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Abstract: In the field of hydrological model parameter uncertainty analysis, sampling methods such
as Differential Evolution based on Monte Carlo Markov Chain (DE-MC) and Shuffled Complex
Evolution Metropolis (SCEM-UA) algorithms have been widely applied. However, there are two
drawbacks which may introduce bad effects into the uncertainty analysis. The first disadvantage is
that few optimization algorithms consider the physical meaning and reasonable range of the model
parameters. The traditional sampling algorithms may generate non-physical parameter values and
poorly simulated hydrographs when carrying out the uncertainty analysis. The second disadvantage
is that the widely used sampling algorithms commonly involve only a single objective. Such sampling
procedures implicitly introduce too strong an “exploitation” property into the sampling process,
consequently destroying the diversity property of the sampled population, i.e., the “exploration”
property is bad. Here, “exploitation” refers to using good already-existing solutions and making
refinements to them, so that their fitness will improve further; meanwhile, “exploration” denotes that
the algorithm searches for new solutions in new regions. With the aim of improving the performance
of uncertainty analysis algorithms, in this research, a constrained multi-objective intelligent opti-
mization algorithm is proposed that preserves the physical meaning of the model parameter using
the penalty function method and maintains the population diversity using a Non-dominated Sorted
Genetic Algorithm-II (NSGA-II) multi-objective optimization procedure. The representativeness
of the parameter population is estimated on the basis of the mean and standard deviation of the
Nash–Sutcliffe coefficient, and the diversity is evaluated on the basis of the mean Euclidean dis-
tance. The Chengcun watershed is selected as the study area, and uncertainty analysis is carried out.
The numerical simulations indicate that the performance of the proposed algorithm is significantly
improved, preserving the physical meaning and reasonable range of the model parameters while
significantly improving the diversity and reliability of the sampled parameter population.

Keywords: uncertainty analysis; rainfall–runoff model; constrained NSGA-II multi-objective
optimization; parameter physical meaning; population diversity

1. Introduction

Hydrological models are able to effectively approximate the complex hydrological
phenomena that occur in natural watersheds. However, real-world hydrological processes
are innately imbued with uncertainties arising from the combined impact of climate forcing
and underlying surface conditions [1]. Basin characteristics with random properties are
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often described in hydrological models on the basis of their parameters. This random-
ness leads to the phenomenon of “equifinality”. This phenomenon may have negative
impacts on the accuracy and reliability of hydrological simulations and basin management
decisions [2]. Therefore, it is crucial to quantify the uncertainty associated with the hydro-
logical model parameters and evaluate the impact of parameter uncertainty on the model
simulations [3,4].

To perform uncertainty analysis on hydrological model parameters, it is necessary to
repeatedly run the hydrological model and to generate a number of parameter–objective
data points, which are usually called sample points [5]. The samples are usually generated
using parameter optimization algorithms, otherwise referred to as parameter calibration
algorithms. Since the 1920s and 1930s, the development of watershed hydrological models
has progressed rapidly owing to the maturity of runoff production and flow concentration
theories, as well as advancements in computer science and technology [6–8]. Until recently,
popular hydrological models such as the Soil and Water Assessment Tool (SWAT), the
Topography-based Hydrological Model (TOPMODEL), and the MIKE System Hydrological
European (MIKE SHE) and Xin’anjiang models have been widely applied to perform water-
shed hydrological simulation [9]. Among these models, the Xin’anjiang model (abbreviated
as XAJ in this paper) is the most commonly used hydrological model in China [10,11].
When generating samples or calibrating the parameters of the XAJ model in order to per-
form uncertainty analysis under unconstrained conditions, two problems often arise. The
first problem is that in long-term hydrological simulation, negative soil moisture values
usually occur. Many researchers have addressed this issue by simply resetting the negative
soil moisture values to zero. Apparently, this treatment introduces extra water into the
model simulations, leading to an imbalance in water quantity. The second problem is that
the flow concentration parameters of the XAJ model have clear physical meanings, and
their magnitude reflects the flow velocity of different runoff components. However, many
scholars fail to consider the relationship between the magnitudes of the flow concentration
parameters, such as CG, CI, and CS, in parameter calibration. Given the practical consid-
erations involved in optimizing hydrological model parameters, it is crucial to include
constraints in the calibration process. Nevertheless, there has been a notable lack of research
in this domain.

To quantify the uncertainty associated with hydrological model parameters, scholars
have conducted extensive research. Beven (1992) introduced the Generalized Likelihood
Uncertainty Estimation (GLUE) method [12], which employs Monte Carlo sampling to
generate parameter sample points, screens the samples with a likelihood criterion, and
analyzes the posterior distribution of the parameters. This method is simple in principle
and has been widely used to study parameter uncertainty in hydrological models [13–17].
However, Mantovan et al. [18] pointed out that the likelihood function does not strictly
follow a probability distribution, and the posterior probability distribution of the inferred
parameters may not have statistically significant characteristics. The Markov Chain Monte
Carlo (MCMC) technique is an alternative approximate Bayesian approach that enables the
sampling of intricate posterior distributions, obviating the “pseudo-Bayesian” dilemma
associated with the GLUE method [19]. The Metropolis–Hastings algorithm stands as
the quintessential method in the realm of machine learning, founded on the principle
of “rejection sampling”, which provides an approximation of the posterior distribution.
Theoretically, the Metropolis–Hastings algorithm has the potential to estimate the posterior
distribution of parameters; nonetheless, for intricate models, limited prior knowledge
results in sluggish convergence of the algorithm. To enhance the effectiveness of MCMC,
Vrugt et al. [20] proposed the SCEM-UA algorithm [21], which merges the improved
Shuffled Complex Evolution developed at University of Arizona (SCE-UA) algorithm
with the Metropolis–Hastings algorithm. The improved SCE-UA algorithm utilizes the
random walk method to facilitate population evolution, whereas the Metropolis algorithm
decides whether the sample points in the offspring are acceptable as points on the Markov
chain. Ter Braak [22] introduced the Differential Evolution Markov Chain (DE-MC), an
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innovative algorithm that merges the fundamental principles of Differential Evolution
(DE) and MCMC. The DE algorithm is employed to accomplish population evolution,
thereby addressing the pivotal issue of selecting the appropriate scale and direction for
the jump distribution in MCMC [23]. Furthermore, the Metropolis algorithm ascertains
whether the sample points in the offspring qualified as points on a Markov chain. The
SCEM-UA algorithm and the DE-MC algorithm are both MCMC techniques that permit
the implementation of multiple chains running in parallel. They possess the advantage
of rapid optimization and convergence, in contrast to traditional MCMC approaches,
and therefore are suitable for examining uncertainty in studies on hydrological model
parameters. However, both techniques rely on single-objective population evolutionary
algorithms to generate their sampling results. Numerous studies have demonstrated that
such sampling procedures tend to prioritize “exploitation” over “exploration”, leading to
a loss of diversity within the sampled population [24–26]. In this context, “exploitation”
refers to the utilization and improvement of good existing solutions to enhance their fitness,
while “exploration” involves searching for new solutions in unexplored regions. Therefore,
it is crucial to enhance the exploratory nature of uncertainty analysis methods.

The main contribution of this paper lies in addressing two key challenges in the param-
eter uncertainty analysis of hydrological models. Firstly, existing parameter optimization
methods often overlook the physical significance and constraints of model parameters and
state variables, leading to unreliable optimization results and unrealistic simulation out-
comes. Secondly, existing parameter optimization methods often focus on single-objective
optimization, resulting in a lack of diversity in the sampling results as the population is
concentrated in a specific region.

The proposed constrained multi-objective intelligent optimization algorithm effec-
tively addresses the aforementioned difficulties in parameter optimization and uncertainty
analysis. By employing a penalty function based on constraints, the algorithm guides
the optimization process to avoid unreasonable regions and ensures the reliability of the
sampling results. The inclusion of a multi-objective optimization algorithm in the sampling
process further enhances the diversity of the obtained optimization result population, pre-
venting concentration in a narrow region and promoting a more comprehensive distribution
of solutions.

