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Abstract: Headwater streams drain over 70% of the land in the United States with headwater
wetlands covering 6.59 million hectares. These ecosystems are important landscape features in the
southeast United States, with underlying effects on ecosystem health, water yield, nutrient cycling,
biodiversity, and water quality. However, little is known about the relationship between headwater
wetlands’ nutrient function (i.e., nutrient load removal (RL) and removal efficiency (ER)) and their
physical characteristics. Here, we investigate this relationship for 44 headwater wetlands located
within the Upper Fish River watershed (UFRW) in coastal Alabama. To accomplish this objective,
we apply the process-based watershed model SWAT (Soil and Water Assessment Tool) to generate
flow and nutrient loadings to each study wetland and subsequently quantify the wetland-level
nutrient removal efficiencies using the process-based wetland model WetQual. Results show that the
calculated removal efficiencies of the headwater wetlands in the UFRW are 75–84% and 27–35% for
nitrate (NO−3 ) and phosphate (PO+

4

)
, respectively. The calculated nutrient load removals are highly

correlated with the input loads, and the estimated PO+
4 ER shows a significant decreasing trend with

increased input loadings. The relationship between NO−3 ER and wetland physical characteristics
such as area, volume, and residence time is statistically insignificant (p > 0.05), while for PO+

4 , the
correlation is positive and statistically significant (p < 0.05). On the other hand, flashiness (flow
pulsing) and baseflow index (fraction of inflow that is coming from baseflow) have a strong effect
on NO−3 removal but not on PO+

4 removal. Modeling results and statistical analysis point toward
denitrification and plant uptake as major NO−3 removal mechanisms, whereas plant uptake, diffusion,
and settling of sediment-bound P were the main mechanisms for PO+

4 removal. Additionally,
the computed nutrient ER is higher during the driest year of the simulated period compared to
during the wettest year. Our findings are in line with global-level studies and offer new insights into
wetland physical characteristics affecting nutrient removal efficiency and the importance of headwater
wetlands in mitigating water quality deterioration in coastal areas. The regression relationships
for NO−3 and PO+

4 load removals in the selected 44 wetlands are then used to extrapolate nutrient
load removals to 348 unmodeled non-riverine and non-riparian wetlands in the UFRW (41% of
UFRW drains to them). Results show that these wetlands remove 51–61% of the NO−3 and 5–10% of
the PO+

4 loading they receive from their respective drainage areas. Due to geographical proximity
and physiographic similarity, these results can be scaled up to the coastal plains of Alabama and
Northwest Florida.

Keywords: watershed modeling; wetland modeling; water quantity/quality prediction; SWAT;
WetQual; uncertainty; Fish River

Water 2023, 15, 2687. https://doi.org/10.3390/w15152687 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15152687
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-1968-8928
https://orcid.org/0000-0003-4943-0012
https://orcid.org/0000-0001-9562-8834
https://orcid.org/0000-0002-2449-4178
https://orcid.org/0000-0002-6265-7070
https://doi.org/10.3390/w15152687
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15152687?type=check_update&version=3


Water 2023, 15, 2687 2 of 22

1. Introduction

Wetlands can be considered as one of the most efficient best management practices
(BMPs) for pollutant removal [1]. These ecosystems are recognized for their significant
ecological and economic values and the wide variety of ecosystem services they provide,
such as water quality purification, material transformation, carbon sequestration, flood
control, wildlife habitats, and the biodiversity they offer at the ecosystem and watershed
level [2]. Natural and constructed wetlands can reduce peak flows and runoff volume
to a certain degree, in addition to providing considerable esthetic and wildlife benefits.
Wetlands can remove excess inorganic and organic nutrients from sources such as fertilizer
runnoff and failing septic systems. They can filter sediments washed off during soil
erosion and trap pollutants such as pesticides and some heavy metals. These materials
can seriously degrade the quality of surface water and groundwater resources. Wetlands
naturally retain and “recycle” nutrients, delaying downstream export. Wetlands are critical
watershed features in many systems, regulating local and regional hydrology and the fate
and transport of various water quality constituents [3].

Although natural wetlands can play a vital role in hydrological regimes and biogeo-
chemical processes [4], they have not received a level of attention in nutrient retention
studies comparable to other lentic systems such as lakes and reservoirs [5–8]. While
processes controlling nutrient retention in aquatic ecosystems are relatively well under-
stood [9,10], for natural wetlands, information related to nutrient removal rates among
multiple systems dispersed over a local catchment or regional watershed is currently
lacking. Global-scale studies have considered wetlands’ efficiency in removing nutrient
loads. For instance, Jordan et al. [11] conducted a meta-analysis of 190 wetland systems
worldwide and found a strong and positive relationship between total reactive nitrogen
(TNr) removal and reactive nitrogen loadings. The authors also estimated that, worldwide,
approximately 17% of the total anthropogenic load of TNr to aquatic ecosystems is removed
by wetlands. Similarly, Cheng and Basu [9] analyzed data from 600 lentic systems across the
globe, including wetlands, lakes, and reservoirs, and found that smaller wetlands (<316 m2

in surface area) are responsible for 50% of the total nitrogen (TN) removal. Studies such
as those by Fisher and Acreman [12] and Land et al. [13], who reviewed data from 57 and
207 wetlands, respectively, also showed the importance of these systems in removing N
and phosphorus (P) loadings. Fisher and Acreman [12] reported 80% and 84% of N and
P removal, respectively, for the 57 wetlands they examined, but some wetlands increased
soluble N and P loading. Land et al. [13] reported median removal efficiencies of N and P
of 37% (29–44%, 95% confidence interval (CI)) and 46% (37–55%, CI), respectively. Under
moderate-to-high streamflow conditions, Hansen et al. [14] found wetlands in the Min-
nesota River basin to be five times more efficient (per unit area basis) at reducing riverine
nitrate concentration than highly effective land-based nitrogen mitigation strategies such as
cover crops and land retirement. However, such studies did not examine specific physical
and hydrologic characteristics of the systems contributing to the effectiveness or provide
nutrient source–sink relationships at local catchment or regional scales.

