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Abstract: Mass mortality events and anthropogenic impacts affecting Paramuricea clavata (Risso, 1826)
have been increasingly documented during the last decades. These impacts have enhanced the settling
of epibiont organisms on injured colonies. This epibiosis was studied using photographic sampling
carried out on the granitic outcrops of the Tavolara Channel within the Tavolara–Punta Coda Cavallo
marine-protected area (NE Sardinia) between 2017 and 2023 at 35–55 m. The number of colonies and
percentage of surface involved in the epibiosis, the specific richness of the epibiont community, and
the temporal evolution of the phenomenon were studied. Almost all the investigated gorgonians
(93%) showed parts involved in epibiosis, with high percentages of surface covering (one-third of the
surface). Out of the 37 epibiont species recorded, the most recurrent ones demonstrated an ecological
succession dominated by Hydrozoa, Porifera, Bryozoa, Serpulidae, and the parasitic soft coral
Alcyomiun coralloides. Nevertheless, single colonies studied over time revealed the unpredictability of
the colonization process. The peculiar habitat of the granitic outcrops hosting the P. clavata forests is
of a high naturalistic value and demonstrates a widespread condition of suffering, supported by both
environmental and anthropogenic sources of stress. Such considerations make it necessary to review
the current zonation of the area, where the actual vulnerability and usability evaluations are based
on incomplete information.

Keywords: gorgonians; benthic assemblages; fishing impact; global change; conservation;
Mediterranean Sea

1. Introduction

The purple gorgonian Paramuricea clavata (Risso, 1826) is an endemic Mediterranean
species [1] considered “vulnerable” in the Red List of the International Union for Con-
servation of Nature [2] because of its large size, branched shape, and limited flexibility
that render it highly susceptible to a wide range of natural and human impacts [3–6]. A
pool of evidence regarding the reduction in some Mediterranean populations in the last
three decades has addressed a mix of consequences due to the increase in positive thermal
anomalies with summer diseases and the development of filamentous algae, mucilage, and
invertebrate epibionts [7–22].

Moreover, it has been recognized that P. clavata forests are highly sensitive to direct
and indirect anthropogenic impacts (boat anchoring, recreational and commercial fishing,
and SCUBA diving) [19]. In 1997, Bavestrello et al. [4] described the multiple damages
inflicted on these gorgonians by fishing activity: lost lines in contact with colonies scrape
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the coenenchyme, and these abrasions create suitable conditions for the settlement of
numerous epibiont organisms that weigh down the branches until the total or partial
breaking of the colony occurs under the action of the currents. This issue has been reported
by several authors who suggest that the number of colonies involved in epibiosis is an
index of the stress of the population due to fishing [2,5,6,23,24]. In fact, Linares et al. [25]
stated that, without extraordinary events, the extent of colony injury and the proportions
of affected gorgonian colonies have remained low over time; therefore, any substantial
increase in these parameters may serve as a good indicator of recent disturbances.

The Tavolara–Punta Coda Cavallo Marine Protected Area (40.8830 N, 9.7020 E,
Sardinia, Italy) hosts a large population of P. clavata settled on both Tavolara Island’s
limestones and the Tavolara Channel’s granitic outcrops [26,27]. This P. clavata population
has been widely studied in recent years, with several surveys conducted since the 2000s
to evaluate its health status after the occurrence of diseases/mortality events [14,16,21,28].
Unfortunately, this pool of data covers only shallow sites (up to 35 m in depth) under the
medium–high protection regime (A–B Zones) and does not include gorgonians settled
on deeper granitic shoals at depths ranging from 35 to 55 m [27], characterized by low
protection levels (C Zone) and prone to intense fishing activity [29,30].

This paper aims to obtain data about the levels of epibiosis in the gorgonians present
in this charismatic MPA and also concerning different regimes of protection. Moreover, a
particular focus is provided on the diversity, structure, and development of the epibiont
community. In fact, despite the wide use of epibiosis as an index of injuries, few data are
available regarding descriptions of the community.