For the problem of imposing constraints in the optimization process, we analyzed
the principles of the XAJ model and the physical meaning of the parameters. After that,
we designed numerical simulation experiments to explore the relationship between the
model parameters and the positive and negative values of soil moisture, before proposing a
penalty function method for dealing with the case of negative values of soil moisture, and
guiding the parameter optimization algorithm to find the combination of model parame-
ters that corresponded to non-negative soil moisture. Regarding the flow concentration
parameters, another penalty function was designed to ensure that they satisfied the mag-
nitude relationship CG > CI > CS, and the optimization algorithm was guided in order
for reasonable parameter values to be obtained. To address the issue of sample diversity
deterioration, this study incorporates the double-objective and triple-objective NSGA-II
methods, in contrast to the single-objective evolutionary algorithms typically utilized in
existing uncertainty analysis methods. The numerical simulation results demonstrate the
effectiveness of the proposed algorithm in addressing the limitations of existing methods.
The proposed approach not only avoids the issue of negative soil moisture values and
yields more reasonable model parameters, it also significantly improves the property of
sample diversity. These findings highlight the value of the proposed algorithm in achieving
more accurate and robust results in hydrological modeling and uncertainty analysis.

In summary, in this study, a new element is introduced by adding constraints to
the hydrological model and a multi-objective optimization approach to the parametric
optimization sampling method. By doing so, not only are the reliability and diversity of
the sampling results improved, but a distinction is also made with respect to the results of
previous publications that did not address these aspects.
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2. Materials and Methods
2.1. XAJ Model

In the 1980s, Renjun Zhao et al. introduced the XAJ model, with three runoff com-
ponents [27], and this has since been employed extensively for flood simulation and
forecasting in the humid and semi-humid regions of China. The XAJ model calculates the
total runoff generated by rainfall using saturation excess theory, and divides the runoff
components into saturated surface runoff, interflow, and groundwater runoff. The XAJ
model uses the lag and route method for river network flow concentration computation
and the Muskingum method for river channel routing.

The XAJ model holds significant importance in the field of hydrology, particularly in
flood forecasting for the wet areas of China. With its extensive usage and effectiveness,
solving the challenges associated with the XAJ model has far-reaching implications. Suc-
cessful resolution of these issues would not only benefit the XAJ basin but also contribute
to improved flood forecasting in a significant portion of China.

The significance of solving the issues related to the XAJ model extends beyond its use in
a specific region. Solving these issues will play a pivotal role in improving flood forecasting
capabilities and enhancing water management strategies for a significant portion of China,
making it a matter of great importance in the field of hydrology.

2.1.1. The Structure of the XAJ Model

The watershed is partitioned into a collection of sub-basins, wherein the discharge
hydrograph from each sub-basin is initially simulated and subsequently directed along the
channels to the outlet of the watershed.

A flowchart of the XAJ model is depicted in Figure 1. The symbols representing inputs,
outputs, and state variables are indicated within the blocks in Figure 1. On the other hand,
the symbols representing parameters (constants specific to each sub-basin) are displayed
outside the corresponding blocks.
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The model takes in two inputs: P, representing the measured areal mean rainfall depth
in the sub-basin, and EM, denoting the measured pan evaporation. The outputs consist
of the discharge, Q, from each sub-basin, the outlet discharge from the entire basin, TQ,
and the actual evapotranspiration from the entire basin, E. The actual evapotranspiration is
obtained by summing the evapotranspiration from the upper (EU), lower (EL), and deepest
(ED) soil layers, respectively.

The state variables encompass various components: W, which represents the areal
mean tension water storage, comprising WU, WL, and WD for the upper, lower, and deep
layers, respectively. Additionally, S stands for the areal mean free water storage. R accounts
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for the pervious area’s runoff, comprising RS, RI, and RG for surface, interflow, and
groundwater runoff, respectively. Similarly, RB represents the runoff from the impervious
area IM. FR denotes the runoff producing area, while T stands for the total sub-basin inflow
to the channel network, encompasses QS, QI, and QG for surface runoff, interflow, and
groundwater, respectively.

2.1.2. Parameters of the XAJ Model

The model involves the optimization of 16 parameters (see Table 1).

Table 1. Parameters of the XAJ model.

Parameters Physical Meaning Value Range Parameter Type

K Conversion coefficient of the
potential evapotranspiration 0.1~2

Runoff generation

WM Tension water storage capacity (mm) 50~300

WUM Tension water storage capacity for
upper soil layer (mm) 5~60

WLM Tension water storage capacity for
lower soil layer (mm) 10~90

C Transpiration coefficient of the deep
soil layer 0.01~0.5

B Power of tension water storage
capacity curve 0.1~2

IM Proportion of impervious area within
the entire watershed 0.001~0.5

SM Free water storage capacity (mm) 1~60

Runoff separationEX Power of free water storage
capacity curve 0.01~2

KG Groundwater outflow coefficient 0.01~0.69
KI Interflow outflow coefficient 0.01~0.69

CG Recession coefficient of the
groundwater reservoir 0~1

Flow concentration
CI Recession coefficient of the

interflow reservoir 0~1

CS Recession coefficient of river network 0~1

L Lag time of river network flow
concentration (d) 0~10

X Muskingum flow routing parameters −0.5~0.5

2.2. Data Sources

The model is applied in the Chengcun watershed (see Figure 2). Choosing the Cheng-
cun watershed for this study is a safe and logical choice as it is a typical wet watershed and
the birthplace of the XAJ model. This allows for a comprehensive analysis and enhances
the reliability of research outcomes.

The watershed is located in a subtropical monsoon climate zone with considerable
intra- and inter-annual runoff variability. The Chengcun watershed possesses characteristics
consistent with those typical of humid regions. The basin has a total area of 298 km2 and
encompasses 10 rainfall gauges, including Chengcun, Wangcun, Zuolong, and Tianli, etc.
Chengcun station serves as the basin’s outlet hydrological station.

For runoff simulation, daily data covering a period of 14 years (1986–1999) were
utilized to study the watershed. The limited availability of rainfall runoff information in
China, constrained by policy and confidentiality requirements, restricts the time frame for
data collection to between 1986 and 1999. However, based on the basin survey, it was found
that the rainfall runoff characteristics of the basin remained relatively stable. Therefore, the
selected information is still applicable to the XAJ model, and its limited availability does
not impact the validity of this study.
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Figure 2. Map of the Chengcun watershed.

The Chengcun watershed was divided into 10 sub-basins using the Thiessen polygon
method, and the area weights of each sub-basin are presented in Table 2. Due to the relatively
small size of the watershed, the number of Muskingum segments between each sub-basin
and the basin outlet is set to zero in this study, meaning that no Muskingum routing is needed.
As a result, the Muskingum method parameter X is not included in the optimization process.
To ensure the stability of the optimization results and to avoid the bad impact of parameter
correlation, a structural constraint of KG + KI = 0.7 is introduced. Consequently, the total
number of parameters to be optimized in this study is reduced to 14.

Table 2. Area weights for each sub-basin in the Chengcun watershed.

Name of
Sub-Basin Chengcun Wangcun Zhangyuankou Didian Dongkengwu

area weight 0.1214 0.1121 0.1053 0.1258 0.0463

Name of
sub-basin Yonggongcheng Zuolong Fengcun Tianli Dalian

area weight 0.0726 0.116 0.0871 0.0882 0.1253

2.3. Framework for Constrained Multi-Objective Intelligent Optimization Algorithm

This study introduces a novel constraint-based multi-objective intelligent optimization
algorithm, designed to maintain the diversity of sample points while eliminating ‘unrea-
sonable’ samples during the sampling process. It aims to strike a balance between “local
exploitation” and “global exploration”. The framework of the proposed methodology
involves two main steps.

(1) Establishing constraints: First, two constraints are established for optimizing the
parameters of the XAJ model. The first constraint ensures that the soil water content remains
greater than 0 throughout the simulated hydrological process. The second constraint
enforces the condition CG > CI > CS.

