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Abstract: Given the prevailing arid climate and rapid population growth, groundwater resources
face unprecedented challenges globally, including depletion, seawater intrusion, and contamination.
Managed aquifer recharge (MAR) technologies have emerged as valuable solutions to address
these pressing issues. However, identifying suitable regions for MAR activities is a complex task,
particularly at the country level. Therefore, in this study, we propose a robust approach that combines
the fuzzy analytical hierarchy process (AHP) and the technique for order of preference by similarity
to ideal solution (TOPSIS) to delineate suitable sites for MAR structures. The proposed model was
applied to Djibouti, a hot, dry, and water-stressed country. We identified a set of nine decision criteria
and conducted a pairwise comparison survey to determine their relative importance. Additionally,
the TOPSIS method was employed to integrate the decision layers and prioritize the study area. The
results highlight the significance of rainfall, the slope, and the NDVI as the most influential decision
parameters, while the drainage density has the least impact. A suitability analysis reveals that 16.38%,
17.96%, and 30.41% of the country have a very high, high, and moderate potential for MAR activities,
respectively. Furthermore, a sensitivity analysis demonstrates the stability of the proposed model,
affirming the usefulness of the generated suitability map.

Keywords: managed aquifer recharge; suitability mapping; fuzzy AHP; TOPSIS; sensitivity
analysis; groundwater

1. Introduction

The escalating demand for groundwater due to population growth, coupled with a
drying climate that limits recharge, is exacerbating the water situation and intensifying
the deterioration of subsurface resources [1]. In the Horn of Africa (Djibouti, Somalia,
Ethiopia, and Eritrea), water scarcity and climate variability have already manifested in
many challenges threatening millions of humans and living species. For instance, Djibouti’s
population heavily relies on groundwater resources, as permanent surface water sources,
such as rivers and lakes, are nonexistent. However, the heavy abstraction of underground
resources for several decades, coupled with highly variable rainfall in the region, has caused
significant water table declines and seawater intrusion, forcing more rural dwellers and
herders to seek refuge in urban areas after losing their livelihood sources [2]. The situation
in Somalia is much worse, as recurrent droughts in the region caused by four consecutive
failed rainy seasons have resulted in unsustainable means of groundwater extraction,
including the creation of more wells and boreholes, further aggravating environmental
degradation [3]. Consequently, about 6.1 million Somalis have been impacted by the
consequences of these droughts, leading to massive internal population displacement [3].
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The need to implement sustainable practices to mitigate the challenges faced by aquifer
systems has become increasingly pressing. In this regard, managed aquifer recharge (MAR)
has emerged as a promising technology that can address the risks confronting subsurface
water resources while simultaneously promoting groundwater recharge [4]. MAR is also
an efficient sustainable urban water management technique [5]. The technology involves
the intentional injection of reclaimed water into an aquifer for subsequent retrieval or the
achievement of environmental objectives [6]. Various built recharge structures are used to
facilitate the accelerated replenishment of natural underground reservoirs [7]. An example
of a widely embraced MAR technology in arid and semi-arid regions is rainwater harvest-
ing (RWH). RWH involves the collection and storage of storm runoff to augment the water
supply for domestic and agricultural purposes while also replenishing local aquifers [8].
Infiltration basins serve as another effective method of MAR, relying on the infiltration
process whereby water is spread over wide areas using basins, dams, and channels to
recharge an aquifer [9,10]. In cases where confined layers are present, deep injection wells
are commonly used to convey water to the aquifer system [11]. On the other hand, vadose
zone wells (i.e., drywells) offer advantages over other MAR techniques in recharging shal-
low urban aquifers due to their minimal land requirement and cost-effectiveness [12–14].
In general, Bouwer [15] asserted that the utilization of MAR systems offers numerous
advantages compared to traditional water storage methods such as large dams. The artifi-
cial recharge of underground water via MAR technology not only minimizes water loss
due to evaporation but also enables a smaller spatial footprint requirement and enhanced
long-term storage capacity with lower costs [16].

In the context of MAR technologies, identifying suitable locations for recharge struc-
tures during the design stage of MAR projects is a challenging task, given the multiple
factors involved. Consequently, the research community has developed several approaches
to tackle this issue. For example, Anbazhagan and Ramasamy [17] utilized geophysi-
cal methods (particularly resistivity surveys) to identify appropriate sites for artificial
recharge. Similarly, Christy and Lakshmanan [18] employed electrical resistivity and
ground-penetrating radar methods to delineate feasible locations for MAR structures in
Chennai, India, aiming to address saltwater intrusion. Brown et al. [19], on the other hand,
proposed a statistical analysis-based methodology to determine suitable sites for Aquifer
Storage and Recovery (ASR) projects. In a different vein, Zaidi et al. [20], Tiwari et al. [21],
and Ahirwar et al. [22] utilized an integrated geographic information system (GIS) and re-
mote sensing methods to pinpoint promising regions for MAR activities. Nevertheless, the
application of coupled GIS and multi-criteria decision analysis (GIS-MCDA) techniques can
be regarded as one of the most embraced approaches for delineating sites favorable for MAR
applications [23–28]. Hence, the ability of a GIS to store and process spatial data [1] and
the robustness of MCDA methods in resolving multi-tiered decision-making problems [29]
make their integration a promising alternative for identifying regions promising for MAR
implementation.

Sallwey et al. [30] noted that the most commonly adopted GIS-MCDA approaches
in the relevant literature for determining the importance levels of decision parameters
and combining thematic layers are the analytic hierarchy process (AHP) and the weighted
linear combination (WLC), respectively. To exemplify this, Kazakis [25] applied AHP-WLC
to identify potential MAR sites as a means to mitigate and prevent saltwater intrusion in a
coastal aquifer. Similarly, Zhang et al. [31] employed the AHP to assess the significance lev-
els of criteria and employed the WLC to combine thematic layers, leading to the production
of a final MAR suitability map for the water-stressed West Coast region of South Africa. The
authors claimed that the combination of the AHP with WLC offers an effective approach
to address spatial decision-making problems. In line with this, Shadmehri Toosi et al. [32]
applied the AHP to derive the weights of the utilized decision parameters (namely, slope,
rainfall, soil type, soil depth, land use, and drainage density) to delineate suitable sites for
RWH structures. However, it should be noted that some scholars have highlighted the
limitations of the standard AHP, particularly in incorporating the inherent fuzziness of
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human judgment [33]. Consequently, hybridizing fuzzy set theory and the AHP technique
has been widely acknowledged by various researchers in recent attempts [4,10,34]. In
addition, various MCDA-based prioritization techniques, such as the evaluation based on
distance from average solution (EDAS), simple additive weighting (SAW), and the tech-
nique for order of preference by similarity to ideal solution (TOPSIS), have been utilized in
the pertinent literature [35–38].

From a spatial aspect, the assessment of MAR potential has been extensively con-
ducted at the watershed or district scale. However, it is imperative to emphasize the
significance of examining MAR potential at a countrywide level, particularly in regions
where MAR is a relatively new concept. In this regard, Mahmoud et al. [39] developed
an RWH site suitability map for Egypt at a national scale to promote the sustainability of
subsurface resources and address water scarcity across the country. Likewise, Mahmoud
and Tang [40] generated an RWH potential map for the entire United Kingdom considering
divergent decision attributes, including rainfall, slope, curve number, land cover/use, and
soil texture. Bonilla Valverde et al. [24] mapped the potential of MAR technology (notably
surface-spreading techniques) in Costa Rica at the country scale based on four decision
factors, namely, the hydrogeological aptitude, slope, soil texture, and drainage network
density. Kadhem and Zubari [41] prioritized the Kingdom of Bahrein in terms of MAR suit-
ability as a means to address the groundwater table decline and saltwater intrusion in the
country. Notably, Mati et al. [42] conducted the largest-scale assessment of MAR potential,
evaluating RWH technology for ten African countries, namely, Botswana, Ethiopia, Kenya,
Malawi, Mozambique, Rwanda, Tanzania, Uganda, Zambia, and Zimbabwe.