2. Materials and Methods

The Tavolara MPA was established in 1997, and the zoning definition, based on various
campaigns documented by Bianchi et al. [31], has not subsequently changed. This MPA
provides three levels of protection with definitive regulations (decree n◦299, issued by the
Ministero dell’Ambiente e della Tutela del Territorio del Mare on 30 December 2014): the
A Zone, the no-entry/no-take reserve; the B Zone, the general protection reserve; and the
C Zone, the partial protection reserve. Artisanal fishing performed only with selective
gears that preserve the seafloor integrity is allowed in the B and C Zones. In the latter,
recreational fishing is also allowed, though with some restrictions.

Our study area involved granitic outcrops that emerge from a detrital plain located in
the middle of the Tavolara Channel (C Zone) between the Tavolara and Molara Islands, in
the depth range of 35–55 m (Figure 1).

During scuba dives performed from 2017 to 2023, 10 granitic sites (out of 57 where Para-
muricea clavata is present) were selected on the basis of gorgonian abundance
(>5 col. m−2). For each shoal, on average, 40 photos were obtained, applying the multi-
zoom photographic approach [32] to evaluate the occurrence of damages to and epibionts
on gorgonians. Images were taken using a Sony A6000 camera (24 megapixels, two
Inon Z330 flashes, color temperature of 5000 K) with a Sony 16–50 lens (focal length of
19 mm), a Nauticam WW1 wet wide lens (130◦ rectilinear field angle) and a Sea & Sea
MDX-A6000 underwater case with a flat porthole. Photos were post-processed with Adobe
Photoshop©, while formal analysis was performed with ImageJ Software [33].

Out of 410 photographs, 582 colonies of P. clavata with frontal perspectives were
examined to evaluate the recurrence percentage of single epibionts, the diversity of the
epibiont assemblage, and the relative surface of the gorgonian involved in epibiosis. The
epibiont coverage was estimated as a percentage of the planar colony surface to avoid
problems due to the angular distortion of the images. The three-dimensional development
of the epibionts was not considered, as our focus was the relative area of each colony
involved in epibiosis. Only colonies with more than 5% of the surface area subjected to
epibiont coverage were considered in our study. Finally, we recorded the presence of
entangled and abandoned fishing gear.
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Figure 1. The investigated area within the Tavolara–Punta Coda Cavallo MPA. Red spots indicate 
granitic shoals with the presence of Paramuricea clavata; yellow spots indicate the shoals considered 
in this study. 

Epibiont organisms were identified and classified at the lower taxonomic level; when 
specific or generic identification was not possible, other taxonomic and morphological 
units (OTUs) were adopted. Only taxa with a recurrence higher than 10% of the whole 
photographic dataset were employed in the formal analysis. 

Moreover, owing to the wide photographic archive (1986-2023) (ET), we had the op-
portunity to analyze images of the same colonies (easily recognizable by the overlapping 
of the main ramifications) taken over a long period. These data allowed us to reconstruct 
the temporal evolution of the epibiosis process. All images present in the archive and se-
lected for this study were obtained with the same technique. 

3. Results 
3.1. Paramuricea Clavata of the Tavolara Channel Granitic Shoals 

The granitic outcrops emerging from the detritic bottom of the Tavolara Channel are 
characterized by a modest development of the basal coralline algal layer that only occa-
sionally forms the typical coralligenous bioherms. The density of the Paramuricea clavata 
varied from 5 to 25 colonies m−2. Moreover, the macrobenthic community is mainly 

Figure 1. The investigated area within the Tavolara–Punta Coda Cavallo MPA. Red spots indicate
granitic shoals with the presence of Paramuricea clavata; yellow spots indicate the shoals considered in
this study.

Epibiont organisms were identified and classified at the lower taxonomic level; when
specific or generic identification was not possible, other taxonomic and morphological
units (OTUs) were adopted. Only taxa with a recurrence higher than 10% of the whole
photographic dataset were employed in the formal analysis.

Moreover, owing to the wide photographic archive (1986-2023) (ET), we had the
opportunity to analyze images of the same colonies (easily recognizable by the overlapping
of the main ramifications) taken over a long period. These data allowed us to reconstruct
the temporal evolution of the epibiosis process. All images present in the archive and
selected for this study were obtained with the same technique.