Negative soil moisture values are commonly encountered in long-term hydrological
simulations. Unfortunately, many researchers address this issue by simply resetting the
negative soil moisture to zero, without taking the physical implications of such an approach
into consideration. This can lead to sampling results that lack physical sense and reliability.
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Furthermore, another important aspect that is often overlooked is the specific size
relationships among the parameters CG, CI, and CS in hydrological models. Neglecting
these relationships can further compromise the physical sense of the sampling results.

This is in fact irresponsible, and this treatment can result in samples that lack physical
meaning in the sampling results. This study addresses this issue by employing a penalty
function method.

Penalty functions are formulated to accommodate the parametric optimization algo-
rithm, taking into account the aforementioned constraints. Penalty functions are employed
during the optimization of the model parameters to ascertain the guiding and constraining
role of the established constraints in the process of parameter optimization.

(2) Constraint-based multi-objective sampling algorithm: Finally, by applying the
NSGA-II algorithm, which takes into account the constraints, to the process of multi-
objective sampling, this method ensures that the generated samples not only adhere to the
specified constraints, but also achieve a balance between “global exploration” and “local
exploitation”.

The core tasks are explained below and illustrated in Figure 3.
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3. Parameter Optimization in Consideration of Constraints
3.1. Relationship between Soil Moisture and Model Parameters

During long-term hydrological simulation, an infeasible combination of parameters
could lead to negative values of soil moisture. As soil moisture is produced by the runoff
generation module of the XAJ model, it must be related to the model’s runoff generation
parameters, provided that the rainfall data and initial state variables of the basin remain fixed.
Among the runoff generation parameters, the value of IM is relatively constant and has a
negligible impact on soil moisture. The parameter K reflects the relationship between pan
evapotranspiration and real evapotranspiration, where higher values of K imply lower soil
moisture, and conversely, lower values of K imply higher soil moisture. The parameters WM,
B, and C have more complex effects on soil moisture and are interrelated, as noted in Zhao’s
paper [28]. Thus, these parameters were selected for further investigation, while the other
parameters were held constant. The values of WM, B, and C were sampled, and a numerical
simulation was performed using the model to analyze their influence on soil moisture.
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In this study, it is assumed that the model parameters used are the same as those in
the previous research conducted by Zhao et al. [29]. This is based on the fact that the model
and the research basin in Zhao’s paper are identical to those used in the current study. The
parameters of the XAJ model were set as shown in the following table (Table 3).

Table 3. The range of model parameters of XAJ in the Chengcun watershed.

Model Parameter K WM WUM WLM C B IM SM

Parameter values 0.98 50~300 5~60 10~90 0.01~0.5 0.1~2 0.01 16
Model parameter EX KG KI CG CI CS L X
Parameter values 1.5 0.13 0.57 0.99 0.8 0.2 1 -

In this section, we explore the impact of different combinations of WM, WUM, WLM,
B, and C on the soil moisture simulation results. We use the Latin hypercube sampling
algorithm [30] to randomly sample WM, WUM, WLM, B, and C. The generated parameter
sets, along with other fixed parameters, are used as parameters for the XAJ model simula-
tions. The model’s output is examined for negative soil moisture values, and the spatial
distribution of parameter combinations is analyzed. Following the approach described
above, 100,000 simulations of the flooding process were conducted randomly, and the
spatial distribution of the parameter values, along with positive and negative values of
soil moisture, are presented in Figure 4. Parameter combinations resulting in negative
soil moisture are plotted with red dots, whereas those yielding positive soil moisture are
represented by blue dots.
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Figure 4. Spatial distribution map for parameters WM, B, and C (the upper left figure is the three-
dimensional spatial distribution map, the rest of the figure is the two-dimensional projection of the
three-dimensional spatial distribution). In the figure, the red dots represent the parameter groups
where the soil water content is negative, while the blue dots correspond to the parameter groups
where the soil water content is always non-negative.
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It can be inferred from the above figure that there exists a law describing the relation-
ship between parameter combinations and the soil moisture values in the data. Under
the fixed rainfall conditions and initial state variables in the data related to the Chengcun
watershed, negative soil moisture values can be avoided in the simulation results when
WM is sufficiently large. Furthermore, it can be observed from the plots on the upper right
and lower left that increases in the value of C are associated with higher probabilities of
negative soil moisture values being obtained, as evidenced by the increased density of
the concentration of red dots. These results are consistent with the physical mechanism
of transpiration in deep soil layers, where increasing C exacerbates soil drying in deep
soil layers and increases the possibility of negative soil moisture values being obtained.
Additionally, the results obtained at the sampling points indicate that the parameter B
alone does not demonstrate a discernible law describing its relationship with the positivity
or negativity of the soil moisture.

To further investigate the law mentioned above, we created a histogram of parameters
for cases in which negative soil moisture values were observed. The vertical axis of the
histogram indicates the relative frequency of parameter groups with negative soil moisture
values, while the horizontal axis shows the parameter values. The resulting histogram
is presented in Figure 5. Through observation, the law becomes even more apparent.
The figure demonstrates that negative values of soil moisture occur uniformly across the
entire range of parameter B. With increasing WM or decreasing C, the probability of the
occurrence of negative soil moisture values decreases. In the Chengcun watershed, WM
values exceeding 171.16 ensure that the soil moisture will never fall below zero.
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Figure 5. Histogram of parameters in the case of negative soil moisture (from left to right: the
parameters WM, C, B, respectively).

This comprehensive analysis demonstrates that the impact of WM on soil moisture is
significant, with a clear law emerging. Parameter C also exhibits some degree of regularity
in its influence on soil moisture, while parameter B does not show any obvious regularity.
The graph clearly shows that increasing the value of WM leads to a decreased likelihood
of the occurrence of negative soil moisture values. This relationship can be useful in the
design of an objective function when incorporating constraints into the process of parameter
optimization.

3.2. Analysis of the Flow Concentration Parameters

The parameters CS, CI, and CG represent the flow concentration velocity of surface
runoff, interflow runoff, and groundwater runoff, respectively. As stated by Zhao [28],
the recession coefficient is inversely proportional to the flow concentration velocity. The
following law must be followed: the saturated surface runoff confluence velocity ≥ the
interflow confluence velocity≥ the groundwater confluence velocity in the same watershed.
It can be inferred from this that in order for the confluence parameters to be consistent with
their physical meaning, the constraint CG ≥ CI ≥ CS must be complied with.

3.3. Construction of the Penalty Function for Constraints

Introducing constraints in the form of penalty functions into the objective function of
the parameter optimization algorithm means that the optimization algorithm is modified
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to include the constraints as part of the objective function. The penalty function imposes a
penalty on the objective function when the constraints are violated, thereby guiding the
optimization algorithm to satisfy the constraints while finding the optimal values for the
model parameters. This approach allows the optimization algorithm to take into account
the physical meaning of the constraints and incorporate them into the optimization process,
resulting in more reasonable and accurate parameter values for the model.

In an effort to integrate constraints into the optimization of model parameters, in this
study, two penalty functions are introduced into the objective function of the parameter
optimization algorithm. The penalty functions serve two crucial purposes. Firstly, they
aim to reduce the competitive advantage of parameter combinations that do not meet the
constraints during population evolution. Secondly, they indicate the degree of constraint
violation carried out by unqualified parameter combinations. To fulfill these requirements,
appropriate penalty functions were designed.

The penalty function was intelligently devised to assign higher objective function
values (indicating poorer results) when the constraints related to CG, CI, CS or soil moisture
content are violated. This design effectively guides the algorithm to avoid such regions and
directs the search towards parameter intervals that adhere to the constraints. Moreover,
the penalty function takes the magnitude of the constraint violation into consideration,
with larger violations resulting in higher objective function values. This approach ensures
that the algorithm prioritizes solutions that comply with the constraints and discourages
solutions with significant violations.

To mitigate the influence of different units on the penalty function, a dimensionless
approach was adopted. This approach aims to normalize the values of CG, CI, CS, and WM,
thereby eliminating the impact of their magnitudes on the penalty function. By translating
the parameters into a common scale, the penalty function is rendered independent of the
original units of the parameters, enabling a fair and unbiased assessment of constraint
violations. This dimensionless approach ensures that the penalty function focuses on the
relative deviations from the constraints, rather than being skewed by the absolute values of
the parameters.