This study entailed the assessment of MAR potential in a hot and arid region through
the utilization of a novel hybrid fuzzy AHP and TOPSIS approach. The proposed frame-
work was applied to the water-stressed country of Djibouti, where ensuring the long-term
sustainability of groundwater resources is of paramount importance for the local popu-
lation’s survival. The research objectives can be summarized as follows: (i) conduct a
comprehensive assessment of MAR potential in Djibouti for the first time, (ii) identify a
comprehensive set of surface, environmental, and subsurface decision factors based on
an extensive review of the literature to determine regions suitable for MAR activities,
(iii) initiate a pairwise comparison questionnaire involving experts from various back-
grounds and ensure the consistency of the preferences of the participants, (iv) employ the
fuzzy AHP algorithm to determine the importance levels of the decision criteria while
utilizing the TOPSIS method to prioritize the study area based on different degrees of
suitability, (v) perform a two-stage sensitivity analysis to assess the stability and reliability
of the proposed model, which represents an initial attempt in the existing literature, and
(vi) utilize the web-based INOWAS tool to select feasible MAR techniques for the study
region and assess their suitability in terms of their implementation in Djibouti.

2. Materials and Methods

The present research aimed to establish a robust decision framework encompassing
the adoption of different MCDA techniques. Hence, a thorough literature survey was con-
ducted first, leading to the extraction of decision criteria that influence the determination of
(non-) suitable MAR regions. To quantitatively evaluate the corresponding decision criteria,
this study introduced the fuzzy AHP algorithm with the triangular fuzzy membership
function. It is important to note that, along with dealing with interpersonal uncertainty by
adopting fuzzy set theory, the reliability of the subjective judgments of the experts and the
stability of the entire criteria weighting process were ensured by consistency ratio checks
and a sensitivity analysis, respectively. Given the necessity to mimic real-world conditions
in this analysis to extrapolate the results that can potentially be applied in regions of interest,
this research further integrated the criteria weights with the current values of the decision
criteria in the TOPSIS analysis in order to designate the MAR-suitable regions in Djibouti.
The research steps considered in this study are depicted in Figure 1.
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2.1. Study Area

Djibouti, situated in the Horn of Africa, is the smallest country in the region, with a
land area of approximately 23,200 km2 (Figure 2). The country has a current estimated
population of one million and shares terrestrial borders with Eritrea, Ethiopia, and So-
malia, as well as maritime borders with Yemen. The climate of Djibouti is characterized
by hot and arid conditions, with an annual mean rainfall of 150 mm and temperatures
ranging from 20 ◦C to 30 ◦C in winter (October to April) and 30 ◦C to 45 ◦C in summer
(May to September) [43]. In Djibouti, the principal groundwater reserves consist of fractured
volcanic aquifers, primarily represented by three geological formations: the Dalha basalts,
the Stratoid basalts, and the Mabla rhyolites [44,45]. These geological formations serve as
the main sources of groundwater supply, characterized by a fractured nature and high per-
meability, allowing for substantial quantities of groundwater to be extracted. Furthermore,
sedimentary aquifers with a transmissivity between 5.6 × 10−6 and 1.3 × 10−3 m2/s [44]
are present along some watersheds and the eastern coastal part of the study region.
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Figure 2. Study area.

The ability to meet the water demand of the country heavily relies on groundwa-
ter due to the absence of permanent surface water resources. This overdependence has
led to the widespread use of abstraction wells without proper planning or sustainable
management practices [46]. Consequently, this excessive groundwater extraction, coupled
with reduced recharge rates due to climate variability, poses substantial challenges to
subsurface resources (i.e., depletion, contamination, and saltwater intrusion). In light of
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these challenging circumstances, investigating the feasibility of MAR in Djibouti assumes
great importance, as it presents a viable solution to mitigate water shortage and achieve
long-term sustainability.

2.2. Data Source and Layer Processing

After performing an extensive review of the existing literature and consulting with
experts in the field, a comprehensive analysis resulted in the identification of nine pertinent
parameters for delineating regions suitable for MAR activities. These selected criteria were
subsequently categorized into three primary clusters, each encompassing three criteria,
in order to establish an improved hierarchical framework (Table 1). The surface cluster
consisted of the slope, soil texture, and curve number, while rainfall, the normalized
difference vegetation index (NDVI), and drainage density were incorporated into the
decision framework under the umbrella of the environmental cluster. Lastly, the subsurface
cluster comprised depth to groundwater, geology, and groundwater quality (specifically
the electrical conductivity in this investigation). Additionally, a concise description of the
influence of each criterion in the MAR potential mapping decision framework can also be
found in Table 1.

The generation of a spatial thematic layer for each factor involved in the decision
framework represents an important step in MAR mapping. In line with this, a raster
layer was generated for each criterion based on various data sources. For instance, slope
and drainage density maps (depicted in Figures 3a and 3f, respectively) were derived
from the ALOS World 3D (AW3D) digital elevation model with a 5 m resolution [47]. The
available slope analysis tools in QGIS were used to generate the slope layer of the study
region in percent, while the drainage density raster layer was obtained by applying the
line density interpolation algorithm. Soil texture was obtained from the Harmonized
World Soil Database version 2.0 (HWSD v2.0) [48], and the resulting map is given in
Figure 3b. The curve number map (Figure 3c) of the study region was clipped from the
global curve number (GCN250) dataset provided by Jaafar and Ahmad [49]. The GCN250
dataset has a resolution of 250 m and can be downloaded in raster format. To establish the
rainfall distribution throughout the country, the average annual rainfall at various stations
was acquired from Dabar et al. [50], and the precipitation raster layer (Figure 3d) was
generated using the inverse distance weighting (IDW) interpolation method. Regarding
the calculation of the NDVI illustrated in Figure 3e, Sentinel 2 imagery was employed, and
the following formula was applied:

NDVI =
NIR− RED
NIR + RED

(1)

where NIR and RED represent the near-infrared and red bands, respectively. The acqui-
sition of Sentinel imagery from Google Earth Engine and the necessary computations to
obtain the NDVI were performed using the Geemap Python package [51]. The geological
representation of the country was digitized from a technical report [46], while the layers
depicting depth to groundwater and electrical conductivity were generated using IDW
interpolation based on raw data obtained from the Ministry of Agriculture, Water, Fisheries
and Livestock, in charge of Fishery Resources (MAEPE-RH) of Djibouti. Hence, Figure 3g–i
illustrate the depth to groundwater, geology, and electrical conductivity maps, respectively.
It is important to highlight that all geoprocessing tasks in this research were conducted
using QGIS 3.28 [52].
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During this stage, the need for standardizing the decision layers becomes imperative
due to their diverse nature in this study. The existing literature encompasses various stan-
dardization techniques, including fuzzy membership functions, stepwise functions, AHP,
and the utilization of rates/scores for feature classes [23,24,31,32,53–55]. Consequently, this
study employed the rating technique to reduce the complexity of the proposed framework,
whereby a score of 5 was assigned to cells exhibiting high suitability for MAR potential,
while a rating of 1 was attributed to the least suitable cells (Table 1).

Table 1. List of selected decision criteria, accompanied by their corresponding descriptions, along
with the ratings assigned to the criteria classes.

Clusters Criteria ID Classes Rating Source Reference

Surface Slope a (%) S 0–2 5 AW3D [47]
2–5 4
5–10 3
10–25 2
>25 1

Soil texture b ST Eutric Fluvisols (FLeu) 5 HWSD v2.0 [48]
Petric Gypsisols (GYp) 4
Eutric Leptosols (LPeu) 2
Lithic Leptosols (LPli) 2
Haptic Solonchaks (SCh) 1
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Table 1. Cont.