Monitored flow and nutrient data at wetland inlets and outlets are rarely available,
and setting up gauging stations at desired locations to collect data for a sufficiently long
period of time can be impractical [15]. As a result, field studies are usually restricted to
monitoring one or only a few wetlands, as in [16–18], and often do not provide sufficient
information on the relationship between nutrient removal rates and wetland characteristics
(geomorphologic, hydraulic, and hydrologic) and nutrient loads. Alternatively, models
have been increasingly used in data-sparse watersheds to study wetland ecosystems and
their effects on watershed-scale water quantity and quality [9,19–23]. However, except
for those of Czuba et al. [22] and Cheng and Basu [9], most of these studies relied on
empirical models or models that oversimplify the biogeochemical processing occurring
within wetlands. For instance, Uuemaa et al. [21] applied a simple mass-balance-based
model relying on hourly measurements of wetland inflow, outflow, rainfall, and Penman–
Monteith evapotranspiration estimates to assess the removal of N in a single wetland in
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New Zealand. Liu et al. [20] introduced a GIS-based distributed wetland modeling system
and assessed the aggregate effect of 492 wetlands on the watershed’s sediment, total N,
and total P yields in a small watershed in Canada. The model uses a very simplistic mass
balance approach for wetland sediment and nutrient routing borrowed from the wetland
water quality algorithm of the Soil and Water Assessment Tool (SWAT) model.

Although valuable, studies relying on empirical or simplistic wetland models are usu-
ally of limited utility and cannot be extrapolated outside the range of the empirical measure-
ments, nor can they be generalized to represent hydrological and biogeochemical processes
in natural wetlands with a high degree of fidelity. As highlighted by Ghermandi et al. [24],
all wetlands are not equal, and thus studies aimed at understanding the wetland physical
characteristics affecting the removal of nutrient loadings must rely on adequate tools. This
is particularly important for planning watershed or landscape-level restoration efforts,
since an understanding of how different types of wetlands respond to nutrient processing
and pollutant removal may help to protect these ecosystems and minimize excess nutrients
loadings to surface water bodies downstream [9,10]. Progress in modeling restored and
engineered wetlands has outpaced that for natural wetlands. Much less progress has been
made in process-based modeling of natural inland and coastal wetlands impacted by vari-
ably saturated soils or tidal effects (e.g., [25,26]). For instance, Sharifi et al. [26] developed a
process-based model capable of simulating nutrient cycling and biogeochemical processes
in ponded and unsaturated wetland soils.

Our research goal is to estimate the cumulative effects on nutrient reduction of mul-
tiple natural wetlands dispersed over larger watershed scales. To the best of the authors’
knowledge, systematic process-based modeling studies on watershed-scale cumulative
wetland nutrients reduction, especially in sparsely monitored or ungauged basins, are rare
research endeavors. In this study, we use an integrated modeling framework to explore
the relationship between nutrient removal and nutrient loading as a function of wetland
physical characteristics (area, volume, and residence time) and hydrologic characteristics
(flashiness and baseflow indices) in 44 wetlands located at the headwaters of the Upper Fish
River watershed (UFRW) in coastal Alabama. To better understand the factors impacting
the removal efficiencies in the headwater wetlands, we apply a process-based watershed
model, namely, SWAT [27], to generate flow and nutrient loadings to the wetlands and sub-
sequently quantify the wetland-level nutrient removal efficiencies using the process-based
wetland model WetQual [28–30]. The UFRW drains to Weeks Bay, a sub-estuary bordering
Mobile Bay, Alabama, USA [31,32].

Coastal areas such as the Mobile Bay region are expected to witness higher population
growth compared to non-coastal areas [33,34]; consequently, excess nutrient discharges
to surface waters are expected. In addition, the accompanying increased urbanization
activities such as channel modification, water diversion, and land development threaten
headwater wetlands by increasing erosion, sedimentation, and desiccation [35–37]. There-
fore, it is particularly important for water quality protection in coastal areas to assess the
importance of headwater wetlands and the factors governing the removal or sequestration
of nutrients. Some studies have shown that headwater wetlands have a greater effect in
mitigating nonpoint source pollution compared to more downstream wetlands such as
floodplain wetlands [38,39]. Therefore, protecting these ecosystems appears to be vital for
sustainable watershed development.

Our specific research objectives are to: (i) quantify nutrient input loadings to headwater
wetlands in a watershed with sparse wetland nutrient data; (ii) demonstrate the utility
of a process-based model framework to fill in the data gap; (iii) quantify uncertainties
associated with the estimated reductions and removal efficiencies; (iv) use model outputs
to develop regression relationships between nutrient loads and removals and use the
relationships to estimate nutrient removals for similar headwater wetlands; (v) explore
correlations between nutrient removal efficiency and wetland characteristics; and (vi) scale
up headwater wetland nutrients reductions from the UFRW to the coastal plains of Alabama
and Northwest Florida.
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2. Study Area

The Fish River watershed, located in southern Baldwin County in coastal Alabama
(Figure 1a), drains approximately 73% of the total freshwater flowing into Weeks Bay, which
is part of the Mobile Bay estuarine system along the northern Gulf of Mexico [31,32]. The wa-
tershed has an area of approximately 408.6 km2 and is comprised of the following three USGS
12-digit Hydrologic Unit Code (HUC) areas: Upper Fish River (HUC 031602050201), Middle
Fish River (HUC 031602050202), and Lower Fish River (HUC 031602050204) (Figure 1b). This
study focused on the UFRW. The UFRW was selected because of the available long-term
records of streamflow and water quality (e.g., nitrate and phosphate) data collected at the
watershed’s outlet, the abundance of headwater wetlands, and the increasing urbanization
rates witnessed in the last few decades [40–42].

Water 2023, 15, x FOR PEER REVIEW 4 of 23 
 

 

2. Study Area 
The Fish River watershed, located in southern Baldwin County in coastal Alabama 

(Figure 1a), drains approximately 73% of the total freshwater flowing into Weeks Bay, 
which is part of the Mobile Bay estuarine system along the northern Gulf of Mexico 
[31,32]. The watershed has an area of approximately 408.6 km2 and is comprised of the 
following three USGS 12-digit Hydrologic Unit Code (HUC) areas: Upper Fish River 
(HUC 031602050201), Middle Fish River (HUC 031602050202), and Lower Fish River 
(HUC 031602050204) (Figure 1b). This study focused on the UFRW. The UFRW was se-
lected because of the available long-term records of streamflow and water quality (e.g., 
nitrate and phosphate) data collected at the watershed’s outlet, the abundance of head-
water wetlands, and the increasing urbanization rates witnessed in the last few decades 
[40–42]. 

 
Figure 1. Location of the Fish River watershed in coastal Alabama (a), HUC12 boundaries of the 
Fish River watershed (b), land use/cover of the UFRW (c), and spatial distribution of the selected 
wetlands along with their drainage catchments in the UFRW (d). 