1. The penalty function ensures that the soil moisture is always non-negative

If a negative value of soil moisture is calculated by the parameter sample, the objective
function value is set to

f = λ + λ× (WMmax −WM)/(WMmax −WMmin) (1)

where λ is the penalty factor, which is determined based on the magnitude of the op-
timization objective; WMmax represents the upper limit of parameter WM; and WMmin
represents the lower limit of the parameter WM. The remaining parameters are explained
in the preceding sections.

2. The penalty function guarantees the constraint of CG ≥ CI ≥ CS

If the parameter sample does not satisfy CG ≥ CI ≥ CS, the objective function value is
set to

f = λ + λ× (|min(0, CG− CI)|/(CImax − CGmin) + |min(0, CI − CS)|/(CSmax − CImin)) (2)

where CImax and CImin represent the upper and lower limits of the parameter CI, respec-
tively; CGmin represents the lower limit of the parameter CG, and CSmax represents the
upper limit of the parameter CS.

3.4. Comparison of Parameter Optimization Results
3.4.1. Analysis of Optimization Results

A comparison of the results of parameter optimization before and after the incorpora-
tion of constraints was carried out. The SCE-UA algorithm was applied to optimize the
parameters of the XAJ model in Chengcun watershed [31,32]. In the absence of constraints,
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optimization was performed by setting the negative soil moisture value to zero whenever
negative soil moisture values were detected. Table 4 displays the statistics for the 20 op-
timization runs when the penalty function was not incorporated, while Table 5 presents
the statistics for the 20 optimization runs after the introduction of the penalty function.
The “Result” column in the table indicates whether the value of soil moisture obtained
from the flood simulation results was less than 0. A value of −1 indicates that the soil
moisture was less than 0, while a value of 1 indicates that the soil moisture was greater
than or equal to 0. The “NSE” column reflects the accuracy of the parameter optimization
and flood simulation results, with higher values indicating greater accuracy. “REV” stands
for relative error of runoff, with smaller values of REV indicating higher levels of accuracy.
Only KG is displayed in the table, as the condition of KG + KI = 0.7 is incorporated into the
process of parameter optimization.

Table 4. Statistical results of the parameters optimized using the SCE-UA algorithm before introduc-
ing the penalty function for the XAJ model.

No. K WM WUM WLM C B IM SM EX KG CG CI CS L NSE REV/% Result

1 1.036 141.492 22.141 84.351 0.5 0.518 0.001 25.907 0.799 0.472 0.724 0.157 0 1 0.84 9.025 −1
2 1.041 136.365 22.261 79.104 0.5 0.536 0.001 25.866 0.794 0.471 0.723 0.156 0 1 0.84 9.097 −1
3 1.118 97.055 24.546 26.287 0.5 1.091 0.001 24.372 0.525 0.48 0.696 0.073 0 1 0.841 10.675 −1
4 1.143 95.237 26.236 12.009 0.5 1.107 0.001 24.284 0.524 0.479 0.693 0.066 0 1 0.841 11.153 −1
5 1.143 95.92 25.376 12.642 0.5 1.091 0.001 24.305 0.524 0.479 0.694 0.066 0 1 0.841 11.088 −1
6 1.108 99.331 23.81 36.474 0.5 1.039 0.001 24.42 0.532 0.48 0.698 0.079 0 1 0.841 10.573 −1
7 1.143 95.39 26.571 11.559 0.5 1.108 0.001 24.281 0.521 0.48 0.692 0.062 0 1 0.841 11.182 −1
8 1.143 95.787 26.215 12.031 0.5 1.099 0.001 24.316 0.524 0.222 0.068 0.693 0 1 0.841 11.163 −1
9 1.111 105.238 16.827 51.238 0.498 0.678 0.001 26.095 0.955 0.242 0.217 0.732 0 1 0.84 10.224 −1
10 1.095 95.21 23.974 35.444 0.5 1.108 0.001 24.256 0.539 0.482 0.701 0.1 0.002 1 0.84 10.107 −1
11 1.119 95.907 27.001 10.017 0.5 1.106 0.001 24.347 0.522 0.221 0.079 0.699 0 1 0.841 10.481 −1
12 1.111 96.002 23.896 36.665 0.5 1.099 0.002 24.369 0.526 0.22 0.082 0.696 0 1 0.841 10.645 −1
13 0.974 126.482 59.997 31.483 0.5 0.785 0.001 25.074 0.568 0.488 0.707 0.1 0 1 0.84 8.471 −1
14 1.118 95.868 26.975 10.005 0.5 1.107 0.001 24.347 0.523 0.481 0.698 0.074 0 1 0.841 10.446 −1
15 0.975 126.526 59.98 31.502 0.5 0.787 0.001 25.08 0.566 0.489 0.706 0.097 0 1 0.84 8.505 −1
16 1.143 95.628 26.988 11.006 0.499 1.105 0.001 24.262 0.522 0.477 0.693 0.071 0 1 0.841 11.212 −1
17 0.974 126.612 59.995 31.614 0.5 0.782 0.001 25.105 0.565 0.488 0.707 0.097 0 1 0.84 8.473 −1
18 1.118 96.464 26.959 10.036 0.5 1.101 0.001 24.356 0.519 0.481 0.697 0.07 0 1 0.841 10.457 −1
19 1.115 95.787 26.88 10.003 0.5 1.108 0.001 24.341 0.523 0.482 0.698 0.077 0 1 0.841 10.343 −1
20 1.042 136.521 22.011 79.507 0.5 0.547 0.001 25.805 0.795 0.233 0.17 0.725 0 1 0.84 9.097 −1

Table 5. Statistical results of the parameters optimized using the SCE-UA algorithm after introducing
the penalty function for the XAJ model.

No. K WM WUM WLM C B IM SM EX KG CG CI CS L NSE REV/% Result

1 0.978 151.458 43.44 73.018 0.484 0.499 0.001 26.057 0.808 0.477 0.725 0.174 0 1 0.84 8.3042 1
2 0.974 142.438 60 47.436 0.392 0.51 0.001 25.464 1.118 0.082 0.937 0.582 0 1 0.84 8.4069 1
3 1.033 145.024 22.084 87.938 0.5 0.509 0.001 25.911 0.806 0.469 0.724 0.165 0 1 0.84 8.9905 1
4 0.974 144.088 60 49.088 0.4 0.52 0.001 26.055 0.798 0.48 0.722 0.16 0 1 0.84 8.4601 1
5 0.974 143.098 60 48.096 0.395 0.527 0.001 25.982 0.771 0.478 0.723 0.154 0 1 0.84 8.4264 1
6 1.033 144.58 21.895 87.587 0.5 0.509 0.001 25.924 0.8 0.474 0.723 0.154 0 1 0.84 8.9652 1
7 0.974 144.666 59.998 49.667 0.404 0.516 0.001 26.093 0.787 0.478 0.724 0.157 0 1 0.84 8.4827 1
8 1.108 146.437 18.064 39.638 0.499 0.453 0.001 26.024 0.829 0.465 0.725 0.143 0 1 0.84 10.2454 1
9 0.974 145.15 60 48.983 0.409 0.515 0.001 26.071 0.8 0.477 0.724 0.164 0 1 0.84 8.4895 1
10 0.974 145.548 59.997 50.521 0.41 0.51 0.001 26.079 0.829 0.48 0.724 0.174 0 1 0.84 8.5164 1
11 0.974 144.76 60 49.76 0.405 0.515 0.001 26.073 0.799 0.479 0.723 0.161 0 1 0.84 8.4878 1
12 0.974 145.883 59.999 50.875 0.412 0.511 0.001 26.108 0.795 0.482 0.722 0.148 0 1 0.84 8.526 1
13 1.034 146.055 21.843 89.212 0.5 0.503 0.001 25.926 0.802 0.473 0.723 0.156 0 1 0.84 9.0291 1
14 1.031 144.301 21.998 87.3 0.5 0.511 0.001 25.797 0.816 0.455 0.732 0.204 0 1 0.84 8.9008 1
15 1.033 144.783 22.074 87.708 0.5 0.509 0.001 25.928 0.804 0.473 0.723 0.158 0 1 0.84 8.9856 1
16 0.974 145.049 50.047 35.002 0.406 0.515 0.001 26.06 0.811 0.473 0.728 0.178 0 1 0.84 7.7192 1
17 1.034 145.284 21.959 88.325 0.5 0.506 0.001 25.94 0.801 0.47 0.724 0.159 0 1 0.84 9.022 1
18 0.974 144.859 59.996 49.86 0.405 0.518 0.001 26.156 0.795 0.49 0.72 0.131 0 1 0.84 8.4864 1
19 1.108 147.171 18.299 33.741 0.499 0.449 0.001 26.079 0.823 0.466 0.726 0.138 0 1 0.84 10.1358 1
20 1.033 144.831 22.069 87.763 0.5 0.508 0.001 25.916 0.799 0.471 0.724 0.159 0 1 0.84 8.9874 1
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As can be seen from Tables 4 and 5, prior to the implementation of the penalty function,
all of the simulation outcomes indicated the detection of negative values of soil moisture.
Furthermore, parameter groups 8, 9, 11, 12, and 20 exhibited the phenomenon CI ≥ CG,
which violates the expected relationship between the interflow runoff and groundwater
runoff coefficients. After imposing the penalty function, all combinations of flow con-
centration parameters and simulation outcomes appeared to satisfy the requirements of
physical plausibility, indicating that the penalty function was able to effectively enforce the
constraints during the optimization process.