Clusters Criteria ID Classes Rating Source Reference

Curve number c CN 75–85 5 Jaafar and Ahmad [49]
67–75 4
62–67 3
55–62 2
40–55 1

Environment Rainfall d (mm) Rl 153–220 5 Dabar et al. [50]
134–153 4
118–134 3
95–118 2
43–95 1

Normalized difference e NDVI 0.10–0.24 5 Sentinel 2 [56]
vegetation index 0.05–0.10 4

0.02–0.05 3
0–0.02 1

Drainage density f (km/km2) DD 0–4.13 5 AW3D [47]
4.13–7.10 4
7.10–10.17 3
10.17–14.12 2
14.12–24.47 1

Subsurface Depth to groundwater g (m) DG 0.7–13 1 MAEPE-RH
13–21 5
21–35 3
35–67 2
>67 1

Geology h G Sedimentary formations 5 MAEPE-RH [46]
Recent basalt (1 Ma-actual) 3
Stratoid basalt (3.4–1 Ma) 2
Golf basalt (3.4–1 Ma) 2
Somali basalt (9–3.4 Ma) 2
Dalha basalt (9–3.4 Ma) 2
Adolei basalt (25Ma) 2
Stratoid rhyolite 1
Mabla rhyolite 1
Cretaceous–Jurassic base 1

Groundwater quality i

(µS/cm)
EC 200–1000 5 MAEPE-RH

1000–2100 4
2100–2600 3
2600–3700 2
>3700 1

Notes: a Slope serves as a highly utilized decision criterion in the context of MAR mapping due to its significant
influence on the convergence and divergence of runoff water, ultimately affecting the infiltration capacity [24].
b Rajasekhar et al. [57] noted that the soil type plays a critical role in regulating both infiltration rates and the
potential generation of runoff. Specifically, soils with a high clay content tend to display diminished infiltration
rates and increased runoff, whereas soils with a high sand content tend to exhibit enhanced infiltration rates
and reduced runoff. c As a dimensionless index that characterizes the soil’s ability to absorb water, the curve
number can be used to indirectly estimate the volume of runoff that can be harvested in a particular area for MAR
usage [58]. d Rainfall plays a pivotal role in MAR mapping since rainwater represents the main source of water
for MAR projects worldwide [59]. e According to Ansems et al. [60], high-NDVI regions could be indicative of the
temporal availability of water and thereby have the potential to reclaim large volumes of water. f Drainage density
is inversely proportional to permeability such that areas with a high drainage density indicate the presence of
low-permeability rock, whereas a low drainage density suggests the presence of more permeable rock [61]. g The
depth to groundwater influences the feasibility of the MAR project as well as the recharge rates [20]. h The rock
type prevalent in a given region plays a vital role in governing the movement and distribution of groundwater [62].
i Injecting reclaimed water into a poor-groundwater-quality region could jeopardize the MAR benefit; therefore, it
is important to include groundwater quality parameters in the decision framework [58].
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2.3. MCDA Rationale

MCDA is a technique used in complex decision-making processes. MCDA methods
are generally employed to evaluate alternative options by considering multiple criteria or
objectives, and rather than providing an ideal solution, they enable the extraction of a com-
promise solution [63]. With the MCDA rationale, the first step involves identifying criteria
to consider in the decision-making process, which represent the metrics used to evaluate
the alternatives. Subsequently, weighting is applied to assign importance degrees to the
identified criteria, reflecting their relative significance. Following that, each alternative is
subjected to a performance evaluation based on the predefined criteria involving the ob-
jective evaluation of the alternatives’ performance. Finally, by utilizing the corresponding
outcomes, an aggregation method is employed to determine the overall performance of
the alternatives, aiding in ranking the alternatives and identifying the optimal solution(s).
MCDA is applied in various domains, including business [64], public policy [65], envi-
ronmental management [66], and healthcare [67] projects. Different techniques and tools
are available within the MCDA framework, including the AHP, analytic network process
(ANP), TOPSIS, and preference ranking organization method for enrichment evaluations
(PROMETHEE). However, the choice of technique depends on the specific characteristics of
the decision problem, the available data, and the preferences of the decision-makers. Over-
all, MCDA provides a structured and systematic approach to decision making, enabling
stakeholders to consider multiple criteria and objectives in a comprehensive manner. It
supports more informed and rational decision making, especially in complex situations
where there are trade-offs and conflicting preferences among different criteria.

2.3.1. Description of the Fuzzy AHP Algorithm

The AHP, introduced by Saaty [68], is frequently employed to construct a hierarchical
framework that captures intricate problem structures, aligning with the subjective assess-
ments of experts. This methodological framework enables a detailed and granular analysis
of complex problems, allowing for the incorporation of the subjective judgments of experts
while maintaining scientific rigor. The AHP employs a systematic approach to hierarchi-
cally structure a problem, beginning with a primary goal and progressively delving into
criteria, sub-criteria, and subsequent levels, ultimately encompassing a comprehensive
set of alternatives [69]. This hierarchical representation offers experts a comprehensive
understanding of the intricate relationships inherent in the context, enabling a holistic view
of the problem. Furthermore, it aids in evaluating the comparability of elements at the same
level, allowing for meaningful comparisons and assessments [33]. Subsequently, elements
are subjected to pairwise comparisons on a nine-level scale to derive their relative weights,
facilitating [70,71] the quantification of their respective importance in the decision-making
process. Although the primary objective of the AHP is to incorporate expert knowledge, the
classical AHP method falls short in addressing the non-numeric uncertainties inherent in
human thinking processes. Consequently, the implementation of the fuzzy AHP to provide
more robust solutions has gained much more interest in the recent decade. The fuzzy AHP
method integrates the principles of fuzzy sets (initially introduced by Zadeh [72]) to address
the intricate and ambiguous nature of the environment and experts’ preferences. The fuzzy
AHP tackles the challenges posed by vagueness and imprecision in decision making by
enabling fuzzy linguistic assessments and the representation of interpersonal uncertainties
through fuzzy numbers. By capturing and quantifying the inherent ambiguity, the fuzzy
AHP offers a more reliable and comprehensive approach to handling complex problems
and supports more informed decision-making processes. When decision-makers evaluate
criteria and alternatives, they can utilize natural language expressions alongside precise
numerical values. Therefore, the fuzzy AHP method closely resembles human thinking
and perceptions. As a result, it has been consistently employed by numerous researchers
across various fields [70,71,73].

In the initial step of utilizing the fuzzy AHP, the decision hierarchy structure is
established by incorporating all the criteria, including primary criteria, sub-criteria, goals,
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and alternatives. To determine the order, each pair of items is compared using a nine-point
significance scale. The steps of the fuzzy AHP approach are commonly arranged in the
following manner:

1. After the hierarchical structure is revealed, decision-makers construct binary com-
parison matrices in accordance with their perspectives. These matrices encompass
the relative evaluations and favored choices among components at each level of the
hierarchy. The reciprocals of linguistic variables regarding the importance degrees
of the criteria are incorporated into the preferences of the experts who attended the
surveys. Thus, lij, mij, and uij, indicating the lower, mean, and upper widths of the
pairwise judgments of the experts for criterion i compared to criterion j, respectively,
are determined (Table 2).

Table 2. Linguistic scales and triangular fuzzy reciprocals of AHP and fuzzy AHP.