Figure 1. Location of the Fish River watershed in coastal Alabama (a), HUC12 boundaries of the
Fish River watershed (b), land use/cover of the UFRW (c), and spatial distribution of the selected
wetlands along with their drainage catchments in the UFRW (d).



Water 2023, 15, 2687 5 of 22

The UFRW study area is in a humid subtropical region of the U.S. Gulf Coast. Summers
are typically warm and humid, with winters being mild with occasional cold spells. The
average annual precipitation of the region is 1680 mm. The average annual air temperature
is approximately 20 ◦C, with an average January temperature of 10.5 ◦C and an average
July temperature of 28 ◦C. According to NCLD 2016 [43], the watershed’s LULC mainly
consists of forest (33%), agriculture (18%), urban (14%), hay/pasture (12%), and forested
wetlands (11%) (Figure 1c). Wetland data were obtained from the U.S. Department of
the Interior’s Fish and Wildlife Service National Wetland Inventory (NWI) (http://www.
fws.gov/wetlands, accessed on 15 April 2021). According to the NWI database, there is
a total of 1153 wetlands, which includes freshwater forested/shrub wetlands, freshwater
emergent wetlands, riparian wetlands, and riverine wetlands. The total area of these
wetlands is 1181 ha across the UFRW. Out of these, 754 are freshwater ponds, freshwater
forested/shrub wetlands, and emergent wetlands, occupying an area of 663 ha, which
are mostly headwater wetlands and are the focus of this study. The riparian and riverine
wetlands and lakes were not considered.

It is worth mentioning that the total surface area of these forested and emergent
freshwater wetlands covers approximately 4.6% of the whole watershed area (14,382 ha),
making them a significant physiogeographic feature of the UFRW. Figure 1d shows the
44 headwater wetlands analyzed in this study, comprised mostly of forested wetlands.
Wetlands were identified using the data layer downloaded from the NWI Inventory website
(https://www.fws.gov/wetlands, accessed on 15 April 2021). Using ArcGIS (ESRI), the
downloaded data were intersected with the UFRW boundary, and the drainage area for
each selected wetland was delineated. Following Colvin et al. [37], we considered wetlands
on the first- and second-order streams as headwater wetlands. After assigning stream
order to the National Hydrography Dataset (NHD) stream network, a buffer of 250 m was
created around first- and second-order streams. All wetlands within this buffer area were
selected as headwater wetlands. These selected wetlands were cross-checked for accuracy
using background aerial imagery to eliminate potential errors associated with the National
Wetland Inventory data. After inspection of the selected wetlands, 44 headwater wetlands
significant in size, spread out over the watershed, were selected for analysis. The total
surface area of the selected wetlands is approximately 62 ha. Figure 1d shows the identified
wetlands as coordinate points and their respective upstream drainage areas, and Figure 2
plots each wetland’s area, as well as its catchment area, which varies from 0.35 to 115.6 ha
(total 977.6 ha).
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Figure 2. Surface areas of the wetlands in the UFRW (based on U.S. Wetland Inventory) and their
watershed areas.

3. Methods
3.1. Modeling Framework

The process-based WetQual model [26,28–30] was used to evaluate the pollutant
removal efficiencies of the 44 selected wetlands. Due to the lack of observed discharge

http://www.fws.gov/wetlands
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and loadings draining to each of these wetlands, the watershed-scale hydrologic model
SWAT [27] was used to model terrestrial generation and transport of flow, NO−3 , and
phosphate (PO+

4 ). Studies have shown that natural wetlands are more effective in removing
inorganic forms of nutrients compared to organic forms [9]. Further, we had NO−3 and PO+

4
data at a USGS gauge at the outlet of the UFRW to calibrate SWAT. Although ammonia
data were available at the same site, the concentrations were extremely low; thus, ammonia
removal was not considered in this study. SWAT is widely used to assess the impacts of
anthropogenic activities on watershed-scale water quantity [44–47] and quality [48–51]. As
a semi-distributed model, SWAT divides the watershed into sub-basins, which are further
discretized into unique combinations of land use, soil, and slope known as hydrologic
response units (HRUs). A SWAT model comprised of 1549 sub-basins and 15,519 HRUs
was built to accurately capture the selected wetlands and the upstream areas draining
to them. To accomplish this, a 10-meter resolution DEM (Digital Elevation Model) and
stream network shapefile derived from the National Hydrography Dataset Plus (NHDPlus)
were used to delineate the drainage areas to each wetland. The selected wetlands were
georeferenced to generate flow and nutrient loadings through SWAT to each wetland.
Under this rationale, SWAT acts as the loading model whilst WetQual serves as the receiving
model. Next, WetQual was run for each wetland with the SWAT-generated loadings to
simulate the flow and nutrient loads leaving the wetlands, especially NO−3 and PO+

4 .
The WetQual model requires daily runoff and nutrient loadings as input. Reach-level

daily streamflow estimates from SWAT were used as inflows into the wetland systems.
Wetland outflows were estimated using a simple continuity equation to perform flow
routing in a wetland system [28]:

φw
dVw

dt
= Qi + Qg −Qo − AET + Aip (1)

where φw is the effective porosity (due to the presence of vegetation) of wetland surface
water; Vw is the volume of standing water in the wetland [L3]; t is time [T]; Qi is the
volumetric inflow rate [L3T−1]; Qg is the groundwater discharge (negative for infiltration)
[L3T−1]; Qo is the wetland discharge rate [L3T−1]; A is the wetland surface area [L2]; ET is
the evapotranspiration rate [L3T−1L−2]; and ip is the precipitation rate [LT−1]. Vw and Qo
were calculated using the elevation–area–volume relationships of the selected 44 wetlands
in the UFRW, which were determined using the ArcGIS Spatial Analyst Supplemental Tools
(ESRI, 2015). Since these are natural wetlands and have no outlet structures to provide
depth/volume vs. outflow relationships, wetland outflows were estimated using the
following equations, which were adapted from SWAT [52]:

Vo = 0 if Vw < Vn
Vo =

Vw−Vn
c if Vn ≤ Vw ≤ Vm

Vo = (Vw −Vm) +
Vm−Vnor

c if Vw > Vm (Vn = Vm/p)
(2)

where Vo is the volume of water flowing out of the wetland during the day (L3), Vw
is the volume of water stored in the wetland (L3), and Vn and Vm are the volume of
water held in the wetland when filled to the normal and maximum water level (L3),
respectively. Outflow from the wetland starts at Vn level. The water volume of the
wetland reaches its maximum capacity at Vm level, which was found using ArcGIS Spatial
Analyst Supplemental Tools [53] at the maximum wetland area in the NWI database. The
parameters c and p are constants. We examined the sensitivity of c and p parameters using
monitored flow and bathymetry data at three headwater wetlands which are very close to
the UFRW in Baldwin County, Alabama [18]. The values of c and p varied from 1 to 20 and
from 1 to 10, respectively. The maximum difference in R2 between observed and simulated
outflows at the three sites was 1.5% when the c and p were varied within those ranges,
meaning model flow estimates were not very sensitive to c and p. Hence, we assumed that
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the normal water level is equal to a tenth of the maximum depth (p = 10), and c = 10, as
suggested in the SWAT Theoretical Documentation [52].