Table 6 provides the calculations for the mean, variance, and range (difference between
the maximum and minimum values) of the Nash–Sutcliffe coefficient of efficiency (NSE)
for the simulated runoff processes. It can be seen from the table that the mean NSE values
for the two optimization algorithms are 0.8406 and 0.8400, respectively. These values are
close to the Class A standard stipulated in the Standard for hydrological information and
hydrological forecasting, indicating that both sets of simulated runoff processes exhibit
high accuracy and are very close to one another. The values of NSE variance and range
for both optimization algorithms are close to zero, implying a high level of stability in the
quality of the simulated runoff for both approaches. This indicates that the performance of
the algorithms consistently produces reliable and consistent results in terms of simulating
the runoff process.

Table 6. Statistics on the accuracy of simulated runoff processes.

Algorithm Mean Value of NSE Variance of NSE Range of NSE

SCE-UA 0.8406 0.0005 0.001
Constrained SCE-UA 0.8400 0.0000 0.000

In summary, the constraints implemented in the optimization algorithm not only
ensure the selection of physically meaningful model parameters, they also do not compro-
mise the performance of the algorithm. The constraints effectively guide the parameter
optimization process, resulting in a set of parameters that adhere to the specified constraints
and maintain the algorithm’s ability to search for optimal solutions. Thus, the constraints
contribute to both the meaningfulness of the parameter values and the effectiveness of the
optimization algorithm.

3.4.2. Analysis of the Stability of the Algorithm

Euclidean distance is a metric that measures the absolute distance between two points
in a multidimensional space. In the context of this study, it is used to assess the stability of
the algorithm by examining the mean and variance of the Euclidean distance among all
samples within an experimental group.

Table 7 presents the statistical values of the Euclidean distance for the two algorithms.
Smaller mean Euclidean distance values indicate less variation between the samples, imply-
ing greater stability in the algorithm’s performance. Similarly, smaller variance in Euclidean
distance signifies less variability in the Euclidean distance among the samples.

Table 7. Statistics of Euclidean distance for the two algorithms.

Algorithm SCE-UA Constrained SCE-UA

Mean value of Euclidean distance 37.59 32.88
Variance in Euclidean distance 755.49 531.173

According to the information provided in Table 7, it can be observed that the mean
and variance of the Euclidean distance for the constrained SCE-UA algorithm are lower
than those of the SCE-UA algorithm. This indicates that the constrained SCE-UA algorithm
produces optimization results that are closer to each other, resulting in improved stability
of the algorithm.
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3.4.3. Analysis of Runoff Relative Error

The figure below illustrates a comparison of the runoff relative errors in the hydro-
logical simulation before and after the introduction of constraints (based on 20 separate
parameter optimization and model runs).

As shown in Figure 6 and Table 8, the application of constraints led to a decrease in
the relative error of the runoff volume in the hydrological simulation process when using
the optimized parameter set. This suggests that the conventional method, where negative
values of soil moisture are reset to zero, introduces unnecessary water and compromises
the reliability of the simulation results. In contrast, the penalty function approach proposed
in this study more effectively addresses this issue.
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Table 8. Runoff relative error before and after the introduction of constraints.

Algorithm Lower Edge 25% Median Mean 75% Upper Edge

SCE-UA 8.47 9.09 10.12 10.45 10.88 11.21
Constrained SCE-UA 7.72 8.47 8.52 8.78 8.99 9.03

In conclusion, the constrained SCE-UA algorithm is proved to be a more reliable
approach for parameter optimization. It not only ensures the performance of the optimiza-
tion algorithm but also enhances the physical significance of model parameters and state
variables. Additionally, it guarantees the water balance of the simulated runoff process and
improves the accuracy of runoff simulation.

4. Sample Generation Based on Constrained Multi-Objective Intelligent Optimization

Currently, the commonly used methods for analyzing parametric uncertainty, such
as the SCEM-UA, DE-MC, and DREAM algorithms, all utilize MCMC methods coupled
with single-objective optimization algorithms as sample generation methods. However,
traditional single-objective optimization algorithms tend to guide the samples in the search
space towards a better solution, leading to a final outcome that converges on a small region
or a single point [29]. As a result, the exploration of regions in the parameter space with
lower posterior density is unfortunately neglected, thus degrading the diversity property
of the sample results. In fact, empirical evidence from hydrological model calibration
has shown that a single objective function, no matter how well crafted, often falls short
in sufficiently evaluating all significant observation properties. In order to ensure the
representation—or, in other words, the exploration properties—of parameter populations
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in hydrological model uncertainty analysis, this study introduces a multi-objective opti-
mization algorithm to generate a sample population. It is noteworthy that all parameter
sample generation methods discussed in this section take into account the constraints intro-
duced in Section 2 of this study. In this study, the SCE-UA and DE algorithms were selected
as benchmark methods for sample generation. These algorithms are widely recognized
and are commonly used in the field, making them suitable for comparison and evaluation
in the context of this research.

4.1. Sample Generation Based on Single-Objective/Multi-Objective Optimization Algorithms
4.1.1. Improved SCE-UA Algorithm

Vrugt et al. improved the SCE-UA algorithm by replacing the simplex downhill
method with a simulated annealing random step method. The remaining procedures of the
algorithm are similar to those of the original SCE-UA algorithm. This enhancement allows
for better exploration of the parameter space and prevents the algorithm from converging
solely towards an “optimal solution”, instead focusing on finding a set consisting of an
optimal population [33,34]. Similar to the SCE algorithm, the improved SCE algorithm
requires the definition of some initial settings, including the selection of algorithm parame-
ters, the termination criterion of the program, and the selection of the objective function.
In the algorithm parameters, the number of complexes p is set to 17 [35]. The program’s
termination criterion is determined by three parameters [36]: the maximum number of
calls to the XAJ model (nmax = 5 × 106); the maximum number of allowable objective func-
tion improvement failures (kmax = 50); the minimum objective function improvement rate
(TOLa = 0.001%); and the interval of parameter convergence (TOLλ = 0.001%).

To ensure the overall accuracy of the daily rainfall–runoff simulation, the Nash–
Sutcliffe efficiency coefficient was selected as the objective function, which is calculated
using the following formula:

NSE = 1−

N
∑

t=1
(Qobs,t −Qsim,t)

2

N
∑

t=1
(Qobs,t −Qobs,mean)

2
(3)

where N represents the total number of data points of the time periods; Qobs,t represents
the measured flow value at time t; Qsim,t represents the simulated flow at time t; Qobs,mean
represents the mean value of the measured flow. The closer the NSE value is to one, the
better the simulation results. The penalty factor λ is set to 10,000 for all parameters, with
NSE as the optimization objective.