Linguistic Variables

AHP Fuzzy AHP

Importance Value for Reciprocals
Triangular Fuzzy Numbers(

lij,mij,uij

) Triangular Fuzzy Reciprocals(
1/uij,1/mij,1/lij

)
Equally important 1 (1/1) (1,1,1) (1,1,1)
Intermediate value 2 (1/2) (1,2,3) (1/3,1/2,1)
Moderately important 3 (1/3) (2,3,4) (1/4,1/3,1/2)
Intermediate value 4 (1/4) (3,4,5) (1/5,1/4,1/3)
Important 5 (1/5) (4,5,6) (1/6,1/5,1/4)
Intermediate value 6 (1/6) (5,6,7) (1/7,1/6,1/5)
Very important 7 (1/7) (6,7,8) (1/8,1/7,1/6)
Intermediate value 8 (1/8) (7,8,9) (1/9,1/8,1/7)
Extremely important 9 (1/9) (9,9,9) (1/9,1/9,1/9)

2. In the fuzzy AHP approach, an additional step is implemented to verify the consis-
tency of experts’ pairwise comparisons. This is achieved by calculating the consistency
ratio (CR), where CR values exceeding 0.1 indicate inconsistent judgments made by
respondents, while CR values below the threshold indicate a more consistent set of
expert preferences. The following expression can be utilized to determine the CR
values, thus assessing the level of consistency in the decision-making process.

CR =
λmax−n

n−1
RI

(2)

where λmax and n denote the maximum eigenvalue of the matrix and the number of
criteria in the matrix, respectively. In addition, RI is the random index, which was
introduced by Saaty [74] and is based on the size of the matrix (Table 3).

Table 3. Random index.

n 1 2 3 4 5 6 7 8 9 10

Random Index 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

3. In this step, the fuzzy equivalents of each linguistic variable are calculated. Equation (3)
outlines the method for determining the lower (lijk), mean (mijk), and upper (uijk)
widths of the fuzzy equivalents using the triangular membership function.

lij =

(
K

∏
k=1

lijk

)1/K

; mij =

(
K

∏
k=1

mijk

)1/K

; uij =

(
K

∏
k=1

uijk

)1/K

(3)

in which K is the total number of respondents.
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4. To address the inherent vagueness and uncertainty in experts’ judgments (Table 4),
Chang’s [75] extent analysis was employed. In this approach, crisp mathematical
notations were utilized to obtain fuzzy quantities. The object set, represented by
X = {x1, x2, x3, . . . , xn}, and the goal set, denoted by U = {u1, u2, u3, . . . , un}, were
considered in the extent analysis. For each goal, denoted by ui, extent analysis values
represented by m are obtained for each object.

lij =

(
K

∏
k=1

lijk

)1/K

; mij =

(
K

∏
k=1

mijk

)1/K

; uij =

(
K

∏
k=1

uijk

)1/K

(4)

Table 4. Profiles of the experts who performed pairwise comparisons.

ID Sector Job Description Background Experience (Years)

Expert 1 Academia Professor Civil and Environmental
Engineering 16

Expert 2 Academia Associate Professor Environmental Engineering 11
Expert 3 Municipality Head of Department Civil Engineering (PhD) 20
Expert 4 Municipality Planning Engineer Architecture (MSc) 6
Expert 5 Water administration Unit Manager Civil Engineering 8
Expert 6 Water administration Technical Office Engineer Geological Engineering (MSc) 5
Expert 7 Private sector General Manager Environmental Engineering (MSc) 15
Expert 8 Private sector Modeling and Design Engineer Geological Engineering 6

To calculate Mj
gi, the fuzzy extent analysis M value addition operation is performed

on the matrix. This operation involves adding each triangular fuzzy number (TFN) in
each row of the matrix using the addition operation, as described in Equation (5).

m

∑
j=1

Mj
gi =

(
m

∑
j=1

lj,
m

∑
j=1

mj,
m

∑
j=1

uj

)
(5)

with i = 1, 2, . . . , n. The score
[
∑n

j=1 ∑m
j=1 Mj

gi

]−1
is obtained by calculating the sum

of the entire triangular fuzzy number set Mj
gi(j = 1, 2, . . . , m).[

∑n
j=1 ∑m

j=1 Mj
gi

]
=
[
∑n

j=1 ∑m
j=1 lj, ∑n

j=1 ∑m
j=1 mj, ∑n

j=1 ∑m
j=1 uj

]
(6)

The inverse of the initial equation can be computed using the formula presented in
Equation (7). [

∑n
j=1 ∑m

j=1 Mj
gi

]−1
=

(
1

∑n
i=1 u1

,
1

∑n
i=1 m1

,
1

∑n
i=1 l1

)
(7)

A comparative calculation is performed to assess the level of possibility between fuzzy
numbers. This comparison is utilized to determine the weight value assigned to each
criterion. When comparing two triangular fuzzy numbers M1 = (l1, m1, u1) and
M2 = (l2, m2, u2), where the probability level S2 ≥ S1, a definition can be established.

(M2 ≥ M1) =


1, i f m1 ≥ m2

0, i f l1 ≥ l2
l1−u2

(m2−u2)−(m1−l1)
, f or others

(8)
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To compare M1 and M2, it is necessary to calculate the values V (M1 ≥ M2) and
V (M2 ≥ M1). Once the fuzzy synthetic values have been compared, the minimum
value is determined using Equation (9).

D′(Ai) = minV(Si ≥ Sk) (9)

For each k value ranging from 1 to n, where k 6=i, the weight vector is calculated to
facilitate the interpretation of the defined criteria.

W ′ =
[
d′(A1), d′(A2), . . . , d′(An)

]T (10)

where Ai(i = 1, 2, . . . n) is n elements, and d’(Ai) is the score describing each decision
attribute of the compared options.

Subsequently, the weights are normalized using Equation (11) to transform the values
in the weight vector into analog weights. This normalization process ensures that the
weights consist of non-fuzzy numbers.

d(Ai) =
d′(Ai)

∑n
i=1 d′(Ai)

f or i = 1, 2, . . . , n (11)

5. The last step is considered crucial in determining the degrees of importance for the
considered criteria [76]. Therefore, a sensitivity analysis was conducted to examine the
variations in criteria importance based on different degrees of fuzziness. The initial
degree of fuzziness in the adopted FAHP method was set to 1, determined by the
distances between l, m, and u values (Table 2). Additionally, five additional fuzziness
degrees (1.2, 1.4, 1.6, 1.8, and 2.0) were explored in the current study. Consequently, if
the order of importance remains relatively unchanged, it can be concluded that the
decision analysis framework yields reliable results and is not significantly influenced
by changes in fuzziness degrees [77].

2.3.2. Description of the TOPSIS Algorithm

The TOPSIS method is a well-established decision-making technique that has been
widely used in various fields. According to Hwang and Yoon [78], TOPSIS is based on the
concept of ranking alternatives by their relative proximity to the ideal solution. On the one
hand, the positive ideal solution represents the alternative that maximizes benefit criteria
and minimizes cost criteria. On the other hand, the negative ideal solution minimizes
benefit criteria and maximizes cost criteria. The selection of the most suitable alternative
is performed based on its proximity to the positive ideal solution and distance from the
negative ideal solution. The TOPSIS method provides a systematic approach to decision
making, considering multiple criteria simultaneously. Overall, the TOPSIS method has
proven to be effective in evaluating and ranking alternatives, and its application has been
documented in numerous scientific studies [79–81].

The TOPSIS essentially contains six steps:

1. Defining the Decision Matrix: A decision matrix is formulated, encompassing all
available alternatives along with their corresponding performance values on various
criteria. The decision matrix is typically represented as an m × n matrix, where m
is the number of alternatives and n is the number of criteria. The decision matrix
according to the TOPSIS method is shown in Equation (12).

Aij =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . .
. . . .

am1 am2 . . . amn

 (12)
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In this study, the generation of the decision matrix involved several steps. Initially,
a rectangular grid layer with a spatial resolution of 500 m × 500 m was created and
subsequently clipped with the study area vector layer to confine the analysis within
the defined study boundaries. Then, the zonal statistics tool was employed to calculate
the mean value for each pixel, considering the nine decision layers as input raster
layers. Consequently, the outcome of this process yielded a decision matrix consisting
of 90,177 rows and 9 columns.