In addition to discharge, nutrient, and sediment loadings, climate data such as pre-
cipitation, air temperature, and potential evapotranspiration values were also transferred
from SWAT to WetQual. The SWAT and WetQual models were run for each headwater
wetland and contributing drainage area for the period 2004–2015, with the initial four years
used as a warm-up period. Therefore, all the analyses were carried out for the 2008–2015
period. For further model details, including SWAT and WetQual setup, model inputs, and
calibration, the reader is referred to the Supplementary Materials section (Sections S1–S3).

3.2. Model Uncertainty

Estimating model predictive uncertainty provides environmental managers a basis
for selecting among alternative actions and assessing how different model outputs affect
the response of the studied system [29,54]. Figure 3 is a flowchart schematic of our mod-
eling framework and how uncertainty was addressed. All the processes in Figure 3 were
separately implemented for NO−3 and PO+

4 .
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“Modeling Framework” and “Model Uncertainty” for details. Low, Medium, and High in column 2
are nutrient loads at wetland inlets at the 10th, 50th, and 90th percentile of SWAT-CUP simulations,
respectively. X-10%, X-50%, and X-90% are, respectively, the 10th, 50th, and 90th percentiles of
WetQual simulations at wetland outlets corresponding to the low, medium, or high loads (X).

We carried out a Monte-Carlo-based uncertainty analysis (MCUA) to address the
uncertainty of the SWAT and WetQual simulated loadings. MCUA is widely used to
evaluate the uncertainty associated with numerical models and is based on the statistical
analyses of the outputs of multiple model runs [55]. The following steps were implemented
for estimating uncertainty in the SWAT and WetQual outputs:
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(i) The SWAT model built for the UFRW was stochastically calibrated for monthly
streamflow, NO−3 , and PO+

4 at the watershed outlet using the SWAT Calibration and
Uncertainty Program (SWAT-CUP) [56]. We performed several iterations of Monte Carlo
(MC) simulations, with each iteration consisting of 500 simulations. Each simulation
corresponded to a parameter set randomly generated by SWAT-CUP. The final iteration,
which had the best model performance based on Nash–Sutcliffe efficiency and the smallest
95% confidence interval, was selected as the calibrated model (column 1 in Figure 3). We
ordered the 500 parameter sets from the final iteration according to the percent bias (PBIAS)
objective function to identify low, medium, and high loadings, which were considered to
represent the 10th, 50th (median), and 90th percentile loadings, respectively;

(ii) SWAT was run at a daily time-step using the parameter sets identified in
step (i) (column 2 in Figure 3) to generate the low, medium, and high loadings of NO−3 and
PO+

4 to each wetland;
(iii) Daily SWAT outputs were fed as input to the WetQual model to perform MC

simulation (10,000 model runs) for each of the low, medium, and high loading timeseries
for NO−3 and PO+

4 (column 3 in Figure 3). This was conducted for each of the 44 headwater
wetlands. The MC simulation produced 10,000 timeseries for each of the NO−3 and PO+

4
loads out of each of the 44 wetlands. This was accomplished by random sampling of
10,000 independent WetQual parameter sets from the calibrated (posterior) parameter
distributions shown in Table S3. The MCUA-based calibration was achieved using observed
data at a headwater wetland very close to the UFRW in Baldwin County, Alabama [18]. For
more details on WetQual calibration using MCUA, please refer to Supplementary Materials;

(iv) The 10th, 50th (median), and 90th percentiles of average annual nutrient loads
(out of the wetlands) were obtained from the MC simulation in step (iii) for low, medium,
and high loadings computed by SWAT (column 4 in Figure 3). However, for brevity, only
median annual loads are presented and discussed, with the results on the lower and upper
percentiles summarized in the Supplementary Materials (Section S7).

It is worth mentioning that, although a full MCUA is desirable, it would be computa-
tionally too demanding. A full MCUA would require 500 (SWAT) × 10,000 (WetQual) ×
44 (wetlands) × 2 (constituents) = 440 million model runs. Since this was not computation-
ally feasible given our resources, we considered the 10th, 50th, and 90th percentiles of the
MC simulation (10,000 runs) as a proper measure of WetQual uncertainty. As mentioned
before, here we present the results based on the medians of WetQual simulated average
annual loads corresponding to SWAT-computed low, medium, and high loadings.

A FORTRAN script was written to automate the multiple processes of reading, com-
puting, and writing from SWAT-CUP outputs to compatible WetQual inputs. The script
converts nutrient loads from SWAT’s reach-level output file to concentrations to be used as
inputs in WetQual. The script also runs the wetland flow routing subroutine and WetQual
model simulations and, finally, calculates the percentiles of WetQual outputs.

3.3. Assessment of Nutrient Removal Rates by Wetlands

We assessed the effectiveness of wetlands in nutrient removal using both load removal
and relative removal rates. We calculated the average annual loads for each WetQual MC
simulation for the period 2008–2015 and then used the median of the average annual loads
for further analysis. For brevity, henceforth, we drop the word median from average annual
load. This was repeated for each of the low, medium, and high loading timeseries obtained
from SWAT. The calculated nutrient loads in or out of each wetland were scaled by dividing
by the wetland area (kg/ha/y) using the wetland areas reported in NWI. Henceforth, we
refer to nutrient loading as L for brevity, consistent with other studies on wetland nutrient
removal [11,12]. Nutrient load removal per wetland area (RL) (kg/ha/y) was calculated
by subtracting the nutrient load leaving the wetland (Lout) from the nutrient load into the
wetland (Lin):

RL = (L in − Lout) (kg/ha/y) (3)
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Nutrient load removal efficiency (ER) was calculated as:

ER(%) = 100
RL
Lin

(4)

RL and ER at wetlands were plotted against Lin to explore the effect of input loading
on nutrient removal and removal efficiency. The relationship constructed between Lin
and RL could be useful in estimating nutrient removal at other headwater wetlands in the
region. Henceforth, unless otherwise specifically indicated that they are calculated from
observations, the phrases “load removal” and “removal efficiency”, respectively, refer to
RL and ER computed by the SWAT-WetQual model framework. We plotted the nutrient
removal efficiencies (ER) against wetland characteristics, such as wetland volume, the ratio
of wetland area to the contributing drainage area, and residence time, to gain insights into
the impact of these characteristics on ER. The residence time (τ) was estimated by dividing
the annual average wetland volumes by the period-averaged annual outflows.