4.1.2. Differential Evolution Algorithm

The Differential Evolution algorithm (DE) is a type of stochastic search algorithm
that is based on population differences and uses a combination of mutation, selection, and
hybridization to simulate natural evolution processes [37]. DE has a few configuration
parameters, a simple principle, and high robustness, making it an effective global optimiza-
tion method and a popular choice for parameter optimization [38]. Additionally, DE has
been used as the basis for developing other algorithms, such as the DEMC and DREAM
algorithms, which are frequently used for uncertainty analysis.

To apply the DE algorithm to optimize the parameters of the XAJ model, several
parameters of the algorithm need to be determined, such as population size, scaling factor,
crossover probability, termination criterion, variation strategy, and objective function. In
this study, a population size of NP = 500, a scaling factor of F = 0.5, and a crossover
probability of CR = 0.5 were used. The termination criterion was set as the maximum
number of calls to the XAJ model, nmax = 5,000,000. To uphold the diversity of the parameter
population throughout the optimization process, Equation (4) is employed as the mutation
strategy.

VG = Xr1,G + F
(
Xr2,G − Xr3,G

)
+ F

(
Xr4,G − Xr5,G

)
(4)
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where G is the number of the current iteration; VG is the mutation point; Xrj,G are mutually
unequal random points; and F is the scaling factor. NSE is used as the objective function
for the DE optimization algorithm.

To guarantee the comprehensive accuracy of the daily rainfall runoff simulation results,
the Nash–Sutcliffe coefficient of efficiency (NSE) was selected as the objective function, as
indicated by Equation (3).

4.1.3. The NSGA-II Algorithm with Constraints

The NSGA-II algorithm is a non-dominated algorithm with both good distributivity
and fast convergence. The algorithm is able to find the set of parameter populations that is
as close as possible to the Pareto optimal domain, and has been widely used and validated in
the field of hydrological simulation and forecasting. The NSGA-II algorithm achieves non-
dominated ranking by calculating the Pareto rank and crowding distance of sample points,
and then generates offspring through selection, crossover, and mutation, generates new
parents using the elite strategy, and then repeats this process until convergence at the Pareto
front [39]. The algorithm has very good performance for two or three targets, and thus
has the potential to improve the representativeness of the sampling results [40]. Moreover,
the algorithm can also ensure sufficient variability among the samples of the population,
guaranteeing the diversity of the sampling results [21]. The constraint conditions studied
above (Section 3.3) can also be applied in the multi-objective optimization algorithm. The
computational procedure of the NSGA-II algorithm is shown in Figure 7.
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The NSGA-II algorithm, along with other methods like the Weighted Sum Method, the
ε-constraint method, and the Weighted Metric Method, is commonly used in multi-objective
optimization. However, the NSGA-II algorithm is distinguished by providing an optimal
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solution set instead of a single solution. The solution set generated using NSGA-II is evenly
distributed in the solution space, offering better diversity and suitability for uncertainty
analysis compared to methods that concentrate solutions in a narrow parameter space.

In addition to NSE, the coefficient of determination (R2) and the mean absolute error
(MAE) are commonly used as objective functions in model parameter optimization. Their
expressions are as follows:

(1) Coefficient of determination (R2)

R2 = 1−

N
∑

t=1
(Qobs,t −Qobs,mean)(Qsim,t −Qsim,mean)√

N
∑

t=1
(Qobs,t −Qobs,mean)

2

√
N
∑

t=1
(Qsim,t −Qsim,mean)

2

(5)

(2) Mean absolute error (MAE)

MAE =

N
∑

t=1
|Qobs,t −Qsim,t|

N
(6)

Note that the optimization directions and value ranges of NSE, MAE, and R2 differ.
The NSE ranges from −∞ to 1, with values closer to 1 indicating better optimization results.
MAE ranges from 0 to +∞, with lower values indicating better optimization results. R2

ranges from 0 to 1, with values closer to 1 indicating better optimization results.
However, the NSGA-II algorithm is designed for the minimization of objective func-

tions, while NSE and R2 are maximization metrics. Therefore, in this study, 1 − NSE, MAE,
and 1 − R2 are used as the objective functions. By doing so, all three objective functions
follow the rule of “the closer to 0, the better the optimization result”, thus making them
suitable for the NSGA-II algorithm.

In this study, a sample size of 500 individuals was selected for the optimization process.
The optimization was performed over 10,000 generations, resulting in approximately
5 × 106 iterations of the XAJ model. The penalty factor λ used in the optimization process
was set to 10,000.

4.2. Evaluation Indicators for Sample-Generation Algorithms
4.2.1. Indicators for Assessing the Prediction Bounds

In this study, the optimization methods employed no longer produce a solitary set
of parameter samples, but rather generate a population of parameter samples comprising
multiple sets. Moreover, the output of the hydrological model at each time step is no longer
restricted to a point estimate such as a single value of flow or water level, but encompasses
an interval delineated by prediction bounds acquired using a specific confidence level α
(0 < α < 1). This approach facilitates the predicted flow of uncertainty information. In
such circumstances, the analysis of the obtained prediction bounds and the evaluation
of their quality assume a crucial role in the study of model uncertainty [41]. They are of
paramount importance in fostering a comprehensive and objective understanding of model
uncertainty [42].

In addition to describing the characteristics of prediction bounds in hydrological mod-
els, these indices can also serve as criteria for comparing the prediction bounds generated
using different uncertainty assessment methods or schemes.

The paper by L. H. Xiong [42] provides a comprehensive summary of the indices used
for evaluating the prediction range. In this study, the most widely used indices, namely,
containing ratio (CR) and average bandwidth (AB), are employed to assess the performance
of different optimization methods in generating parametric sample populations.

(1) Containing ratio (CR)
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The containing ratio, as mentioned earlier, is defined as the ratio of the number of
observed discharges that lie within the prediction bounds to the total number of observed
discharges, presented as a percentage. Since the introduction of the GLUE method, this
index has been employed extensively to evaluate the accuracy of prediction bounds. Higher
values of CR indicate larger proportions of observed discharge points falling within the
interval defined by the prediction bounds. It is always the objective to achieve a high CR
for the estimated prediction bounds. The ideal, albeit unattainable, value for CR is 100%,
which would signify that the entire observed discharge hydrograph is encompassed within
the band formed by the lower and upper prediction bound trajectories. It is important to
note that the confidence level α for this study is set at 95%.

(2) Average bandwidth (AB)

The average bandwidth (AB) of the prediction bounds for the entire discharge series
is defined as follows:

AB =
1
N

N

∑
t=1

bi (7)

with
bi = Qu

sim,i −Ql
sim,i (8)

where bi is the bandwidth of the prediction bounds for the discharge at time i; Qu
sim,i and

Ql
sim,i represent the lower and upper prediction bounds of discharge, respectively. For a

specific confidence level α, it is optimal for the bandwidth of the prediction bounds to be as
narrow as possible. This enables the capture of crucial information regarding modeling
uncertainty, making it more pertinent and valuable in relation to the forecasting concerns
of the respective catchments.

4.2.2. The Performance Indicators for Different Parameter Populations

In addition to assessing the indicators for evaluating the predictive bounds of the
hydrological model, it is also essential to evaluate the representativeness and diversity of
the parameter populations themselves. In this study, the mean and variance of the Nash–
Sutcliffe efficiency coefficient (NSE) were selected as indicators of representation, while the
mean Euclidean distance was chosen as an indicator for the evaluation of diversity.

(1) Mean and variance of the Nash–Sutcliffe efficiency coefficient

The parameter population should ideally include as many “optimal solutions” as
possible; therefore, higher average NSE values of simulated discharge within the population
indicate greater representativeness. In this study, the accuracy of the simulation results is
measured using NSE. To evaluate the representativeness of the parameter populations, the
means and variances of the NSE are evaluated.