2. Normalizing the Decision Matrix: The decision matrix is normalized to eliminate any
scale differences among the criteria. This step ensures that all criteria are given equal
weightage in the decision-making process. Various normalization methods can be
used, such as min–max normalization or vector normalization. The normalization of
the decision matrix can be calculated through the formula depicted in Equation (13).

rij =
aij√

∑m
k=1 a2

kj

(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (13)

3. Assigning Weights to the Criteria: The relative importance or weights of the criteria
are determined. The weights reflect the significance of each criterion in the decision-
making process. The determination of weights can be subjective, based on expert
judgment, or derived using mathematical techniques, such as the analytic hierarchy
process (AHP) or Entropy Weight Method. At this stage, the weighted decision matrix
is obtained by multiplying the data in the normalized decision matrix, obtained in
the second step of the TOPSIS method, by the weight values determined through
the previously conducted weighting method. The sum of the data obtained from the
weighting method must be equal to 1.

4. Determining the Positive and Negative Ideal Solutions: The positive ideal solution and
the negative ideal solution are identified based on the maximum and minimum values,
respectively, for each criterion. The positive ideal solution represents the alternative
that achieves the maximum benefit and the minimum cost, while the negative ideal
solution represents the alternative that minimizes the benefit and maximizes the cost.
The TOPSIS method assumes that each criterion exhibits a monotonically increasing
or decreasing trend. To determine the ideal solution set, the maximum value of the
column in the weighted decision matrix is selected. If the criterion is cost-oriented or
in a minimization direction, the smallest criterion is chosen. The relevant formula for
the ideal solution set is shown in Equation (14).

A+ =
{(

max vij
∣∣j ∈ J

)
,
(
min vij

∣∣j ∈ J′
)}

(14)

In the negative ideal solution set, the smallest values of the data in the columns
containing criterion values in the weighted decision matrix are examined. The formula
for the negative ideal solution set is shown in Equation (15).

A− =
{(

min vij
∣∣j ∈ J

)
,
(
max vij

∣∣j ∈ J′
)}

(15)

5. Calculating Euclidean Distances: The Euclidean distance between each alternative
and the positive and negative ideal solutions is calculated. The Euclidean distance
represents the overall proximity or distance of each alternative to the ideal solutions
in the multi-dimensional criteria space. As a result of this process, the deviation
values for the alternatives are defined as the ideal separation (S+

1 ) and negative ideal
separation (S−1 ) measures. The formulas for ideal separation and negative ideal
separation are shown in Equations (16) and (17).

S+
1 =

√
∑n

j=1

(
vij − v+j

)2
(16)
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S−1 =

√
∑n

j=1

(
vij − v−j

)2
(17)

6. Calculating the Proximity to Ideal Solutions: The relative proximity of each alternative
to the positive and negative ideal solutions is determined. This can be achieved by
calculating the relative closeness coefficient, which is the ratio of the distance from
the negative ideal solution to the sum of the distances from the positive and negative
ideal solutions. The calculation of the relative closeness to the ideal solution is shown
in Equation (18).

CCi =
S−1

S−1 + S+
1

(18)

The obtained CCi value takes a value in the range of 0 ≤ CCi ≤ 1. CCi = 1 indicates
the absolute proximity of the alternative to the ideal solution, while CCi = 0 indicates
the absolute proximity of the alternative to the negative ideal solution. The ranking
of alternatives is determined by sorting the obtained CCi values in descending order,
indicating their level of importance.

3. Results
3.1. Criteria Weighting

This research has explored the role of different criteria in assessing the MAR mapping
based on three dimensions, i.e., surface, environment, and subsurface. The fuzzy AHP
technique was employed not only to reveal the contribution of each dimension but also to
demonstrate the impact of nine different criteria on the MAR suitability assessments. Hence,
the present study utilized the outcomes of the judgments of the expert group (Table 4) to
compute the weights of both the main clusters and the corresponding criteria. To ensure
the reliability of the obtained results, consistency ratios were initially investigated. It is
especially worth mentioning that obtaining CR values smaller than 10% indicates that the
decision framework is consistent, and further computations, including criteria weighting,
can be pursued. Figure 4 reveals that all the experts were quite consistent in pairwise
comparisons. In qualitative assessments, the experts may be confused about their results
due to the complex nature of the pairwise comparison matrix, leading to inconsistent
evaluations. However, this research refined the list of criteria (3 × 3) and the main clusters
(1 × 3), and the experts yielded consistent results in the first round of the surveys.

Table 5 highlights that, among the three main clusters, the environment dimension
(with a weight of 48.85%) was determined as the most significant, followed by the surface
(30.36%) and subsurface (20.79%) dimensions, respectively. Table 5 also includes the local
and global weights of the criteria considered. Accordingly, in the surface cluster, the slope
was the most determinant criterion, as it gained the highest weight with 43.92%, while the
curve number and soil texture followed the slope with 31.27% and 24.81%. In addition, the
rainfall criterion (62.80%) outperformed the NDVI (24.33%) and drainage density (12.86%)
with respect to the criteria weights calculated through the fuzzy AHP. The local criteria
weights regarding the subsurface dimension depict a more homogeneous distribution
among the three considered criteria, i.e., groundwater quality (37.27%), geology (33.41%),
and depth to groundwater (29.32%), indicating that each criterion has no distinctive impact
on the determination of suitable MAR sites.



Water 2023, 15, 2534 15 of 28

Water 2023, 15, x FOR PEER REVIEW 15 of 29 
 

 

 
Figure 4. Consistency ratios of the experts who completed the pairwise comparison questionnaire. 

Table 5 highlights that, among the three main clusters, the environment dimension 
(with a weight of 48.85%) was determined as the most significant, followed by the surface 
(30.36%) and subsurface (20.79%) dimensions, respectively. Table 5 also includes the local 
and global weights of the criteria considered. Accordingly, in the surface cluster, the slope 
was the most determinant criterion, as it gained the highest weight with 43.92%, while the 
curve number and soil texture followed the slope with 31.27% and 24.81%. In addition, 
the rainfall criterion (62.80%) outperformed the NDVI (24.33%) and drainage density 
(12.86%) with respect to the criteria weights calculated through the fuzzy AHP. The local 
criteria weights regarding the subsurface dimension depict a more homogeneous distri-
bution among the three considered criteria, i.e., groundwater quality (37.27%), geology 
(33.41%), and depth to groundwater (29.32%), indicating that each criterion has no dis-
tinctive impact on the determination of suitable MAR sites. 

Furthermore, global weights, which directly indicate the contribution of each crite-
rion to the final suitability assessment of the study region, are also presented in Table 5. 
According to the results obtained, rainfall, having a global weight of 30.68%, outper-
formed its counterparts. In addition, rainfall was followed by the slope (with a global 
weight of 13.33%) and NDVI (with a global weight of 11.89%). On the other hand, among 
the nine decision criteria, the fuzzy AHP assessments underestimated the role of depth to 
groundwater, drainage density, and geology, as the lowest weights were assigned to these 
factors. 

  

Figure 4. Consistency ratios of the experts who completed the pairwise comparison questionnaire.

Table 5. Decision criteria weights and their respective ranking.

