed as Equation (6):

X = (xij) =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (6)

Upon applying data normalization using Equations (3) and (4), we derived the relative
membership matrix R = (rij).

• STEP 2: Construct the index weight set.

In order to account for the varying importance of different factors in evaluating the
objective, it is necessary to establish a set of indicator weights. Weighting techniques fall into
two primary categories: statistical-based methods and participatory-based methods. The
statistical-based methods analyze the indicator data to determine the weights, whereas the
participatory-based methods involve incorporating expert or public opinions to determine
the weights. In this study, the weight is determined using the entropy weight method,
which falls under the statistical-based methods. The index weight set is constructed
according to Equation (7).

A = (w1, w2, . . . , wm) (7)

• STEP 3: Establishing the fuzzy comprehensive evaluation model.

To obtain the result of the fuzzy comprehensive evaluation for each sample, the
evaluation matrix and the index weight set are quantified as shown in Equation (8). The
synthesis operators used for fuzzy synthesis calculations include the dominant factor
determining operator, the dominant factor prominent operator, and the weighted average
operator, among others. Due to the interplay of factors in ice flood risk, this study employs
the weighted average operator for fuzzy synthesis calculations.

B = A ◦ R = (b1, b2, . . . , bn) (8)

where B is the fuzzy comprehensive evaluation risk membership matrix of the assessed object.

3. Ice Flood Risk Evaluation
3.1. Study Area Overview

The main stream of the Heilongjiang River is located in the high latitude and cold
region of the border between China and Russia. The river freezes for a long time and is
prone to ice dam and jam disasters during the open river flow period. The Heilongjiang
River originates from the Erguna River in the Mongolian Plateau, with a total length of
approximately 4440 km and a drainage area of about 1,855,000 square kilometers. The
Heilongjiang River flows through various terrains, including mountains, canyons, and
plains. Within China’s territory, the riverbed is rugged, forming a series of rapids and
waterfalls. Upon entering Russia, the river becomes gentle and flows through vast plains.

This study was conducted along a specific section of the Heilongjiang River, spanning
approximately 800 km from the Mohe region to the Huma region (Figure 2). The three
regions of Mohe, Tahe, and Huma, situated between 50.9◦ N and 53.5◦ N, have histori-
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cally experienced the highest occurrence of spring ice flood disasters and have been the
most severely affected regions [44]. These three regions are part of the Greater Khingan
Mountains region, characterized by a cold temperate continental monsoon climate. The
average temperature in the region has been recorded at −2.1 ◦C over the years, while the
annual average precipitation remains around 460 mm. Between 2000 and 2020, there were
seven years marked by severe ice flood disasters, with no fixed occurrence location. The
average duration of these events ranged from 2 to 3 days, while the longest recorded event
lasted for 15 days. In the springs of 2000 and 2009, the upper sections of the Heilongjiang
River experienced over seven ice dams and jams, resulting in the highest backwater heads
reaching 7.58 and 9.23 m.
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3.2. Analysis of Ice Flood Risk

During the non-ice-blocked period of the ice-flowing period, the flow pattern of
a river remains in a long-term linear relationship with hydraulic parameters such as
channel characteristics, precipitation, snowmelt, and runoff. It exists in an equilibrium
state. With changes in channel parameters, air temperature, and other conditions, ice floe
may accumulate somewhere downstream of the channel or be pushed under the ice sheet,
resulting in ice jams or dams. This disrupts the original balance of the water level in the
river, resulting in a sudden change due to reduced flow velocity or backwater caused by
ice blockages.

However, in the risk evaluation, it is also necessary to consider the differences in ice
flood prevention and disaster resilience capacities in different regions. The above analysis
indicates that the sudden accumulation of ice drains during the transition from stability
to instability is the fundamental characteristic of potential disasters during the ice flood
period. Therefore, it is possible to establish a risk evaluation index system and a model for
evaluating the sudden changes in ice flood risks based on the catastrophe theory.



Water 2023, 15, 2724 8 of 17

Given the challenges faced by certain methods, such as fuzzy evaluation methods
which struggle with accurate weight determination and other issues involving factor
analysis, complex calculations, and a substantial sample size requirement, opting for the
catastrophe theory evaluation method is a reasonable choice to overcome these issues. The
key advantage of this method is that it determines the importance of each indicator based on
the inherent contradictions and mechanisms of various objectives within the normalization
formula itself, without relying on indicator weights. As a result, the evaluation outcomes
are objective in nature.