(2) Mean Euclidean distance

In order to explore the entire distribution and find as many optimal solutions as
possible in the space, the parameter population should avoid converging around a small
region of the “optimal solution”. Thus, in this study, we measured the diversity of the
parameter population by calculating the mean Euclidean distances among the samples
within the population. Larger values of mean Euclidean distance indicate greater diversity
in the population, as they imply that the population samples are spread out across the entire
distribution space, rather than being concentrated around a single “optimal solution”.

In evaluating the diversity of the solution set, the average Euclidean distance is con-
sidered the most appropriate indicator. It captures the requirement for sufficient distances
between points and the dispersion of the points throughout the solution space. Other
indicators may not be applicable or may not be as suitable for this particular study.
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4.3. Results and Analysis of the Sample-Generation Algorithms

The posterior density distribution of each XAJ model parameter inferred for the
samples generated using the sample-generation algorithms for the Chengcun watershed is
illustrated in Figure 8.
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Figure 8. Histogram illustrating the distribution of optimization results obtained using the following
sample-generation algorithms: (a) using Improved SCE-UA; (b) using DE; (c) using NSGA-II with
(1 − NSE)-MEA as the optimization objectives; (d) using NSGA-II with (1 − NSE)-(1 − R2) as
the optimization objectives; (e) using NSGA-II with (1 − NSE)-MEA-(1 − R2) as the optimization
objectives). The red line is a trendline.

The posterior density distribution of each XAJ model parameter inferred from the
samples generated using the improved SCE-UA algorithm for the Chengcun watershed
is illustrated in Figure 8a. Despite the fact that the histograms of WM, WLM, C, B, SM,
and CG exhibit an approximate normal distribution, the histograms of the other model
parameters also reveal the existence of alternative distribution patterns. This multimodal
feature signifies that there exist numerous regions of attraction within the parameter space,
validating the phenomenon of “equifinality” in parameter optimization. It can be noted that
the dataset sampled using the modified SCE-UA algorithm is characterized by a narrow
distribution, which suggests that the samples are tightly clustered in a small region around
the optimal point.

Figure 8b illustrates the posterior density distribution of each parameter of the XAJ
model that was inferred for the Chengcun watershed on the basis of the samples generated
using the DE algorithm. It can be observed that, much like the SCE-UA algorithm, the DE
algorithm also reveals that the parameters of the XAJ model adhere to diverse distribu-
tion patterns. The DE algorithm displays a narrower distribution of sample populations
compared to the SCE-UA algorithm, thus indicating its limited spatial exploration capacity.

The histograms of the distribution of the parameter population generated using
(1 − NSE)-MEA/(1 − NSE)-(1 − R2), as the optimization objectives are demonstrated
in Figure 8c,d. As can be observed from the histogram, the multi-objective optimization
algorithm displays a more intricate distribution pattern and a wider distribution range
compared to the single-objective optimization algorithm. This result suggests that the
sampled dataset is dispersed across multiple centers, and the multi-objective optimization
approach is better able to simultaneously find multiple “good points” and explore the
parameter space.

The histogram of the distribution of the parameter population generated using
(1 − NSE)-MEA-(1 − R2) as the optimization objectives is shown in Figure 8e. The his-
togram displays a complex distribution pattern, and in comparison to the double-objective
NSGA-II method, the parameter sample set obtained using the triple-objective NSGA-
II method exhibits a broader distribution range. This indicates that the triple-objective
NSGA-II method has a stronger ability to explore the parameter space.

The Pareto front for the parameter populations generated using (1 − NSE)-MEA and
(1 − NSE)-(1 − R2) as optimization objectives is shown in Figure 9. It demonstrates the
effective convergence of the NSGA-II algorithm towards the Pareto front of the double-
objective optimization problem.
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Figure 9. Pareto front with double-objective optimization ((1−NSE)-MEA on the left; (1−NSE)-(1− R2)
on the right).

The Pareto front for the parameter populations generated using (1 −NSE)-MEA-(1 − R2)
as optimization objectives is shown in Figure 10. As depicted in the figure, the set of parameter
samples converges towards a three-dimensional Pareto front.
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4.4. Containing Ratio (CR) and Average Bandwidth (AB) of Different Sample-Generation Algorithms

Tables 9 and 10 present the performance evaluation of various sample-generation
algorithms in the realm of uncertainty analysis.

Table 9. CR, AB and NSE for single-objective sample-generation algorithms.

Year
Improved SCE-UA DE

CR AB NSE CR AB (×10−3) NSE

1986 0.01 0.04 0.850 0 1.85 0.854
1987 0.01 0.05 0.938 0 2.2 0.944
1988 0 0.05 0.880 0 1.71 0.873
1989 0.01 0.05 0.910 0 2.16 0.902
1990 0 0.04 0.795 0 1.84 0.803
1991 0 0.05 0.794 0 1.88 0.791
1992 0.01 0.04 0.784 0 1.79 0.785
1993 0.01 0.06 0.835 0.08 2.16 0.832
1994 0 0.04 0.805 0 1.49 0.812
1995 0 0.04 0.826 0 1.79 0.830
1996 0 0.05 0.829 0 1.9 0.822
1997 0 0.05 0.780 0 1.93 0.789
1998 0 0.05 0.740 0 1.87 0.741
1999 0.01 0.06 0.909 0 2.05 0.907
ALL 0 0.05 0.840 0 1.90 0.841
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Table 10. CR, AB and NSE for multi-objective sample-generation algorithms.

Year
NSGA-II/(1 − NSE)-MEA NSGA-II/(1 − NSE)-(1 − R2) NSGA-II/(1 − NSE)-MEA-(1 − R2)

CR AB NSE CR AB NSE CR AB NSE

1986 0.2 1.96 0.841 0.03 0.57 0.852 0.2 2.55 0.843
1987 0.21 2.07 0.935 0.06 0.61 0.941 0.29 2.68 0.946
1988 0.35 2.01 0.878 0.03 0.47 0.878 0.38 2.43 0.874
1989 0.28 2.18 0.908 0.05 0.57 0.902 0.33 2.67 0.901
1990 0.27 1.85 0.803 0.05 0.55 0.786 0.28 2.25 0.800
1991 0.48 2.29 0.795 0.02 0.45 0.795 0.51 2.72 0.803
1992 0.39 1.86 0.775 0.06 0.53 0.777 0.45 2.43 0.784
1993 0.26 2.54 0.838 0.06 0.59 0.844 0.31 2.98 0.841
1994 0.33 1.87 0.813 0.04 0.37 0.804 0.37 2.26 0.813
1995 0.4 2.12 0.820 0.04 0.44 0.832 0.49 2.62 0.830
1996 0.33 2.38 0.831 0.03 0.57 0.837 0.37 2.94 0.838
1997 0.19 2.06 0.788 0.05 0.53 0.772 0.26 2.55 0.785
1998 0.41 2.41 0.749 0.02 0.37 0.744 0.45 2.92 0.745
1999 0.46 2.42 0.917 0.03 0.48 0.903 0.53 2.96 0.913
ALL 0.32 2.15 0.841 0.04 0.51 0.840 0.37 2.64 0.841

Tables 9 and 10 demonstrate that the “optimal” runoff simulation process attains
a high level of accuracy for all five sample-generation algorithms, with a mean NSE of
approximately 0.84.

Based on Table 6, it is evident that the CR of the 95% confidence interval envelopes
for the samples generated using the single-objective-based optimization algorithm is con-
siderably low, while the AB is extremely low. As a result, the probabilistic predictions
derived from the SCE-UA or DE algorithm lack sufficient information to serve as a reliable
reference.

Table 10 depicts the performance of the multi-objective optimization algorithm in
uncertainty analysis. It is evident that the CR of the samples generated using the double-
objective NSGA-II algorithm is low, and the AB within the 95% confidence interval is low.
Consequently, the probabilistic prediction outcomes obtained from the double-objective
NSGA-II algorithm lack sufficient reference value.

According to Table 10, the CR of the samples generated using the triple-objective
NSGA-II algorithm is notably higher compared to that for samples generated using the
single- and double-objective NSGA-II algorithms. Additionally, the average width of the
samples generated using the triple-objective NSGA-II algorithm falls within an acceptable
range. Therefore, the triple-objective NSGA-II algorithm proves to be the most suitable
optimization algorithm for probabilistic forecasting and uncertainty analysis.