Cluster Weight Criteria
Weight Rank

Local Global Local Global

Surface 30.36% Slope 43.92% 13.33% 1 2
Soil texture 24.81% 7.53% 3 6
Curve number 31.27% 9.50% 2 4

Environment 48.85% Rainfall 62.80% 30.68% 1 1
Normalized difference vegetation index 24.33% 11.89% 2 3
Drainage density 12.86% 6.28% 3 8

Subsurface 20.79% Depth to groundwater 29.32% 6.10% 3 9
Geology 33.41% 6.95% 2 7
Groundwater quality (EC) 37.27% 7.75% 1 5

Furthermore, global weights, which directly indicate the contribution of each crite-
rion to the final suitability assessment of the study region, are also presented in Table 5.
According to the results obtained, rainfall, having a global weight of 30.68%, outper-
formed its counterparts. In addition, rainfall was followed by the slope (with a global
weight of 13.33%) and NDVI (with a global weight of 11.89%). On the other hand, among
the nine decision criteria, the fuzzy AHP assessments underestimated the role of depth
to groundwater, drainage density, and geology, as the lowest weights were assigned to
these factors.
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3.2. Sensitivity Analysis

In this study, a sensitivity analysis with respect to different fuzziness degrees was
implemented to ensure the stability of the obtained results as well as underscore the trans-
parency of the criteria weighting attempts. Hence, in addition to dealing with interpersonal
uncertainty by utilizing the fuzzy AHP rationale [82], the robustness of the criteria as-
sessments is ensured via the sensitivity analysis conducted through different fuzziness
degrees (i.e., 1.2, 1.4, 1.6, 1.8, and 2.0). This method was embraced due to its previous
implementations [83]. Fuzziness degrees capture the level of ambiguity or uncertainty
associated with linguistic judgments or criteria weights in the AHP. A sensitivity analysis
helps understand the impact of variations in fuzziness degrees on the final results, enabling
better management and the interpretation of uncertainty (Figure 5). The most significant
aspect of assessing the sensitivity plot is focusing on variations in the criteria importance
order. The figure reveals that, with regard to the alterations in fuzziness degrees, the fuzzy
AHP results yielded consistent outcomes, as there are no considerable variations in criteria
rankings. Therefore, one can conclude that the factors having a significant impact on
model outcomes account for the similar importance considering various fuzziness degrees.
The level of confidence/agreement in the decision process is ensured with the sensitivity
analysis, and it is highlighted that the quality of the experts’ preferences is aligned with the
consistent decision context (Figure 5).
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In this study, an additional sensitivity analysis approach was conducted. To accom-
plish this aim, the weight of each criterion was shifted to another criterion, and the obtained
results were compared with the baseline scenario (i.e., originally obtained criteria weights)
with respect to the root mean square error (RMSE) computations (Table 6). The results
showed that the vast majority of the scenarios yielded considerably lower RMSE values,
except when Rl (i.e., rainfall) was exchanged with its counterparts. The corresponding
results can be explained by the fact that rainfall was originally overestimated by the experts,
illustrating its high influence on the final MAR suitability decision.
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Table 6. Sensitivity analysis results based on shifting criteria weights.

Scenario ID Shift RMSE Scenario ID Shift RMSE Scenario ID Shift RMSE

Scenario 1 S–ST 0.0209 Scenario 13 ST–DG 0.0062 Scenario 25 Rl–G 0.1932
Scenario 2 S–CN 0.0259 Scenario 14 ST–G 0.0014 Scenario 26 Rl–EC 0.1519
Scenario 3 S–Rl 0.1416 Scenario 15 ST–EC 0.0008 Scenario 27 NDVI–DD 0.0242
Scenario 4 S–NDVI 0.0075 Scenario 16 CN–Rl 0.2059 Scenario 28 NDVI–DG 0.0327
Scenario 5 S–DD 0.0366 Scenario 17 CN–NDVI 0.0190 Scenario 29 NDVI–G 0.0213
Scenario 6 S–DG 0.0384 Scenario 18 CN–DD 0.0130 Scenario 30 NDVI–EC 0.0182
Scenario 7 S–G 0.0239 Scenario 19 CN–DG 0.0095 Scenario 31 DD–DG 0.0005
Scenario 8 S–EC 0.0246 Scenario 20 CN–G 0.0154 Scenario 32 DD–G 0.0028
Scenario 9 ST–CN 0.0126 Scenario 21 CN–EC 0.0067 Scenario 33 DD–EC 0.0037
Scenario 10 ST–Rl 0.1687 Scenario 22 Rl–NDVI 0.1234 Scenario 34 DG–G 0.0036
Scenario 11 ST–NDVI 0.0141 Scenario 23 Rl–DD 0.1633 Scenario 35 DG–EC 0.0046
Scenario 12 ST–DD 0.0049 Scenario 24 Rl–DG 0.1938 Scenario 36 G–EC 0.0030

3.3. MAR Potential Mapping

The current research analyzed the suitability of MAR potential in Djibouti using the
TOPSIS approach. To accomplish this aim, the criteria weights obtained through the fuzzy
AHP analysis were integrated with the actual values of the corresponding criteria in the field
and then subjected to the TOPSIS algorithm, aiding in exploring the prioritization of suitable
regions. Figure 6 encompasses two different sub-figures, in which (a) the first represents
the map generated based on the closeness coefficients, whereas (b) the latter provides the
reclassification of the suitability assessments based on the closeness coefficients using the
Jenks natural break method. In addition, the higher the closeness coefficient, the higher the
suitability of MAR implementation. Hence, one can conclude that the northern and western
parts of the country (with orange and red colors) are less suitable compared to other regions
(Figure 6a). Conversely, the middle- and south-eastern parts of the country, mainly covering
the vicinity of the Gulf of Tadjourah, are more suitable for MAR applications. In addition
to the western part of the country, south Djibouti demonstrated very high suitability for
MAR implementation (Figure 6b). The corresponding results can further be explained by
the decision criteria; for example, highly suitable parts are significantly correlated to high
rainfall values (Figure 3d), which was found to be the most determinant decision criterion.
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Furthermore, Figure 7 illustrates the distribution of the different suitability clusters
based on the corresponding regions’ surface areas. According to the figure, one can con-
clude that nearly one-third of the country is moderately suitable for MAR implementation.
Likewise, one-third of the country is suitable (high and very high suitability) for the corre-
sponding sustainable solutions, whereas the remaining parts are not (low and very low
suitability). The obtained results, on the one hand, showed that approximately 16.38% of
the country demonstrates very high suitability for MAR implementation, and these regions
are mainly located in the middle and southern parts. On the other hand, nearly 15.76%
of the entire country is mainly located in the north-eastern part, which implies very low
suitability for MAR solutions.
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4. Discussion
4.1. Assessment of the Decision Criteria

The current research found that rainfall was the most influential decision criterion
in assessing the MAR suitability of a region. Here, the corresponding result is consistent
with nature, as it is well established that not only the amount of rainfall but also the fre-
quency of rainfall events is significantly influential in terms of the recharge potential of
the area of interest [84,85]. Accordingly, regions characterized by higher rainfall rates can
be regarded as more favorable for the implementation of MAR techniques, in contrast
to regions experiencing limited amounts of rainfall. Additionally, alongside the rainfall
amount, the intensity of rainfall events holds paramount importance, as it directly affects
the efficiency of recharge. For example, intense rainfall events can result in runoff, re-
ducing the effectiveness of recharge efforts, whereas gentle and steady rainfall facilitates
better infiltration and a higher recharge efficiency [86]. Given all these facts, taking the
amount and characteristics of rainfall into account is essential when determining suitable
regions, allowing for the better planning, implementation, optimization, and long-term
sustainability of MAR initiatives. Table 5 also illustrates that the slope is the second most
determinant factor in assessing the MAR suitability potential, with a global weight of
13.33%. Here, the existing literature further recognizes the critical role played by the
slope factor such that not only hydro-morphological variabilities (such as infiltration rates,
surface water flow, sedimentation, etc.) [87,88] but also the feasibility of the MAR tech-
niques (engineering considerations, compatibility with land use, etc.) [89] are ascertained



Water 2023, 15, 2534 19 of 28

based on the topographical conditions. For instance, Fathi et al. [90] highlighted that steep
slopes generally result in faster runoff, which limits the amount of water available for
recharge, and gentle slopes, on the other hand, promote the penetration of water, allowing
for higher recharge rates and the improved effectiveness of MAR techniques. Compatibility
with real-world conditions is also critical, particularly considering that steep slopes can
require additional efforts (stabilization, erosion control structures, etc.) [91] to ensure the
stability and longevity of recharge facilities. Likewise, the slope impact may differentiate
the MAR type that is planned to be installed. For instance, steeper slopes may be less
suitable for certain recharge methods, such as infiltration basins [87,92], due to limited
space and the potential for erosion. Gentle slopes provide more opportunities for siting
and integrating recharge facilities within the existing landscape, considering factors such
as land availability, land use restrictions, and environmental compatibility.