The effects of flashiness and baseflow on nutrient reduction rates were investigated
using the Richards–Baker flashiness index (RBI) [57] and the baseflow index (BFI). The BFI
is the ratio of baseflow volume to streamflow volume and is an indicator for groundwater
contribution to streamflow. The online digital filter developed by Lim et al. [58] was used
to separate baseflow from streamflow. The RBI measures fluctuations in flow and can be
computed as:

RBI = ∑n
i=1|Qi −Qi−1|

∑n
i=1 Qi

(5)

where Qi is the wetland outflow flow rate at the ith day, and n is the total number of daily
flows. RBI can also be considered as a metric-capturing flow pulsing at high temporal
resolution (daily in this case), something similar to the flood pulsing concept [59,60].

Additionally, we compared nutrient removal efficiencies for dry and wet years. Tem-
perature and evapotranspiration values were not significantly different among the years.
The average annual precipitation was 1718 mm between 2008 and 2015, while the minimum
and maximum precipitations were 1258 and 2050 mm in 2011 and 2014, respectively. Thus,
we considered 2011 and 2014 as dry and wet years, respectively.

4. Results
4.1. Nutrient Removals and Their Efficiencies

SWAT performed well during both calibration and validation periods (see Supplemen-
tary Materials and Figure S1). WetQual performance for NO−3 was also at an acceptable level
at the two sites where observed data were available (Section S6 of Supplementary Materials).

Figure 4a,b shows calculated annual nutrient removal RL (kg/ha/y) versus the average
annual nutrient input loads (kg/ha/y) (Lin) of NO−3 and PO+

4 under low, medium, and
high loading conditions for the period of 2008–2015. The equations of the trend lines were
constructed by taking logarithms with base 10. R2, α, b, and p−values of the slope of
the trend lines are given in Figure 4. RL and Lin were highly correlated for NO−3 under
all loading conditions. The R2 values of the trend lines ranged from 0.94 to 0.98. NO−3
removals under all loadings showed a statistically significant increasing trend with load
(p < 0.05). The coefficient α of RL under high loadings was greater than that under low
and medium loadings. Since the power (=slope in log-transformed form) (b) values of
the regression lines were almost equal to 1.0 (varied between 0.979 and 0.994), it can be
concluded that the 44 wetlands in the UFRW yield higher NO−3 removals under high
loadings, which is not surprising. The slopes of the trend lines were also compared to one
another. We found no difference between the slopes (all p−values > 0.05) under different
loadings. The relationship for NO−3 removals considering low, medium, and high input
loadings combined was RL = 0.8157Lin

0.9938 (single equation for all 44*3 = 152 points).
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Figure 4. Wetland NO−3 and PO+
4 (a,b) load reduction (RL) vs. input loads (kg/ha/y) and

(c,d) removal efficiency (ER) vs. input loads (kg/ha/y). The scatter was obtained from the me-
dian of WetQual-simulated average annual loads for low, medium, and high SWAT-CUP-simulated
loading timeseries. RL is the nutrient load reduction, and Lin is the nutrient load into a wetland.
*: a p−value of “0.0” denotes a computed value less than 0.001. **: all slopes are significant at
α = 5% level.

Figure 4b presents PO+
4 RL versus Lin relationships under low, medium, and high input

loadings. The R2 values of the trend lines varied, with low loading having a much stronger
relationship than medium and high loading cases. PO+

4 RL was positively correlated
(p < 0.05) with Lin under all loading conditions. The coefficient α of removals under
medium loadings was smaller than that for medium and high loadings, and a similar
pattern was observed for the slopes (Figure 4). However, there was no difference among
them (p > 0.05). PO+

4 load removals were estimated after aggregating the input loadings as
RL = 0.3042 Lin

0.7319.
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As shown in Figure 4c,d, ER versus the corresponding nutrient input loads (Lin)
were plotted to assess the variation of removal percentages under low, medium, and
high loadings of NO−3 and PO+

4 . NO−3 ER calculated for the 44 wetlands varied between
29–91%, 40–97%, and 41–96%, with averages (medians) and ± standard deviation of
75 (78)% (±14%), 84 (87)% (±11%), and 84 (86)% (±10%) under low, medium, and high
loadings, respectively (Figure 4c). The ER for NO−3 did not show a relationship with the
input loads (p > 0.05). Figure 4d shows the relationship between PO+

4 ER and Lin. PO+
4 ER

varied between 7–82%, 1–82%, and 4–76%, with averages (medians) of 35 (32)% (±18%),
27 (25)% (±18%), and 28 (23)% (±18%) under low, medium, and high loadings, respectively.
Two wetlands under medium loadings and three wetlands under high loadings, which
were not reported in the graphs, did not show any PO+

4 removal, respectively. PO+
4 ER

decreased with increasing phosphorus inputs under all loading conditions (p < 0.05).

4.2. Nutrient Removal Efficiencies and Wetland Characteristics

Figures 5 and 6 show ER versus wetland physical and hydraulic characteristics, re-
spectively, for low, medium, and high loadings into the UFRW wetlands. Figure 5a,b shows
the relationships between nutrient ER and ratios of wetland area to contributing drainage
area (WA/DA). NO−3 ER did not have a significant relationship with WA/DA under any of
the three loadings scenarios (low, medium, and high) (Figure 5a). PO+

4 ER increased signifi-
cantly with WA/DA under all three loading conditions (Figure 5b). Figure 5c,d shows the
relationships between ER and wetland volumes for NO3

− and PO4
+. Results were similar

to the relationships with WA/DA, i.e., NO−3 ER was not impacted by the wetland volume
(p > 0.05 for all loadings), whereas PO+

4 ER increased with wetland volumes regardless
of the loading (p < 0.05 for all scenarios). Figure 5e,f shows the relationships between
nutrients ER and wetland areas. The relationships for both nutrients and the differences
between them were the same as those reported for the other physical characteristics shown
in Figure 5a–d.