3.3. Data Acquisition and Processing

The research data used in this study were obtained from multiple sources, in-
cluding the NOAA—National Centers for Environmental Information, ECMWF ERA5-
Land monthly averaged data from 1981 to present, “China County Statistical Yearbook”
(2000–2021), and the China Basic Geographic Information Sharing Website. The data
underwent analysis and processing utilizing various tools such as ArcGIS Pro, SPSS 27.0,
Origin 2022, and Excel 2021.

The risk of ice flood is influenced by multiple factors. This paper categorizes these
factors into four guideline layers: hazard-inducing environment, hazard factors, hazard-
bearing body, and anti-icing capability. Each subsystem plays a distinct role in the evolution
of risk, with varying degrees of influence. Therefore, predicting the evolution of ice flood
risk is a complex and uncertain task. To construct a risk evaluation index system that ad-
heres to the principles of scientific, typical, comprehensive, systematic, and practical criteria,
a four-level ice flood risk evaluation index system is developed. A total of 21 preliminary
indicators are selected by integrating available information, as illustrated in Table 2.

Table 2. Preliminary selection of ice flood risk evaluation index system.

Criterion Layer Index Layer Indicator
Nature Unit

Hazard-inducing
Environment

River length (XQ1) (+) km
River gradient (XQ2) (+) −

Meander coefficient (XQ3) (+) −
Width-to-narrow ratio of sudden contraction in the river channel (XQ4) (+) −

Hazard Factor

Upstream average temperature from October to March (XP1) (−) ◦C
Local average temperature from October to March (XP2) (−) ◦C

Upstream cumulative precipitation from November to March (XP3) (−) mm
Average temperature from April 1 to 20 (XP4) (+) ◦C

Average high temperature from April 1 to 20 (XP5) (+) ◦C
Upstream cumulative insolation from April 1 to 20 (XP6) (+) h

Local cumulative insolation from April 1 to 20 (XP7) (+) h
Snow depth on April 1(XP8) (+) mm

Upstream average ice thickness in March (XP9) (+) m
Local average ice thickness in March (XP10) (+) m

Downstream average ice thickness in March (XP11) (+) m

Hazard-bearing
Body

Population density (XR1) (+) people per km2

Primary industry value-added ratio (XR2) (+) −
GDP per capita coefficient (XR3) (+) −

Anti-icing
Capability

Number of hospital beds per capita (XS1) (−) sheet per
people

Resident deposit amount coefficient (XS2) (−) −
Local fiscal general budget revenue coefficient (XS3) (−) −

Auxiliary Parameters Ice flood hazard coefficient (XM) (+) m·d
Frequency of ice flood (XN) (+) times

Note: “+” in the table represents that the indicator promotes the development of disaster risk in the ice flood and
“−” represents the suppression of the development of disaster risk in the ice flood.
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4. Results and Discussion
4.1. Construct the Ice Flood Risk Evaluation Index System

The risk of an ice flood is influenced by numerous factors, and there exist complex
non-linear relationships among these factors. When these factors undergo changes and
interact with each other, the risk of an ice flood disaster can experience sudden variations.

Figure 3a displays the correlation between hazard-inducing environmental factors
and the frequency of ice floods in the Mohe, Tahe, and Huma regions. It indicates a low
correlation between river length and the occurrence of ice floods. It is important to note that
there is a strong negative correlation between XQ3 and XN, which is due to the small size of
the dataset. Previous studies [9,44–46] have already shown a positive correlation between
the river meander coefficient and the frequency of ice floods. The correlation between the
hazard factor and the ice flood hazard coefficient is depicted in Figure 3b. As the significant
level values for indicators XP3, XP6, and XP7 are greater than 0.05, they are removed from
the analysis. Additionally, there is a strong correlation between indicators XP4 and XP5, as
well as XP10 and XP11, indicating redundancy in these indicators. Therefore, only XP4 and
XP11, which exhibit a higher correlation with XM, are retained.
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Local fiscal general budget revenue coefficient (XS3) (−) − 
Auxiliary Param-

eters 
Ice flood hazard coefficient (XM) (+) m·d 

Frequency of ice flood (XN) (+) times 
Note: “+” in the table represents that the indicator promotes the development of disaster risk in the 
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Figure 3. Pearson correlation analysis for preliminary selection of indicators. (a) The correlation
between hazard-inducing environmental factors and the frequency of ice flood. (b) The correlation
between the hazard factor and the ice flood hazard coefficient.