According to the criteria evaluations, the NDVI was found to be the third most
influential factor, with a global weight of 11.89%. As it reflects the vegetation condition
of the study region, the NDVI provides valuable insights into the suitability of MAR
selection mechanisms. Since the NDVI measures the amount of live green vegetation in an
area [93], it plays a vital role in enhancing infiltration and reducing runoff, making areas
with higher NDVI values more conducive to recharge efforts. In addition, monitoring NDVI
variabilities helps estimate water loss due to evapotranspiration, aiding in quantifying the
water demand in regions. Consequently, one can assess the potential availability of water
for recharge purposes. Focusing on NDVI values further aids in taking the infiltration
capacity of soils [94], ecological considerations [95], and land use patterns [96] into account
and thereby gaining a better overview regarding the suitability of MAR attempts. The
fuzzy AHP analysis conducted based on pairwise comparisons underestimated the role
of geology (global weight of 6.95%), drainage density (global weight of 6.28%), and depth
to groundwater (global weight of 6.10%), as they ranked at seventh, eighth, and ninth,
respectively. It is especially worth noting that these factors influence the selection of suitable
sites for potential MAR implementations; however, their impact was found to be limited
compared to other criteria incorporated into the decision framework.

4.2. Assessment of the Adopted Decision Framework and Its Limitations

This research introduces a holistic hybrid MCDA framework aimed at identifying
favorable regions for MAR activities in the arid country of Djibouti as a response to the
groundwater challenges faced by the nation. To determine the relative importance of
individual decision parameters, the fuzzy AHP method was employed. Additionally, the
TOPSIS technique was utilized to prioritize the study region and generate a countrywide
MAR potential map. Although previous studies have separately applied the fuzzy AHP and
TOPSIS methods [10,38], the integration of these approaches has been largely overlooked
in the existing literature, with Mouhoumed et al. [4] being the only previous authors to
attempt to adopt a similar combination. However, their framework was limited to a city-
scale assessment covering an area of 218.53 km2 and, more importantly, was focused on
a predefined MAR technology, namely, drywells. In contrast, this research focused on an
assessment at the country scale, and rather than concentrating on a specific approach, all
MAR techniques are targeted.

Refining the list of decision parameters poses a challenge in multi-tiered decision
problems, and this challenge is also evident in the context of MAR potential mapping. As
highlighted by Sallwey et al. [30], the choice of criteria for site delineation is influenced
by the problem definition. The average number of selected decision factors in the rel-
evant literature tends to be around eight [30]. However, the corresponding number of
decision parameters tends to be lower in country-level cases, likely due to data availability
and accessibility limitations in such large areas. Mahmoud et al. [39], Mahmoud and
Tang [40], and Mati et al. [42], for instance, used a set of five criteria to map MAR at a
country scale, while Bonilla Valverde et al. [24] selected four decision variables. How-
ever, it is worth noting that in a recent study conducted by Kadhem and Zubari [41] to
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identify optimal locations for MAR in Bahrain, eight decision criteria were utilized. The
present research incorporated the largest criteria set (nine factors) into a country-level MAR
potential assessment.

The validation of the proposed models further represents an additional burden in
MAR site suitability studies [53]. Apart from the meticulous selection of the number and
nature of parameters involved in the decision framework, assigning appropriate weights to
individual parameters can also introduce ambiguity since they highly rely on the subjective
judgments of the pairwise survey participants. The scarcity of reported successful MAR
projects in many countries, particularly in regions where MAR is a relatively novel topic,
renders commonly used validation techniques less applicable. Nevertheless, some scholars
argue that a combined consistency check and sensitivity analysis are enough to validate
proposed models [25,97]. In line with this, several sensitivity analysis approaches have been
proposed so far, ranging from the adoption of different weighting schemes [53], the addition
or removal of relationships in the case of the multi-influence factor (MIF) method [24], or
changes in the linguistic quantifier when applying the ordered weighted averaging (OWA)
technique [97,98]. While the fuzzy AHP algorithm incorporates the inherent ambiguity of
human decision making, we also tested the robustness of our model by adjusting the degree
of fuzziness within the fuzzy AHP framework. This application of sensitivity analysis
by modifying the degree of fuzziness represents a rare endeavor in the literature, further
enhancing the novelty of the proposed framework.

This research further compared the current attempt with previously applied studies, as
depicted in Table 7. The table illustrates that most of the efforts regarding MAR implemen-
tation were devoted to a watershed-scale analysis, while problem statements, i.e., major
objectives, were diverse among the research community. In addition, a diligent review of
the pertinent literature also demonstrated that the vast majority of studies have utilized
traditional MCDA techniques for both criteria weighting and alternative prioritization,
such as the AHP and WLC, respectively. As mentioned before, the MCDA rationale is
implemented based on the preferences of experts having divergent backgrounds regarding
the topic of interest. Despite this fact, only two of the past studies, i.e., Sandoval and
Tiburan [27] and Shadmehri Toosi et al. [32], provided details of the experts who attended
pairwise comparison surveys. From a different aspect, although Kharazi et al. [36] and
Itani et al. [99] used the preferences of local experts for their criteria weight assessment, the
researchers presented limited information regarding their fields of expertise. Given the
importance of providing transparency and clarity to MCDA attempts, this study further
provided the job description, role, and experience in the relevant field of the experts who
were incorporated into the decision-making framework. Still, such a clear demonstration
of experts’ backgrounds has not been acknowledged in the pertinent literature. Along
with the experts’ profiles, the number of experts contributing to the analysis is of critical
importance in managing decision processes. Including a limited number of experts may
restrict the generation of creative ideas, whereas a high number of experts may endanger
the diversification of the criteria weights, especially in fuzzy AHP analysis. Hence, the
present research benefited from the preferences of a total of eight experts, who all provided
reliable outcomes based on consistency checks. Finally, one can also consider performing a
sensitivity analysis in order to ensure the stability of the criteria weighting attempts. In
this regard, only three of the past studies, i.e., Kazakis [25], Fuentes and Vervoort [53], and
Itani et al. [99], conducted sensitivity analyses to ensure the stability of MCDA outcomes.
At this point, it is especially worth noting that this study is also differentiated from its
counterparts as it covers two different types of sensitivity analyses. First, this research
sought to explore the impact of fuzziness degrees on the criteria weights, and secondly,
it applied 36 additional MCDA analyses (i.e., 9 × 8/2) based on shifting the weight of
one criterion to another. Such a comprehensive evaluation of reliability control regarding
criteria weighting and alternative prioritization can be considered a first attempt in the
pertinent literature. It is also significant to mention that changing the fuzziness degrees has
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little impact on criteria weighting, and a similar conclusion can be drawn for the subsequent
sensitivity checks, as the computed RMSE values are considerably low.

Table 7. Comprehensive evaluation of the present study compared with past attempts.

Reference Country Scale Problem I II III IV V VI

Kazakis [25] Greece Watershed Saltwater intrusion 10 AHP WLC 7 7 3
Fuentes and Vervoort [53] Australia Watershed Water table decline 9 AHP WLC 7 7 3
Sandoval and
Tiburan [27] Philippines Watershed Groundwater

depletion 10 AHP WOA 3 7 7

Kharazi et al. [36] Iran Watershed Water scarcity 16 N/A AHP, TOPSIS,
and EDAS 7 7 7

Itani et al. [99] Lebanon Watershed Saltwater intrusion 9 AHP WLC 7 4 3
Hussaini et al. [55] Afghanistan City Water table decline 7 AHP and ANP FL and WOA 7 7 7
Papadopoulos et al. [10] Greece Watershed Excess water storage 9 Fuzzy AHP FIS 7 7 7
Zhang et al. [31] South Africa Watershed Water scarcity 12 AHP WLC 7 7 7

Arshad et al. [61] India Watershed Chemical
contamination 7 AHP WOA 7 7 7

Shadmehri Toosi
et al. [32] Iran Watershed Water scarcity 6 AHP WLC 3 7 7

Ezzeldin et al. [100] Egypt Watershed Water scarcity 11 AHP WLC 7 7 7

This Study Djibouti Country Water scarcity and
saltwater intrusion 9 Fuzzy AHP TOPSIS 3 8 3

Notes: I: Number of decision criteria; II: criteria weighting technique; III: alternative prioritization techniques;
IV: experts’ details; V: number of experts; VI: sensitivity analysis; WOA: weighted overlay analysis; FL: fuzzy
logic; FIS: fuzzy inference system.