3. Results
3.1. Paramuricea Clavata of the Tavolara Channel Granitic Shoals

The granitic outcrops emerging from the detritic bottom of the Tavolara Channel are
characterized by a modest development of the basal coralline algal layer that only occasion-
ally forms the typical coralligenous bioherms. The density of the Paramuricea clavata varied
from 5 to 25 colonies m−2. Moreover, the macrobenthic community is mainly represented
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by other gorgonians (Eunicella cavolini (Koch, 1887), E. singularis (Esper, 1791), E. verrucosa
(Pallas, 1776), erected sponges (Axinella polypoides Schmidt, 1862, Spongia (Spongia) officinalis
Linnaeus, 1759, Sarcotragus foetidus Schmidt, 1862) and branched bryozoans (Adeonella
calveti Canu and Bassler, 1930, and Turbicellepora avicularis (Hincks, 1860)) (Figure 2a,b).
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mainly characterized by large sponges (Sarcotragus foetidus, Axinella species) and gorgonians (Euni-
cella verrucosa, Paramuricea clavata). (c,d) Diseased colonies showed a massive coenenchyme loss dur-
ing the mass mortality of 2018. (e) Spawning and (f) recruits of P. clavata; (g) spawning of the para-
sitic soft coral Alcyonium coralloides. 

3.2. Epibiosis 

Figure 2. (a,b) The benthic community settled on the granitic shoals of the Tavolara Channel is
mainly characterized by large sponges (Sarcotragus foetidus, Axinella species) and gorgonians (Eunicella
verrucosa, Paramuricea clavata). (c,d) Diseased colonies showed a massive coenenchyme loss during
the mass mortality of 2018. (e) Spawning and (f) recruits of P. clavata; (g) spawning of the parasitic
soft coral Alcyonium coralloides.

During the period of observations, serious damages to colonies resulting from heat
waves, with necrosis and loss of coenenchyme, were documented in 2018 (Figure 2c,d);
other less intense episodes were recorded in 2017, 2019, and 2020. The P. clavata spawning
(Figure 2e) was recorded between 2009 and 2022 (ET personal observations), with the
exceptions of 2010, 2018, and 2019. Recruits, as small unbranched colonies composed of
less than ten polyps (Figure 2f), were observed in 2017, 2018, and 2020.
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3.2. Epibiosis

Of the 582 studied colonies of P. clavata, 541 presented some degree of epibiosis (93.0%),
and only 41 (7.0%) were intact (Figure 3a–c); 455 (78.2%) showed epibiosis on more than
5% of the colony’s surface, 15 (2.6%) were recorded completely dead in standing position,
31 (4.6%) were found entangled in lost fishing gear (Figure 3d), and 58 (8.8%) were uprooted
(Figure 3e). On average, epibiosis affected 27.3 ± 1.2% of the colony surface.
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Figure 3. (a–c) Paramuricea clavata forests showing a high level of epibiosis due to Hydrozoa carpet
(Hy), false black coral Savalia savaglia (Bertoloni, 1819) (Ss), Filograna/Salmacina spp. (FS), and calcified
branched Bryozoa Adeonella calveti (Aca). (d) Colonies recorded entangled in lost fishing gear
and (e) totally uprooted.

From the diversity point of view, the epibiont assemblages on the gorgonians of the
Tavolara MPA accounted for 37 species (or OTUs), of which 5 were vagile (Table 1).

The most diversified group was Porifera, with 11 species (or OTUs), followed by
Bryozoa and Ascidiacea, respectively, with 7 and 5 species (or OTUs). About 13% of
the observed colonies showed only one epibiont species (OTUs), about 45% hosted two
to three species, while 23% were found with four to five species (OTUs). The highest
value of species (OTUs) per colony was 16, which was recorded in one colony. The most
common species/OTUs (Figure 4) resulted in the ubiquitarians Hydrozoa recorded in
91.9% of the epibiont colonies, four Porifera (Dysidea fragilis (Montagu, 1814) (43.8%),
Crella (Crella) elegans Schmidt, 1862) (10.4%), D. perfistulata Pulitzer-Finali and Pronzato,
1980 (10.2%), (Pleraplysilla spinifera (Schulze, 1879) (9.9%)), three Bryozoa (Adeonella calveti
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(52.3%), Turbicellepora avicularis (26.9%), Flustra sp. (9.6%)), parasitic Alcyonacea Alcyonium
coralloides (Pallas, 1766) (22.9%), and Serpulidae Filograna/Salmacina spp. (33.3%) (Figure 5).