The filtered variables XP1, XP2, XP4, XP8, XP9, and XP11 undergo a hierarchical cluster
analysis, resulting in the formation of the temperature element layer C4 and the hydrological
element layer C5, as shown in Figure 4. It is important to highlight that when the clustering
results of indicators lead to a distinct category, it signifies a crucial aspect of the evaluation
system that was directly selected. Examples of such indicators include XR1, XR2, XR3, XS1,
XS2, and XS3. These indicators hold significant value in the evaluation process.

Through the utilization of the Pearson correlation coefficient and hierarchical cluster
analysis, a total of 15 indicators are selected as the final set of ice flood risk evaluation
indicators. The priority ranking of the selected indicator set was determined based on
previous studies [9], correlation coefficients, the vulnerability of the vulnerable entity,
and the capacity for ice flood prevention. Please refer to Table 3 for more details on
these indicators.
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Table 3. Ice flood risk evaluation index system.

Target Layer Criterion Layer Index Layer

Pearson Correlation
Coefficient Whether

to Retain
Clustering
Category

Indicator
Layer

Correlation Significant
Level

Comprehensive
Risk Situation
of Ice Flood

(A)

Hazard-inducing
Environment

(B1)

XQ1 −0.08 0.949 N
XQ2 0.58 0.609 Y 1 C3
XQ3 −0.97 0.154 Y 1 C2
XQ4 0.68 0.526 Y 1 C1

Hazard
Factor

(B2)

Climatic
Elements

(C4)

XP1 0.49 0.025 Y 2 D3
XP2 0.51 0.019 Y 2 D2
XP3 0.23 0.307 N
XP4 0.59 0.005 Y 2 D1
XP5 0.53 0.013 N
XP6 0.18 0.438 N
XP7 0.03 0.893 N

Hydrological
Elements

(C5)

XP8 0.59 0.005 Y 3 D4
XP9 0.55 0.010 Y 3 D5
XP10 0.51 0.018 N
XP11 0.54 0.011 Y 3 D6

Hazard-bearing
Body
(B3)

XR1 Y 4 C6
XR2 Y 4 C7
XR3 Y 4 C8

Anti-icing
Capability

(B4)

XS1 Y 5 C9
XS2 Y 5 C10
XS3 Y 5 C11

Therefore, a four-level evaluation index system is established. The first layer is the
target layer A, which is the evaluation of ice flood risk; the second layer is the criterion
layer B, which is the hazard-inducing environment B1, the hazard factor B2, the hazard-
bearing body B3, and the anti-icing capability B4; the third layer C is the indicators C1
to C11 obtained after screening; and C4 and C5 consist of the bottom indicators D1 to D6,
representing the influence of climatic elements and hydrological elements, as shown in
Table 3.
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4.2. Ice Flood Risk Evaluation Results and Grade Classification

In the criterion layer, the hazard-inducing environment, climatic elements, hydrolog-
ical elements, hazard-bearing body, and anti-icing capability (B1, C4, C5, B3, and B4) are
composed of three variables, following a swallowtail catastrophe model. In addition, the
hazard factor (B2) in the criterion layer consists of two variables, following a sharp point
catastrophe model. In the target layer, the ice flood hazard risk (A) is composed of four
variables (B1, B2, B3, and B4), which follow a butterfly catastrophe model.

The data from the indicator layer of Mohe, Tahe, and Huma from 2000 to 2020 were
incorporated into the mutation evaluation method. Over the 20-year period, ice dams and
jams occurred in the upper Heilongjiang River during the ten years. The results of the ice
flood risk evaluation and the classification of each region in the study year can be observed
in Figure 5.
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At present, there is no unified standard for the evaluation of ice flood risk, either
domestically or internationally. Referring to the relevant studies [47,48], the evaluation
criteria of their ice flood hazard evaluation index were determined by combining the actual
situations of ice dam flooding in the upper reaches of the Heilongjiang River. Performing a
hierarchical cluster analysis on the set of indicators for each year, as shown in Figure 6, we
selected the years 2000, 2001, 2008, 2009, 2010, 2011, and 2015 as representative years based
on the results of the clustering analysis. The clustered distances, value-at-risk, and realistic
risk ratings for the typical years in the three regions are shown in Table 4.