The relationships between nutrients ER and residence time (τ) are shown in Figure 6a,b.
For NO3

−, there were no significant relationships with τ for any of the loading scenarios,
but the lowest loading did show a slightly more apparent positive slope. On the other hand,
PO+

4 ER increased significantly with τ (p < 0.05) under all loading scenarios. Figure 6c,d
shows the relationships between nutrient ER and RBI. NO−3 ER decreased significantly
with RBI (p < 0.05) for all loading scenarios, while the relationships between PO+

4 ER
and RBI were insignificant for all of the loading scenarios (p > 0.05). Similarly, for BFI,
relationships with NO−3 ER were significant for all scenarios but were not for PO+

4 ER.
However, for the NO−3 ER, and in contrast to the RBI, the relationship with BFI was positive
(p < 0.05) (Figure 6f).

4.3. Impact of Dry/Wet Years

We compared ER in a dry (2011) and wet (2014) year to determine whether drier/wetter
conditions impacted the wetland nutrient removals under the three different loading
scenarios (Figure 7). In this case, we plotted ER as box and whisker distributions using the
removal efficiency values calculated for the 44 wetlands modeled. There were significant
differences between the medians of the ER distributions for both NO−3 and PO+

4 in dry and
wet years (p < 0.05) and under all loading scenarios. The magnitude of the differences in
ER between dry and wet years was much greater for PO+

4 compared to for NO−3 (Figure 7a
vs. Figure 7b), which reflects the broader range of ER for PO+

4 compared to that for NO−3 .
The PO+

4 ER also had some negative values (more during the wet year), which indicates
that wetlands can act as a source for PO+

4 during high flows. Overall, all the wetlands had
a higher ER for NO−3 and PO+

4 in the dry year compared to in the wet year.
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Figure 5. Nutrient removal efficiencies versus (a,b) wetland area/drainage area, (c,d) wetland
volume (m3), and (e,f) wetland area (ha). The scatter was obtained from the median of WetQual-
simulated annual average loads for low, medium, and high SWAT-CUP-simulated loading time-
series. *: a p-value of “0.0” denotes a computed value less than 0.001; WA: wetland maximum area;
DA: wetland drainage area.
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Figure 6. Nutrient removal efficiencies versus (a,b) residence time (day), (c,d) Richards–Baker index
(RBI), and (e,f) baseflow index (BFI). The scatter was obtained from the median of WetQual-simulated
average annual loads for low, medium, and high SWAT-CUP-simulated loading timeseries.
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Figure 7. Comparisons of removal efficiencies in dry and wet years under low, medium, and high
loadings for (a) nitrate and (b) phosphate. The removal efficiency was calculated from the median of
WetQual-simulated average annual loads for low, medium, and high SWAT-CUP-simulated loading
timeseries. In the legend, the first word indicates the loading (low, medium, or high), and the word
in parenthesis indicates whether it was a wet or dry year. For example, “Medium (WET)” refers to
the box plot created using removal efficiencies from all 44 wetlands under medium load during the
wet year (2014).

5. Discussion

Since the mid-20th century, the Southeastern U.S. has witnessed accelerated urban-
ization rates, usually outpacing average urban growth in the conterminous U.S. [61]. The
UFRW has experienced an approximate 90% increase in urban area since 1992 according
to NLCD data. The population in coastal Alabama increased by 65% from 2000 to 2020,
and this trend is expected to continue (www.census.gov, accessed on 1 February 2022).
In this context, it is reasonable to assume that the UFRW is primed to experience water
quality deterioration, which could lead to the impairment of water resources and the loss
of wetland ecosystems. As a result, it is vital to understand the importance of green infras-
tructures such as natural wetlands in water quality protection. The Weeks Bay Watershed
Management Plan (WBWMP) [41] outlines a comprehensive approach to address the issues
and concerns identified for the land and water areas within the Weeks Bay watershed. One
of the recommendations is implementing nutrient load reduction management measures
through BMPs and wetland restoration with expanded SWAT data analysis. This study
helps to inform decisions related to nutrient management implementation by investigat-
ing the effects of headwater wetlands on nutrient reductions in the UFRW through the
integration of SWAT and WetQual models.

While the stream, lake, and reservoir water resource management communities have
converged on recognizing the significantly greater role of smaller systems in global nutrient
processing, there has been relatively less research exploring the role of system size on
nutrient processing for wetlands [9]. Our study explored the variation of nutrient removal
efficiencies with input loads and the impact of wetland characteristics on nutrient retention
with uncertainty consideration in the UFRW. The computed medians of NO−3 and PO+

4
load reductions obtained by the MC method for each loading scenario factor in uncertainty
due to modeling errors and the sparse data used to calibrate SWAT and WetQual for the
UFRW. The nutrient removal efficiencies we calculated using a quasi-probabilistic approach
for the UFRW wetlands under low, medium, and high loadings are consistent with those
values reported in Jordan et al. [11] and Cheng and Basu [9], as shown in Figure 8.

www.census.gov
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Figure 8. (a) Comparison of NO−3 removal efficiencies in this study with those in Jordan et al. [11]
and Cheng and Basu [9]. (b) Comparison of PO+

4 removal efficiencies in this study with those in
Cheng and Basu [9]. UFRW: Upper Fish River watershed. One marker is used for nitrate removal
efficiencies in the UFRW wetlands for all low, medium, and high loadings.

Jordan et al. [11] and Cheng and Basu [9] carried out exhaustive meta-analyses on
wetlands to explore correlations of nutrient removal rates with nutrient loading and depen-
dence of nutrient removal rates on system sizes, respectively. Jordan et al. [11] collected
reactive nitrogen removal data from 190 wetland sites around the world. Cheng and
Basu [9] compiled nitrate, total nitrogen, phosphate, and total phosphorous removal data
from 600 sites, including wetlands, lakes, and reservoirs, around the world. We compared
our nitrate and phosphate removal results with their findings. To accomplish this, we
excluded all lakes, reservoirs, and wetlands with negative removal rates.