Table 1. Species/OTUs found on Paramuricea clavata and their percent of recurrence, calculated based
on the whole photographic dataset. (*) Vagile species and taxa with a recurrence of <10% were not
taken into account for the formal analysis.

Species/OTUs Recurrence
(%) Species/OTUs Recurrence

(%)

Algae Anellida
Crustose Corallinales 2.5 Filograna/Salmacina spp. 33.3

Flabellia petiolata 0.2 Serpulidae 5.6
Valonia sp. 0.2 Bryozoa

Porifera Adeonella calveti 52.3
Anchinoe tenacior 0.2 Beania magellanica 0.9

Crella elegans 10.4 Cellaria salicornioides 0.5
Dysidea avara 0.2 Flustra sp. 9.6

Dysidea fragilis 43.8 Pentapora fascialis 1.6
Dysidea perfistulata 10.2 Turbicellepora avicularis 26.9

Haliclona mediterranea 1.4 Encrusting Bryozoans 1.4
Ircinia variabilis 0.2 Crustacea

Oscarella lobularis 2.5 Periclimenes scriptum * 0.5
Pleraplysilla spinifera 9.9 Echinodermata

Terpios fugax 2.8 Antedon mediterranea * 0.2
Encrustig Sponges 14.4 Astrospartus mediterraneus * 0.2

Cnidaria Chordata
Hydrozoa 91.9 Aplidium undulatum 7.9

Alcyonium coralloides 22.9 Clavelina dellavallei 1.6
Epizoanthus species 0.2 Clavelina oblonga 0.9

Mollusca Didemnidae 0.9
Pteria hirundo 0.7 Pycnoclavella communis 0.7

Calliostoma conulus * 0.2
Flabellina ischitana * 0.5
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Figure 5. The main epibionts recorded on Paramuricea clavata: (a) Hydrozoa turf (Hy), (b) large
masses of Serpulidae Filograna/Salmacina spp. (FS), (c) Porifera Crella elegans (Ce), (d–h) complex
epibiont communities composed of Porifera Dysidea fragilis (Df), D. perfistulata (Dp), and Pleraplysilla
spinifera (Ps), parasitic Alcyonacea Alcyonium coralloides (Aco), Serpulidae Filograna/Salmacina spp.,
Bryozoa Adeonella calveti (Aca), Flustra sp. ((Fl) and Turbicellepora avicularis Ta), and Tunicata Aplidium
undulatum (Au).

These species produced different growth patterns on the gorgonian branches
(Figure 5). The observed Hydrozoa generally did not make large colonies but a carpet of
small creeping colonies involving the entire naked skeleton. A. calveti, T. avicularis, and
Filograna/Salmacina spp. were able to produce large subspherical colonies that develop
starting from a small portion of the free skeleton. Finally, Porifera and A. coralloides grew,
covering entire branches of the gorgonians.

Single epibiont species adopted a different pattern of colonization in relation to the
richness of the assemblage. Hydrozoa were always recorded as pioneers and occurred in the
epibiont community independently of their richness. The group of bushy species (Bryozoa
and Serpulidea) followed Hydrozoa, and their occurrence quickly increased according to
the number of species present in the community. A similar trend was shown by a pair of
Porifera (D. fragilis and C. elegans) that grew, covering a wide portion of the gorgonian’s
branches. Finally, other species such as D. perfistulata, P. spinifera, and A. coralloides, needed
more than four species or OTUs of the assemblage for their settling (Figure 6).
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Figure 6. Percent of recurrence of the main species/OTUs showing different colonization strategies
in relation to the diversity of the assemblage. (a) Hydrozoa is the main pioneer species and remains
dominant at all the colonization phases; (b–i) branched Bryozoa (Adeonella calveti, Flustra sp., and
Turbicellepora avicularis), Serpulidae Filograna/Salmacina spp., and Porifera Dysidea fragilis and Crella
elegans settled immediately after Hydrozoa and quickly increased according to the community
richness. (j) D. perfistulata, Pleraplysilla spinifera, and Alcyonium coralloides need a certain degree of
diversity of the assemblage for their settling (>4 species/OTUs); after that, their growth is continuous.