Despite the valuable insights offered by this research in assessing MAR potential at a
countrywide level, as well as the type of MAR technologies feasible in Djibouti, there are
still some limitations that need to be covered in follow-up attempts. The model could be
challenged at a watershed scale, resulting in much lower resolution MAR site suitability
maps. The number of decision factors could also be increased in future research by incor-
porating different dimensions that encompass divergent criteria (such as socio-economic
parameters) in MAR potential mapping. Other MCDA methods could be introduced for
similar objectives regarding both the criteria weight assessment process (e.g., ANP) and the
alternative prioritization phase (e.g., VIKOR and PROMETHEE, as well as their fuzzy vari-
ants). In addition, despite the TOPSIS method possessing a more advanced mathematical
foundation for prioritizing alternatives, in contrast to the commonly employed GIS overlay
techniques found in the relevant literature, it is imperative to substantiate its superior accu-
racy compared to the latter techniques in effectively delineating locations suitable for MAR
implementation. This can be achieved by comparing TOPSIS with WLC, WOA, and other
MCDA-based prioritization techniques that address some of the limitations of TOPSIS,
serving as a guideline for future research. Furthermore, along with comparing the per-
formance of the proposed decision-making process with the traditional approaches (such
as BWM or AHP), evaluating it based on more recent techniques, e.g., RANCOM [101],
would not only strengthen the provided scheme but also ensure valuable insights in follow-
up studies. In addition, future research can also incorporate probabilistic approaches
(e.g., Monte Carlo simulations) into both criteria weighting and alternative prioritization
in order to deal with intrapersonal uncertainties that exist in such decision frameworks.
Finally, the current study performed two types of sensitivity analyses and employed simi-
larity checks based on RMSE computations. However, different metrics (such as the WS
rank similarity coefficient and weighted Spearman correlation coefficient) [101] can also be
adopted for the extraction of ranking similarities and the performance evaluation of the
sensitivity checks.
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4.3. Feasible MAR Technologies in Djibouti and Practical Utilization of the Proposed Framework

MAR potential maps serve as effective tools for evaluating the artificial recharge
feasibility of large areas. However, one limitation of such broad-scale MAR assessments is
their inability to provide insights into the feasibility of specific MAR technologies within a
focused region. For instance, in the case of Djibouti, where permanent rivers are absent,
bank filtration technology is deemed unfeasible. Fortunately, several tools have been
developed to enhance the practicality of MAR and address the complexities associated
with its implementation. Among these tools, the web-based INOWAS platform stands
out, providing a diverse array of functionalities aimed at facilitating MAR initiatives
(such as groundwater flow/transport numerical and analytical simulation models, MAR
databases, data-driven tools, etc.). Specifically, tool no. 6 within the platform enables the
selection of appropriate MAR techniques based on specific characteristics and conditions
of the area of interest, including factors such as the availability of water sources and
other pertinent considerations. Notably, the development of this tool by the INOWAS
research group is based on extensive investigations encompassing several hundred MAR
studies conducted worldwide [102]. Therefore, the data-driven tool was used to assess the
type of MAR techniques feasible in Djibouti, and the result is depicted in Figure 8. The
findings revealed that Aquifer Storage and Recovery (ASR) and Aquifer Storage Transfer
and Recovery (ASTR) technologies could be adopted to store reclaimed water in the aquifer
for future recovery or to address environmental concerns such as saltwater intrusion. These
techniques could potentially utilize the treated water from the wastewater treatment plant
in Douda, having a daily capacity to treat 2000 m3 of water [103], and from the Ambouli
dam, storing a considerable amount of water that can be diverted for MAR activities
alongside its flood mitigation purpose. Additionally, surface-spreading techniques (such as
infiltration ponds, ditches, and furrows, as well as barriers, bunds, etc.) requiring rainwater
as target sources were found to be feasible for recharging local aquifers. Furthermore,
drywells and flooding MAR techniques show promise in recharging shallow aquifers in
the country, aiming to achieve groundwater sustainability and address recurring droughts.

As mentioned earlier, this research contains a comprehensive MCDA analysis contain-
ing the implementation of fuzzy AHP and TOPSIS algorithms to identify the suitability
of MAR techniques in Djibouti. To provide valuable insights to both policymakers and
decision-makers, the practical utilization of such a framework is needed. Figure 9 provides
an example of how the corresponding decision-making framework is used in conjunction
with real-world implementation scenarios. As depicted in the figure, these analyses start
by gathering relevant data and are followed by pairwise comparison surveys to explore
the importance of differences in the criteria considering potential application regions. It
is therefore important to identify key stakeholders carefully, since the contribution of the
criteria taken into account may vary based on the focus region. Once the judgments of
the experts are collected, criteria weights are computed. Subsequently, the actual data,
which can be obtained from either model outcomes, in situ measurements, or remote
sensing products, were incorporated into criteria weights to determine the site suitability
map for MAR implementation. The resultant maps illustrate the regions suitable for the
application of MAR technologies (from very high to very low suitability). The final step of
the analysis covers the determination of the type of MAR technique, which is beyond the
scope of the current research. Once the decision is made and the selected MAR technique is
implemented, the outcomes based on various aspects are evaluated to review the impact of
the corresponding solutions. Finally, based on the performance evaluation of the employed
MAR technique(s), the entire framework is repeated to ensure the continuous improvement
of the decision-making scheme.
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5. Conclusions

The existing literature recognizes the promising role played by the integration of GIS
and MCDA techniques for conducting MAR potential investigations. Thus, establishing
a robust GIS-MCDA scheme enables the assessment of large areas while mitigating the
computational burden and financial constraints. Consequently, in this study, a coupled
model combining the fuzzy AHP and TOPSIS was proposed to evaluate the MAR potential
at a country level, considering Djibouti as the specific case study. A comprehensive set
of criteria pertaining to the surface, environmental, and subsurface dimensions were
identified, and their relative importance was determined using the fuzzy AHP algorithm.
Subsequently, the TOPSIS technique was employed to prioritize the study area based on the
weighted decision layers. A sensitivity analysis was also employed to ensure the robustness
and stability of the decision framework.

The results of the analysis highlighted the significance of rainfall, the slope, and the
NDVI as the most influential decision criteria in identifying regions suitable for MAR
implementation. Conversely, the fuzzy AHP determined that depth to groundwater and
the drainage density were comparatively less influential in the decision-making process. In
terms of the prioritization of the study area, it was observed that approximately 10.63%,
23.20%, and 31.06% of the country, corresponding to approximately 2466 km2, 5382 km2,
and 7206 km2, respectively, exhibited very high, high, and moderate suitability for hosting
MAR activities. Furthermore, the sensitivity analyses conducted to evaluate the stability of
the framework indicated its robustness, as there were no significant changes in the ranks of
the criteria with respect to the various degree-of-fuzziness values, and considerably less
variation was observed in RMSE values computed based on closeness coefficients.

Overall, the comprehensive approach proposed in this study empowers policymakers
and stakeholders to identify and prioritize areas with promising MAR potential, facilitating
informed decision making and the efficient allocation of resources for sustainable water
management practices.
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