The ice flood risk for each year and region was ranked according to the results of
the catastrophe theory evaluation. Based on the historical ice flood data for the upstream
region of the Heilongjiang River during the representative years, the evaluation results
were divided into different levels. By following this approach, we determined the grade
intervals corresponding to the risk levels of ice floods in the upper reaches of Heilongjiang
Province. The specific grade intervals and corresponding details can be found in Table 5.
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Table 4. The clustered distances, value-at-risk, and realistic risk ratings for the typical years.

Clustering
Group Year

Clustering
Distance

Mohe Tahe Huma

Value Rating Value Rating Value Rating

1 2000 0.804 0.909 Moderate 0.883 Low 0.900 Moderate
2 2015 0.850 0.914 High 0.910 High 0.897 Low
3 2008 0.322 0.912 High 0.899 Low 0.861 Low
4 2011 0.229 0.921 Critical 0.921 Critical 0.903 Moderate
5 2001 1.195 0.913 High 0.898 Low 0.910 High
6 2009 0.998 0.928 Critical 0.919 High 0.903 Moderate
7 2010 0.346 0.929 Critical 0.919 High 0.908 Moderate

Note: Selection method: sum of distances.

Table 5. The classification of ice flood risk.

Typical Years and Regions Evaluation Results
(A)

Grading Results

Year Region Range Grade

2010 Mohe 0.929
0.92~1 I2011 Mohe 0.921

2010 Tahe 0.920
0.91~0.92 II2001 Huma 0.910

2000 Mohe 0.909
0.90~0.91 III2000 Huma 0.900

2008 Tahe 0.899
0~0.90 IV2008 Huma 0.861

4.3. Results Analysis

A comparison of the average risk values in Mohe, Tahe, and Huma from a geographical
perspective indicates that the evaluation level of ice flood risk in the upper main stream of
the Heilongjiang River was highest in Mohe, followed by Tahe, and then Huma, throughout
the period from 2000 to 2020. From the perspective of the hazard-inducing environment,
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the Mohe segment is characterized by the maximum river gradient and width-to-narrow
ratio of sudden contraction in the river channel. The ratio compares the width of the
original river section to the width of a narrowed section. A larger width-to-narrow ratio
implies a more significant change in the width of the river channel. When a significant
amount of ice flows through this section, the width of the channel decreases sharply, and
ice debris is more likely to accumulate and cause congestion. As a result, the hazard risk of
ice flood is higher in this particular segment of the river.

In addition, the Huma segment of the river gradient has a larger meander coefficient,
indicating a steeper course compared to other sections. The river gradient is calculated as
the ratio of the height difference between starting and ending points to the actual length
of the river. Consequently, ice slush tends to accumulate in these bends, obstructing the
water flow and quickly raising water levels. Together, the combination of a larger river
gradient and a higher width-to-narrow ratio in the Mohe section increases the risk of ice
floe accumulation, water flow blockage, and the subsequent occurrence of ice dams or jams.

From a temporal perspective, the risk levels in the Mohe, Tahe, and Huma areas
follow a pattern of initial increase followed by a subsequent decrease. There was a notable
increase in the overall risk index from 2000 to 2010. All three regions increased to the
higher risk level, with the Tahe region showing the greatest increase at 4%. Regarding
the factors contributing to these changes, the average temperature upstream during the
October 2009 to March 2010 period was 3.1 ◦C higher compared to 2000. This period
corresponds to the freeze-up phase of the Heilongjiang River, and the average temperature
during this time directly affects the volume of ice and water in the river during the opening
period. Furthermore, the local fiscal general budget revenue coefficient and the coefficient
of resident savings deposits are generally lower compared to the year 2000. Additionally,
the proportion of agricultural output value is significant. These factors contribute to an
increased potential risk for the occurrence of ice floods.

In comparison to 2009, the risk levels of the three regions escalated in 2010. This
can be attributed to the lower average temperatures experienced along the Heilongjiang
River in April, with Mohe region being 4.68 ◦C lower than previous years, and Huma
maintaining temperatures below zero. Temperature serves as a critical thermal condition
for ice flood formation. In 2010, the Mohe and Huma sections failed to thaw due to
the persistently low average temperatures. As a result, the upstream water carrying a
substantial amount of floating ice exerted pressure on the downstream ice cover, leading
to ice squeezing and accumulating. This scenario created favorable conditions for the
formation of ice dams and jams.