During the colonization process, new species were added to the community that
became more and more complex without substitution (Figure 7a): in fact, the average
percentage of the gorgonian surface involved in epibiosis colonies increased according to
the diversity of the epibiont community (Figure 7b).
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Figure 7. (a) Percent of recurrence of the main species/OTUs according to the diversity of the
epibiont community. (b) The average percentage of the gorgonian surface involved in epibiosis
shows a progressive increase according to the diversity of the epibiont community, as shown by the
correlation line (r: 0.98).

3.3. Observations on Single Gorgonians through Time

By observing single colonies through time (months, seasons, and years), it was possible
to describe the development of epibiosis on P. clavata, which showed great variability in
mode and time, even if some general patterns can be described.

When the lesions of the coenenchyme originate from thermal stress, the fate of the
epibiosis depends on the extension of the denudated scleraxis. In fact, if the involved
surface was not too extended, the coenenchyme was able to re-grow on the naked skeleton,
even if already covered by the hydrozoan carpet. Two colonies photographed in 2020
showed a complete recovery in two years (Figure 8a–d). When the lesions were too wide,
recovery was not possible, and epibiosis developed very quickly, involving the entire
colony (Figure 8e,f).
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Figure 8. Examples of different evolutions of the coenenchyme lesions and consequent epibiosis due
to thermal stress. (a–d) Two cases of damage on small portions of branches were recovered after
two years. (e,f) Extensive lesions were not recovered by the gorgonian, and epibiosis developed very
quickly, involving the entire colony. (g–j) A colony involved in the thermal disease of 2018 showed
minor damage severity changes across four years.

In some rare cases, the epibiont community did not increase its complexity, and
branches remained covered by Hydrozoa for several years. A colony in 2018 showed
several naked portions of the skeleton partially covered by Hydrozoa (18.9% of the colony
surface); two years after (2020), the epibionted surface decreased to 9.1% owing to a re-
growth of coenenchyme on the involved branches. After four years (2023), the colony
surface again showed a modest increase in epibiosis (19.3%) (Figure 8g–j).

Quick colonization was also observed when epibiosis was due to the scraping of
entangled lines. A colony photographed in March 2023 entangled by a lost line, already
colonized by Hydrozoa and A. calveti, showed a very fast development of the epibiont
community: in 47 days (May 2023), it also included D. fragilis, Terpios fugax Duchassaing
and Michelotti, 1864, Serpulidea, and Beania magellanica (Busk, 1852) with a covered surface
shifting from 15.7% to 24.4% (Figure 9a,b).

Another colony recorded entangled in April 2018 by a line showed an epibiont com-
munity composed of A. calveti, T. avicularis, and Filograna/Salmacina spp. In the following
December, the epibiotic community progressively developed in size without increasing
the number of species or OTUs. In this period, the Filograna/Salmacina spp. appeared
drastically reduced. The comparison with an image obtained four years after (October
2022) showed the settlement of the sponge D. fragilis and a shift in the involved surface
from 22.73% to 50.74% (Figure 9c–e).
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sponges and encrusting coralline algae after five years. 

Figure 9. Development of epibiosis linked to lost fishing line entanglement. (a,b) Quick colonization
(47 days) by Porifera and Bryozoa. (c–e) Increasing complexity of the epibiont community on a
gorgonian entangled in a line (arrows) for 54 months; note that the sponge Dysidea fragilis appears
later. (f–h) The settlement of Filograna/Salamacina spp. covered almost the entire naked parts (arrows)
of a colony after the summertime of 2018. (i,j) The settling of calcified organisms stops the movement
of the entangled lines, thus preventing further damage. (k–m) A dead colony totally covered by
sponges and encrusting coralline algae after five years.

In March 2018, a colony was recorded with some nude branches partially covered by
Hydrozoa and A. calveti; at the end of the year (November/December 2018), naked parts
were covered by a massive development of Filograna/Salmacina spp. (Figure 9f–h). In some
cases, when the scraping of the lost line is blocked by the growth of the carbonatic epibionts,
the colonies are able, after several years, to recover damaged portions (Figure 9i,j).
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The observation of one dead extirpated colony (line still in situ) showed a long persis-
tence of the gorgonian skeleton (five years) that became heavily colonized by sponges and
encrusting coralline algae (Figure 9k–m).