Figure 11 displays the hydrological simulation results obtained from the optimal
parameters generated using different algorithms. Due to space constraints, only the hydro-
logical simulation results for the period of 1996–1999 are presented. From Figure 11, it is
evident that the simulated hydrographs obtained from this method exhibit a strong corre-
spondence with the measured hydrographs, indicating a satisfactory agreement between
the model predictions and actual observations.
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Figure 11. Simulated hydrographs based on model parameters optimized using different sample-
generation algorithms: (a) using Improved SCE-UA; (b) using DE; (c) using NSGA-II with (1−NSE)-MEA
as the optimization objectives; (d) using NSGA-II with (1−NSE)-(1− R2) as the optimization objectives;
(e) using NSGA-II with (1−NSE)-MEA-(1− R2) as the optimization objectives.

4.5. Performance Comparison of Different Sample Generation Methods

The numerical experiments conducted in this study demonstrate that the three meth-
ods mentioned above, namely, SCE-UA for single-objective optimization, DE for single-
objective optimization, and NSGA-II for multi-objective optimization, are capable of gener-
ating parameter populations. In order to compare the advantages and disadvantages of
these methods, it is essential to evaluate and compare the representativeness and diversity
of the parameter populations.

4.5.1. Performance Indicators for Different Parameter Populations

The representativeness of the parameter populations generated using the three algo-
rithms, SCE-UA for single-objective optimization, DE for single-objective optimization,
and NSGA-II for multi-objective optimization, is evaluated using the mean and variance of
the NSE values. The higher the average NSE value of the simulated discharge within the
population, the greater the representativeness.
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Table 11 illustrates the results of the evaluation of representativeness, specifically the
mean and variance of the NSE values, for the parameter populations generated using
the three algorithms. The table indicates that there is no noteworthy distinction in the
representativeness of the parameter populations when comparing similar population sizes
and maximum number of model runs. This suggests that all three algorithms possess the
capability to generate parameter populations that are representative in nature.

Table 11. Means and variances of NSEs of the simulation results.

Algorithms Improved SCE DE
NSGA-II NSGA-II NSGA-II

/(1 − NSE)-MEA /(1 − NSE)-(1 − R2) /(1 − NSE)-MEA-(1 − R2)

Means 0.8400 0.8410 0.8380 0.8390 0.8380
Variances 5.6000 × 10−8 3.0110 × 10−6 0.0023 0.0005 0.0020

4.5.2. Comparison of Diversity

In order to explore the entire distribution space and find as many optimal solutions
in the space as possible, the parametric population should avoid converging around a
small region of an “optimal solution”. Thus, in this study, we measured the diversity of the
parametric population by calculating the mean Euclidean distance between the samples
within the population. Larger mean Euclidean distances indicate better diversity in the
population, as they imply that the population samples are spread out across the entire
distribution space, rather than being concentrated around a single “optimal solution”.

Table 12 presents the diversity of the parameter populations generated using the
three methods. It is evident that the multi-objective approach yields significantly higher
diversity in the parameter samples compared to the single-objective approach, given similar
population sizes and maximum number of model runs. It is important to note that the
choice of objectives also influences the diversity of the parameter population. Specifically,
the population with (1 − NSE)-MEA as the selected objectives exhibits greater diversity
than the (1 − NSE)-(1 − R2) combination, and the population with three objectives shows
even better diversity than the population with two objectives.

Table 12. Mean Euclidean distance for parameter population.

Algorithms Improved SCE DE
NSGA-II NSGA-II NSGA-II

((1 − NSE)-MEA) (1 − NSE)-(1 − R2) ((1 − NSE)-MEA-(1 − R2))

Mean Euclidean distance 0.3825 0.5795 11.6062 3.6339 33.5685

5. Conclusions and Outlook

Based on the above study, four conclusions can be drawn:

(1) On the basis of the numerical experiments conducted, it was demonstrated that WM
has a significant impact on the positivity and negativity of the soil moisture, when
other variables are kept fixed. It was found in this study that increasing WM reduced
the likelihood of negative soil moisture, while decreasing WM increased the possibility
of negative soil moisture. Other parameters, such as C, also had an effect on the soil
moisture, while the effect of parameter B was not obvious.

(2) The constraint of “soil moisture always non-negative” was introduced as a penalty
function in the parameter optimization process. The penalty function penalized
parameter sets that led to negative soil moisture, and thus the hydrological simulations
with the optimized parameters did not have the phenomenon of “soil moisture less
than zero”, and therefore achieved a better water balance.

(3) The physical meaning of the flow concentration parameters was incorporated into the
parameter optimization process as a constraint by using a penalty function treatment.
The simulation results showed that after incorporating the constraint, the physical
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meaning of the flow concentration parameters was maintained, and there was no
significant negative impact on the accuracy of the simulation.

(4) Compared with the single-objective sample generation method, the sample popu-
lation generated using the multi-objective method had better spatial exploration
capability, while a similar degree of representativeness was maintained. The multi-
objective method is a more suitable sample generation method for hydrological model
parameter uncertainty analysis.

In this study, two novel and innovative improvements to previous research were
presented. Firstly, the concept of constraints on hydrological models was introduced, and
these were then incorporated into the parameter optimization sampling method. This
inclusion ensured the preservation of the physical meaning of the model parameters and
guaranteed the rationality of the state variable simulation results. This innovative approach
addresses a gap in the existing literature by considering the constraints explicitly.

Secondly, the study incorporated multi-objective optimization techniques into the
parameter optimization sampling method. This addition enhanced the diversity and
reliability of the sampled parameter population, leading to more representative sampling
results. This innovative extension represents an improvement upon previous studies,
which have primarily focused on single-objective optimization, thereby offering a new
perspective and contributing to the advancement of uncertainty analysis.

Overall, these two innovations set this study apart from the previous literature and
offer valuable contributions to the field by improving the rationality and reliability of the
sampling results in hydrological modeling.

The method proposed in this study effectively addresses the issues of parameter and
state variable rationality in optimization, as well as the diversity of samples in the optimiza-
tion algorithm. This can be considered a significant improvement in this research. While
there may be other promising methods that require further exploration and improvement in
future research, the method presented in this thesis demonstrates good application results,
and can be considered the best approach available at this stage.

In the future, there are several aspects that still need to be addressed:

(1) It should be noted that the coverage and average width of the envelope of the NSGA-
II-generated parameter populations should be further improved to fulfill the require-
ments of uncertainty analysis and ensemble flood forecasting, and there is still room
for improvement with respect to this method in future studies.

(2) In this study, the sampling approach was based on a global optimization algorithm
that prioritized “exploration” over “exploitation”. One area of improvement for
the current algorithm would be to enhance its fine-grain search capability. This
could be achieved by considering the introduction of gradient descent methods.
Gradient descent is a popular optimization technique that iteratively adjusts the
parameters in the direction of the steepest descent of the objective function. By
incorporating gradient descent methods into the algorithm, it is possible to achieve
a more precise and stable exploration of the parameter space, leading to improved
optimization results.

(3) The process of sample generation can indeed be time consuming. Generating a
large number of samples may require substantial time and computational resources.
Future research could explore multi-thread CPU/CPU acceleration techniques for
speeding up the calculation process of the multi-objective sampling algorithm used
in XAJ model parameter optimization [32,43]. This area has received limited atten-
tion, and investigating acceleration methods could lead to improvements in com-
putational efficiency and scalability. Such research would contribute to the field
of hydrological modeling by providing faster and more efficient approaches for
parameter optimization.

(4) In future research, expanding the scope of uncertainty analysis in hydrological mod-
eling and prediction would be a valuable objective. While this paper focuses on
uncertainty in model parameters, considering the uncertainty in model inputs and
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the hydrological model itself is crucial for a comprehensive analysis [44–46]. By incor-
porating these sources of uncertainty, the accuracy of the study could be enhanced,
and a more holistic understanding of uncertainty in hydrological modeling and pre-
diction could be provided. This extension would contribute to advancing the field
and improving the reliability of hydrological assessments and forecasts.
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