NO−3 wetland ER, calculated by the SWAT-WetQual model framework in the UFRW,
varied between 29% and 97%, with an average of 81% (±12%) under all loading scenarios.
Although on average higher, the SWAT-WetQual-calculated median values were within
the range of values provided in the observational-based studies by Jordan et al. [11] and
Cheng and Basu [9]. The two studies, respectively, reported a NO−3 ER ranging from 0.2 to
99.6% and from 1 to 99.9%, with averages of 46.7% (±25%) and 61% (±30%), respectively
(Figure 8a). The significantly larger average ER calculated for the UFRW indicates that
our values tended to be larger compared to the average and range of values reported
by Jordan et al. [11] and Cheng and Basu [9]. The ER standard deviation for the UFRW
wetlands was much smaller, indicating less uncertainty associated with it compared to
the two global studies, which should not be a surprise because our study focused on one
HUC12 watershed with the same physiography throughout, while the others were more
global and included several wetland types around the world. Nonetheless, NO−3 ER in
the UFRW tended to decrease with NO−3 loading, which is consistent with the findings by
Jordan et al. [11] and Cheng and Basu [9], even though this trend in our model-based study
was not significant (p > 0.05). The loadings per unit area considered by Cheng and Basu [9]
were much smaller than our model-based estimates, whereas Jordan et al. [11] reported
much higher loads (Figure 8a).

We also compared the SWAT-WetQual-based phosphate removal efficiencies with
those of Cheng and Basu [9], as illustrated in Figure 8b. Model-computed PO+

4 ER for the
UFRW varied between 1% and 82%, with an average of 30% (±18%), while in Cheng and
Basu [9], they ranged from 0.5 to 99.8%, with an average of 58% (±32%). Contrary to the
results for nitrate, the PO+

4 ER values calculated for the UFRW were skewed lower than
those reported by Cheng and Basu [9]. However, if we only consider the natural wetlands
in Cheng and Basu [9], where they reported 26.3% (±19.2%) PO+

4 removal, the results
are very similar. The standard deviation of PO+

4 ER that we predicted for the UFRW is
significantly smaller than that reported by Cheng and Basu [9]. PO+

4 ER in both the UFRW
and Cheng and Basu [9] had significant relationships with PO+

4 loading (p < 0.05) but in
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opposite directions, decreasing and increasing with loadings, respectively. The cluster of
high removal efficiencies and high loadings likely influenced the direction of the slope in
the regression for the Cheng and Basu [9] data (Figure 8b). If those were removed, the slope
would have turned downward and been more consistent with the URFW results.

The results obtained from this modeling study suggest that smaller wetlands are as
efficient as larger wetlands in removing NO−3 loads (Figure 5e). Considering the abundance
of small wetlands, this is a significant finding. In contrast to the NO−3 results, wetland size
matters a great deal to PO4

+ ER (Figure 5f). Similarly, NO−3 ER has no relationship with
the ratio of wetland area to wetland drainage area (WA/DA) or volumes, whereas the PO+

4
ER has a significant increasing trend with WA/DA and volumes under all loadings. As
highlighted by Ramesh et al. [18], smaller wetlands may be more vulnerable to environ-
mental changes, and thus special attention should be given to these ecosystems, especially
in coastal areas such as southern AL, where urbanization trends may negatively impact
water quality in the future.

We also explored variations in nutrient removal efficiencies in a dry and wet year
under low, medium, and high loadings. Although the model-calculated nutrient removal
efficiencies showed some variations with both NO−3 and PO+

4 and for different loading
levels, calculated removal efficiencies were consistently higher in the dry year in all wet-
lands. The dry year also was on average 1.1 ◦C warmer than the wet year. The WetQual
model allows higher denitrification rates with increased temperatures using the Arrhenius
equation [28]. WetQual simulates higher plant growth rates under higher temperatures,
which leads to an increased level of N uptake by plants. Lower precipitation and higher
evapotranspiration values can also increase nutrient concentrations in wetlands, which
leads to higher estimated N uptake by plants in WetQual. In WetQual, N uptake is propor-
tional to the inorganic N concentration in the water. Therefore, if the concentration is low,
the plants uptake less N, and if the concentration is high, plants uptake more N.

Studies in the literature reported seasonal effects on nutrient removal efficiencies. For
instance, Windolf et al. [62] found that nitrogen removals were generally higher during
summer in 16 shallow Danish lakes. Similarly, Spieles and Mitsch [63] found that nitrate
removal efficiencies were most efficient during summer in three wetlands in central Ohio,
USA. Kalin et al. [29] demonstrated interannual nutrient reductions for a 2-year period in a
restored wetland located on Kent Island, Maryland. They estimated that both NO−3 and
PO+

4 load removals in a drier year were higher than those in the wetter year. Ulén et al. [64]
also reported higher phosphorus and nitrogen removal efficiencies in summer in con-
structed wetlands in Stockholm, Sweden. It is worth highlighting that the summer months
in the aforementioned studies were dryer than the winter months, which indicates that the
seasonal variations in nutrient removal efficiencies are consistent with the results presented
in the current study.

Our model-based results are in line with those reported in previous studies [9,11,12]
and can be transferred to similar wetland systems. Since studies quantifying nutrient loads
and removal efficiencies in natural wetlands are limited [65], our findings have provided
new insights into nutrient removal in headwater wetlands and offer tools for predicting
nitrate and phosphate removal in similar wetlands located within sparsely gauged or
ungauged watersheds.

We also used the regressed power relationships in Figure 4a,b to extrapolate nutrient
removals to the relatively smaller 348 non-riverine/riparian wetlands within UFRW that
were not modelled using the SWAT-WetQual model framework. We realize that such
extrapolations were made in the company of a high degree of uncertainty. Forty-one
percent of the UFRW drains to these wetlands. As a first step in extrapolating nutrient
reduction, we developed a multi-regression relationship between SWAT nutrient loads at
the outlets of 1529 sub-basins and their land use/cover (LULC) in the UFRW under low,
medium, and high loading conditions. Next, we calculated loadings to the 348 wetlands in
the UFRW using their LULC distributions as input to the developed regression relationships.
Then, we estimated RL by applying the equations given in the table under Figure 4a,b.
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Table 1 summarizes the estimated total nutrient loadings to these wetlands and the total
removed loads under low, medium, and high loading conditions. Results showed that
these wetlands collectively are estimated to remove 51–61% of the NO−3 and 5–10% of the
PO+

4 loading they receive from their respective drainage areas.