4. Discussion

In natural assemblages, epibiosis increases biodiversity by improving the coexis-
tence of different species [34]. In general, gorgonians are particularly involved in this
phenomenon [35]. Nevertheless, in the Mediterranean Sea, it is clear that epibiosis on Para-
muricea clavata is enhanced by disturbances due to thermal stress or anthropogenic injuries
such as fishing activity; therefore, it has to be considered as a sentinel of environmental
degradation [8,19].

The first impressive evidence emerging from the study of epibionts on the P. clavata
forests in Tavolara MPA was the high percentage of involved colonies: more than 70% of
the studied specimens showed, on average, one-third of the surface covered by epibionts.
For comparison, a study conducted in the Medes Islands MPA (Catalan Sea) indicated that
between 10% and 33% of the colonies of unprotected populations were partially colonized
by epibionts, whereas only 4% to 10% of the populations in the MPA were affected [36].
Inside the Portofino MPA (Ligurian Sea), 51% of colonies showed epibionts [19]; along
the eastern Adriatic coasts, less than 10% of the observed colonies presented denuded
branches or epibiosis [37]. Very probably, the present data indicate that the Tavolara MPA
is the Mediterranean area with the highest recorded values. This high presence of injured
colonies induced, in 2008, an experiment in restoration by pruning the forest [38].

It was already stated that epibiosis originates from the loss of coenenchyme integrity,
which creates exposed portions on the gorgonian skeleton on which epibionts can settle.
Gorgonian diseases and fishing impact are considered the main causes of this phenomenon
involving P. clavata [3,10,25,39]. In the area of Tavolara MPA, diseases/mass mortalities have
occurred at least since 2001 [28], and other episodes followed in 2008 [16], 2018 [14], and
2019–2020 [21]. Recent mortality events have been shown to be increasingly damaging, as
previous anomalies did not hit populations at 35−40 m depth [25,40,41]. These phenomena
had a wide impact on the populations: for example, during the 2008 event, about 100% of
the colonies living between 20 and 30 m depth were damaged, and this value decreased
between 40 and 60% under a 35 m depth [16]. Currently, 15 years after the 2008 event, no
colony of P. clavata can be found at depths of less than 29 m.

Regarding the fishing impact, demersal fishing activities represent one of the major
causes of gorgonian mortality, causing entanglements, partial breakages, and detach-
ment [19,24,42]. The persistent abrasion of the lost lines may cause wounds and infections
and lead to extended epibiosis and/or necrosis [4,5,43–46]. Artisanal fishing activity is
particularly intense within the Tavolara Channel, an area under a low protection regime, as
demonstrated by the presence of lost fishing gear in 81 of the 82 visited sites [30] and the
high percentage of impacted erect organisms [27,29].

Previous evaluation of the environmental quality of the Tavolara MPA [47] assigned
low values to the Tavolara Channel because of the absence of a biogenic secondary substrate
due to the lithological nature of the bedrock [26]. Considering the data presented here, the
same priority habitat value of typical coralligenous reefs should be assigned to this area.

Although it is not easy to determine the causative event through the observation of
epibiont colonization, some hints can be obtained. Generally, diseases caused by heat waves
occur in short periods of time, causing acute stress, while damages related to entangled
lines work over a long time period, producing chronic stress. In the first case, the fate of
the epibiosis process depends on the percent of involved gorgonian surface [48]: when
the affected portions are small, the coenenchyme is able to re-grow on the naked skeleton,
plausibly quickly, despite the presence of pioneer epibionts (hydroids) [25,48–51]. Fast
tissue regeneration in about one month was observed after the mass mortality event in
the Portofino MPA in 2008 in the case of minor injuries [52]. Studies on soft corals [53]
demonstrated that they could activate recovery mechanisms to quickly heal minor and mo-
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mentary injuries and prevent the settlement of pioneer epibiont species, such as hydroids,
on lesioned surfaces [54]. Recolonization of necrotic tissue might be faster and less expen-
sive in terms of energy consumption than the production of new colony branches or tissue
and is, therefore, influenced mainly by competition for space with epibionts. If the lesions
involve a large portion of the denudated skeleton, the recovery is not sufficient to contrast
the settling and development of calcified organisms that make epibiosis permanent.

On the other hand, for the entangled colonies, the continuous stress produced by the
friction of lines, as well as friction applied to a small coenenchyme surface, completely
prevents tissue recovery, favoring the development of complex epibiotic assemblages
characterized by several calcified organisms (Bryozoa, Serpulidea), Porifera, and Alcyonium
coralloides. In fact, a chronic injury enables a permanent colonization phase of a diversified
epibiont community [4,55,56].