The Heilongjiang River is primarily lined with villages, and a majority of rural res-
idents rely on agriculture as their main source of livelihood. Consequently, during ice
flood disasters, agriculture, in addition to the population, becomes the primary vulnerable
entity. The severity of the consequences resulting from an ice flood disaster is directly
proportional to the population density and per capita food possession. Enhancing the
number of drainage structures and extending the length of embankments will enhance
the region’s capacity to mitigate ice flood disasters. As the proportion of total agricultural
output in the regional GDP increases, the recovery process from the impact of ice flood
disasters becomes more challenging. On the whole, the risk level of ice floods in the upper
reaches of the Heilongjiang River demonstrates a decreasing trend, indicating a yearly
improvement in the economic level and the ice flood prevention capabilities in the region.

4.4. Accuracy Evaluation

In order to examine the accuracy of the catastrophe evaluation method, the entropy
weighting method was used to assign weights to the underlying indicators in the index
system. The fuzzy comprehensive evaluation method was used to evaluate the risk of ice
floods in Mohe, Tahe, and Huma regions from 2000 to 2020. Regression analysis of the
underlying indicators and evaluation results showed that the correlation coefficient (R2)
based on the catastrophe evaluation method was 0.997 and the root mean square error
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(RMSE) was 0.00898; the correlation coefficient (R2) based on the fuzzy evaluation method
was 0.995 and the root mean square error (RMSE) was 0.00002. The root mean square
error of both algorithms is less than 0.05, and the correlation coefficients are significantly
correlated, indicating that the catastrophe theory evaluation method has high accuracy in
the application of ice flood hazard evaluation. The average risk values obtained from the
fuzzy comprehensive evaluation method and the catastrophe theory evaluation method
were compared for the Mohe region as presented in Figure 7 and Table 6. The results
indicate that the two methods yielded relatively similar results, and the levels of risk values
matched perfectly.
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Table 6. The level of value-at-risk for typical years.

Year
Catastrophe Evaluation Method Fuzzy Evaluation Method

Value-at-Risk Level Value-at-Risk Level

2010 0.929 1 0.632 1
2009 0.928 2 0.631 2
2011 0.921 3 0.458 3
2015 0.914 4 0.357 6
2001 0.913 5 0.463 4
2008 0.912 6 0.284 7
2000 0.909 7 0.458 5

5. Conclusions and Future Prospective

This study employed the catastrophe evaluation method to evaluate the risk of ice dam
floods in the upper Heilongjiang River spanning from 2000 to 2020. The evaluation findings
indicated that the Mohe section, characterized by an intricate and steep river topography,
exhibits a higher comprehensive ranking of ice flood risk compared to the other two
regions. Regarding the time series analysis, ice floods tend to occur more frequently
during years with lower upstream temperatures between October and March, coupled
with larger upstream and downstream ice thickness in March. Population, agriculture,
economy, and other factors also affect the risk of the occurrence of floods, resulting in
a trend where ice flood risk initially increases and then decreases. The results obtained
through the catastrophe evaluation method exhibit a similar risk ranking as the fuzzy
evaluation method. Furthermore, the catastrophe evaluation method offers the advantages
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of simplicity in calculation and reduced subjective factors. It eliminates the requirement for
precise weighting of underlying indicators and results in a more rational overall distribution
of risk values.

In addition, this study still has some limitations that need to be addressed and explored
in future research:

1. Problems such as insufficient selection of indicators due to the difficulty of data
accessibility may have some influence on the results of the ice flood disaster risk
evaluation. However, as the construction and enhancement of the big data platform
progress, it will be possible to include a wider range of indicators to enhance the
ice flood disaster risk evaluation system. This improvement will contribute to more
accurate and reliable results in the future.

2. Using the entropy weight method, in the fuzzy comprehensive evaluation method, to
determine the weight of the index may result in distorted evaluation outcomes due to
inaccuracies in some of the weights. In future research, we plan to explore alternative
weighting techniques or enhanced fuzzy theory to obtain more robust and desirable
conclusions. By doing so, we aim to address the limitations and potential distortions
associated with the entropy weight method and improve the overall accuracy and
reliability of our evaluations.
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