Table 1. Estimated NO−3 and PO+
4 loadings and removals for the 348 wetlands in the UFRW under

low, medium, and high conditions. These wetlands were not used in integrated SWAT-WetQual
modeling. Load removal and removal efficiency were calculated using the regression equations in
Figure 4 developed with calculated data from the 44 selected wetlands.

NO−3 (kg/yr) PO+
4 (kg/yr)

Low Medium High Low Medium High

Load in 45,523 61,586 68,973 645 1457 2650
Removal 23,403 37,375 41,903 62 67 134
ER(%) 51% 61% 61% 10% 5% 5%

ER: removal efficiency; UFRW: Upper Fish River watershed.

Finally, we compared removal efficiencies versus residence time in this study and those
in Cheng and Basu [9], who reported the residence time of their wetlands. NO−3 removal
efficiencies in the UFRW did not increase with residence time, while those in Cheng and
Basu [9] did (Figure 9a). However, the slopes of the trend lines between the two studies
were statistically not different (p > 0.05). PO+

4 removal efficiencies showed a statistically
significant but different increasing trend (p < 0.05) with residence time in both UFRW
and Cheng and Basu [9] (Figure 9b). However, the data reported by Cheng and Basu [9]
for NO−3 and PO+

4 were skewed toward wetland systems with longer residence time and
showed a greater variance for nitrate removal efficiency than the estimates obtained for the
UFRW. Although the majority of residence times in the UFRW wetlands were lower than
those reported in Cheng and Basu [9], the slopes of the regressions with residence time for
PO+

4 were similar. This suggests that estimates of PO+
4 removal efficiencies obtained from

estimates of residence time can be considered reasonably robust for planning purposes.
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The relatively shallow water table environment and the subtropical climate of coastal
Alabama may partly explain the higher nitrate removal efficiency values calculated for the
UFRW compared to the global nitrate removal rates reported by Cheng and Basu [9]. The
high temperature, abundant organic matter contents, and persistent anaerobic conditions
all act to push nitrate removal rates higher. The calculated residence time for most of
the wetlands in the UFRW ranged between 0.1 and 1 day (the majority closer to 1 and
higher), and some were as high as 10 days, as shown in Figures 6a and 9a. Considering
the empirical formula reported by Cheng and Basu [9] for first-order nitrate removal rate,
kNO−3

= 0.63 τ−0.86, kNO−3
= 0.63–4.56/day for τ ranging between 1 and 0.1 days and as

small as 0.087/day for τ = 10 days. The nitrate removal rates calculated by the above
formula [0.087/day–0.63/day] likely accounted for denitrification and other loss pathways
and, hence, are consistent with the overall smaller values of 0.004–0.15/day calibrated for
the first-order denitrification rate in the two study wetlands (Supplementary Materials,
Table S3). In essence, our (model-based) denitrification rates are on the lower side of the
overall nitrate removal rates produced by the global formula.

These comparisons show that despite the sparsely gauged and monitored UFRW
and the localized nature of this model-based study, the results predicted by the SWAT-
WetQual-MC framework in general are consistent with the observed global data and hence
complement the literature on wetland nutrient function.

6. Summary and Conclusions

Nutrient loads, nutrient load removals, and nutrient removal efficiencies of 44 head-
water wetlands were investigated in this study under low, medium, and high loading
conditions. This was achieved by implementing a watershed–wetland model framework,
MC simulations, and statistical regression to estimate nutrient reduction in a sparsely
monitored watershed. The following summarizes the key findings:

Our model-based results demonstrate that the headwater wetlands in the study region
may, on average, have removal efficiencies of 81% (±12%) and 30% (±18%) for NO−3 and
PO+

4 , respectively.
Computed mean NO−3 removals were highly correlated with their input loads with

an almost linear relationship of RL = 0.8157 Lin
0.99 for aggregated low, medium, and high

loads, but removal efficiencies showed no significant trend with their input loads under
any of the loading scenarios. This was likely a function of the predicted high removal
efficiencies across the board. For PO+

4 , load removals were positively correlated with their
input loadings for all loading scenarios with a power relationship of RL = 0.3042 Lin

0.73,
while PO+

4 removal efficiencies showed a significant decreasing trend with input loadings
under low, medium, and high loadings.

Considering the shallow water table environment and subtropical climate in coastal
Alabama, the relatively higher denitrification rates obtained in this study are not at odds
with the total nitrate removal rates calculated by the empirical formula obtained by Cheng
and Basu [9] based on more global wetland nitrogen data.

By developing a multivariate regression model relating nutrient loads to LULC/land
use in the UFRW, the statistical RL relationships were used to extrapolate NO−3 and PO+

4
removal efficiencies to 348 riverine–riparian wetlands in the watershed that were not
modeled by the SWAT-WetQual framework. Estimated removal efficiencies of 51–61% for
NO−3 and 5–10% for PO+

4 indicated that smaller headwater wetlands are as effective as
larger wetlands in removing nutrients.

Calculated NO−3 removal efficiencies did not show a significant trend with wetland
area/drainage area, wetland volume, and residence times under all loading conditions,
whereas they did show a significant trend with RBI and BFI. Calculated PO+

4 removal
efficiencies were positively correlated with wetland area/drainage area, wetland volume,
and residence time under all loadings (p < 0.05), while they showed an insignificant trend
with RBI and BFI under all loading conditions.
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The 44 study wetlands modeled yielded higher removal efficiencies for both NO−3 and
PO+

4 in the dry year compared to the wet year simulations under all loading scenarios.
Although these model-based findings are localized to the UFRW, they, in general,

are consistent with those by Cheng and Basu [9] and Jordan (2011), which were based on
more global datasets. The greater spread and variance in their global data may explain the
differences to the localized results obtained for the UFRW.

By virtue of geographical proximity and physiographic similarity, the regression
models developed for the UFRW and the findings in this study can be scaled up to the
coastal plains of Alabama and Northwest Florida. The current study offers new insights
to the modeling community into the importance of natural wetlands as pollution sinks in
coastal regions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/w15152687/s1, Figure S1: Simulated and observed monthly
(a) streamflow, (b) NO−3 , and (c) PO+

4 loads at the UFRW outlet; Table S1: SWAT input data;
Table S2: SWAT model performances for monthly streamflow, nitrate, and phosphate load calibrations;
Table S3: The final ranges of calibrated parameters for the WetQual model; Table S4: WetQual calibration
performances for NO−3 loads at the two wetlands in Baldwin County, Alabama; Table S5: Summary
statistics for nutrient input and output loads at 44 wetlands. References [66–83] are cited in the
Supplementary Materials.
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