Although several authors have recorded the epibiosis process involving P. clavata,
less attention has been dedicated to the diversity of the epibiont community: during this
study, the 37 species (OTUs) found demonstrated a flourishing situation. Although we
identified numerous species, some groups, virtually unidentifiable through photos, were
considered as higher taxa (e.g., Hydrozoa) or as OTUs (e.g., encrusting sponges); this fact
clearly indicates that the described diversity is underestimated. The recorded assemblage
is similar to that previously observed in the Ligurian Sea [4].

No species are strictly related to gorgonians, although the Porifera Pleraplysilla spinifera
and the bivalve Pteria hirundo (Linnaeus, 1758) were frequently recorded as acrophilic on
P. clavata [57–60]. The Alcyonacea A. coralloides, a typical parasite of many gorgonians,
grows by fouling (“runner” type) the apical axis of colonies [61,62]. A. coralloides exploit
the stressed conditions of its host due to the reproductive window and oligotrophy of the
water column during summertime, synchronizing its reproduction cycle with those of P.
clavata [63]. Indeed, the emission of sexual products by A. coralloides has been documented
in the Tavolara MPA area in the middle of May (Figure 2g), with the settling of recruits a
couple of weeks after (ET, unpublished), occurring simultaneously with the spawning of P.
clavata. The study conducted in the Medes MPA suggested that epibiosis of this species
was caused by the intense diving activity and not directly by fishing impact; this is not
the situation in the Tavolara Channel, where diving activity is negligible and sporadically
limited to two sites, while, on the contrary, fishing is widely performed [30]. Other fre-
quent epibionts are the opportunistic tube-dwelling polychaetes Filograna/Salmacina spp.,
particularly recorded after summertime [64,65].

Lacking the possibility to observe a temporal pattern of colonization, we related
the presence of each epibiont with the total diversity of the epibiont community. Our
observations clearly indicate that when the assemblage consists of only one species, it was
generally represented by pioneer Hydrozoa turf (72%) and more rarely by Bryozoa (9%)
and Porifera (4%). At this stage, the parasitic Alcyonacea A. coralloides was never found.
When the assemblage increased in complexity, the species already present continued to
be recorded with the progressive addition of other taxa following this order: Hydrozoa,
Bryozoa, Serpulidea, Porifera, and A. coralloides. Considering the gorgonians with more
than seven epibiont species/OTUs, this anthozoan was present in more than 90% of them.
In general, in a hypothetical model of community development, new species are added
without substitution of the previous ones. The general scenario recalls a facilitative model
of succession. It has been well documented that a tolerance model, based upon recruitment
dynamics and life history characteristics without later species requiring earlier ones to
become established, can lead to a predictable sequence [66,67].

Another problem concerns the age estimation of epibiont assemblages. Some data are
available in the literature for the first phases after mass mortality. Perez et al. [9] recorded
microorganism colonization after a few days, while Hydrozoa, followed by Bryozoa and
Serpulidea, were observed some weeks later. This evolution was confirmed by other
authors [4,13,16,68]. Our data, obtained on single colonies photographed in different years,
indicate that the epibiont assemblage persists for several years. According to Wahl [69],
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epibiont species commonly grow fast. This is certainly true for pioneer species (filamentous
green and/or red algae and⁄or Hydrozoa) that colonize wide stripped portions of the
colonies in a few weeks [4,13,16]. Enrichetti et al. [42] studied the evolution of epibiosis on
lost nylon lines: after four years, the diversity of the recorded community was very similar
to that of those found on P. clavata, but only after a couple of years when large colonies
of calcified Bryozoa were found. These data suggest the possibility of obtaining a rough
age of epibionts of gorgonians, as indicated by the temporal sequence of images of single
colonies.

These results highlight how the development of epibiosis appears as a partially stochas-
tic phenomenon. The understanding of the dynamics of the processes requires continuous
monitoring techniques on a consistent number of colonies. The possibility of obtaining
images over long periods of time requires a high effort in terms of resources, but on the
other hand, it can allow the acquisition of fundamental information for the conservation of
important and fragile habitats.
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