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Abstract: Although in water-deficient regions, agricultural runoff, drainage water or surplus irriga-
tion water is often used, there are constraints related to its quality to be considered (salinity, nutrients
and pollutants). Thus, it is necessary to treat surplus irrigation water considering the low-energy
supply systems available to farmers. This work focuses on a nature-based water treatment system
consisting of two prototypes of anaerobic bioreactors with horizontal or vertical flow. To enhance
the circular economy strategy, two different wastes (coarse sand and almond pruning) were used as
bioreactor components. The aim of the research was to monitor the quality of the water (pH, electrical
conductivity, suspended solids, chemical oxygen demand, alkalinity and bicarbonate, carbonate and
nitrogen contents) before and after the treatment. All the parameters studied (except chemical oxygen
demand) were reduced by the treatments, but with large variations. Furthermore, there was 100%
nitrogen reduction in the horizontal water flow treatment with the filter bed formed by coarse sand
and almond pruning. It was observed that the variation in the concentration of some parameters
was associated with the type of filter bed (i.e., the C/N ratio of the residue) and with the design for
water circulation flow. Although the findings are promising, further research is needed to achieve
reductions in all studied parameters.

Keywords: eutrophication; non-conventional water resources; nature-based solution; zero waste

1. Introduction

Worldwide water resources are increasingly coming under pressure, leading to water
scarcity and a deterioration in water quality. The expected growth of the human popula-
tion [1,2] entails an increase in global demand for resources such as food or water, 60%
and 55%, respectively, by 2050 [3–5]. Future projections consider that a lack of water will
affect 60% of the world’s population by 2025 [6,7]. However, global water scarcity is caused
not only by the physical scarcity of the resource, but also by the progressive deterioration
of water quality; so, this reduces the quantity of water that is safe to use [8]. In 2015,
60% of surface waters in the European Union (EU) had a poor ecological status, mainly
due to point pollution (e.g., wastewater) or non-point pollution (e.g., agriculture) [9,10].
Agriculture is the largest water user worldwide, and it accounts for 70 to 95 percent of total
freshwater withdrawals, depending on the degree of the country’s development [3,8].

Currently, water scarcity affects more than 40% of the global population [11], and
in the EU, 29% of its territory was affected by water scarcity in 2019 [12]. In this context,
non-conventional water resources are becoming more prominent [6]. To improve the
worldwide water supply and sanitation infrastructure, it is estimated that USD 6.7 trillion
are needed [4].

As a result of the increasing reuse and recirculation of water, water quality tends to
deteriorate, and this restricts its future uses [13]. The reuse of wastewater for irrigation is
widespread to improve the circular economy of water in urban settlements [14]. By 2023, it is
expected that global water reuse will achieve 1.66% of total water use, with 32% of reclaimed
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water used for irrigating [15]. In 2006, EU countries reused 964 million m3 year−1, and
Spain had the best share, 347 million m3 year−1 [16].

Although agricultural runoff, drainage water or surplus irrigation water are often
used in water-deficient regions, there are some constraints to be considered, such as salts,
pathogens, emerging contaminants and nutrients because of fertilizer use [7–9,14]. Nitrogen
(N) is an essential nutrient for crop yields and food production, but its excessive presence
in aquatic ecosystems can trigger eutrophication processes. In Europe, for the period
2016–2019, water categorized as eutrophic included 81% of marina waters, 31% of coastal
waters, 36% of rivers and 32% of lakes [17]. This poses problems for crop yield, ecosystems
sustainability and human health [18–20]. Therefore, its repeated use should be carried out
when an adequate quality is ensured. If not, agricultural drainage water (marginal water)
must be treated, which implies addressing the difficulty of installing treatment plants in
rural settings covering large or scattered agricultural areas.

To overcome this issue, and in relation to the European Green Deal [21], the EU Action
Plan: “Towards a Zero Pollution for Air, Water and Soil” aims to reduce soil, water and air
pollution, improving soil quality by reducing nutrient losses and chemical pesticides use by
50%. Additionally, in March 2020, the European Commission announced the adoption of the
circular economy action plan (CEAP) [22,23] and prioritized the reduction, reuse, recycling
and alternative management of waste materials. The CEAP represents a new economic
and production paradigm that requires a shift in mindset, recognizing waste as a potential
resource rather than a burden to be managed and discarded in landfills, as in the previous
linear economy [24]. In addition, the Water Framework Directive [25] aims to ensure
the sustainable use of water resources and its quality by 2027. Materials in suspension,
substances that contribute to eutrophication and substances which have an unfavorable
influence on the oxygen balance, among others, are a main concern. Moreover, the Nitrates
Directive is an important instrument to achieve and proposes the use of eco-agricultural
practices and nature-based solutions for water treatment and soil remediation [17].

In such a way, green treatment technology (constructed wetlands, waste stabilization
ponds and infiltration land) is being used to model nature works mainly for wastewater
remediation [26–30]. Nature-based solutions have more benefits compared to those of
traditional wastewater treatments, such as a low maintenance requirement, cost effectivity,
removal efficiency [29,30] and extensive design possibilities based on the element to be
removed (water level and flow movement, phytoremediation, phycoremediation, substrate,
aerobic or anaerobic conditions, whether it is energetically self-sufficient or not and nutrient
recovery, among others). Bioreactors are one of the most used treatments since pollution
removal is conducted due to retention on adsorbent material (biofilter) and microorganisms
that accumulate on the adsorbent [31]. The surface of the biofilter is key for determining the
biomass growth rate and biomass retention capacity [7,32,33]. Accordingly, the selection
of adsorbent will determine the efficiency of the adsorption process [7]. A wide range of
adsorbent materials, both inorganic and organic ones (agricultural waste, among others),
have been studied for wastewater treatments, confirming its effectiveness for removing
pollutants [32–34]. The use of waste can enhance the circular economy and avoid the costs
associated with management [33]. Moreover, it can be a helpful practice as the increase
in food production will lead to an increase in food waste. Agricultural waste, such as
pruning residues, due to its porous and multi-hierarchical lignocellulosic composition,
have intrinsic mesoporous structure, exceptional optical and mechanical characteristics
and a high capacity for water transportation, which offers them interesting opportunities
for water treatment [7].

Several authors consider that technosols can be designed to provide ecosystem services
like a natural soil does and to recover a degraded ecosystem, including aquatic ones [35–42].
Technosols, have been successfully used to improve the surface runoff water quality in
mining areas, urban stormwater and wastewater [7,32,33,43–47]. However, their ability to
treat irrigation water has not been studied as much, especially when macrophytes are not
involved [27].
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Based on the previous ideas, the aim of this research was to study a nature-based
treatment free of emergent vegetation by using residues as the adsorbent and the design of
pilot biofilter systems to improve the quality of agricultural water. The physical and chemi-
cal parameters (pH, electrical conductivity, suspended solids, chemical oxygen demand,
alkalinity and bicarbonate, carbonate and total nitrogen contents) of low-quality irrigation
water before and after the treatments were determined to check the effectiveness of the
treatments designed.

2. Materials and Methods
2.1. Irrigation Water Source

The irrigation water has its origin in the Main Irrigation Channel of Elche’s reservoir
(Alicante, Spain). Elche’s reservoir is in the north of the city and receives water from
Vinalopó river. This river is fed by natural waters and treated water from wastewater
treatment plants situated along its basin. The irrigation channel of Elche’s reservoir begins
at the dam reservoir and runs in the same directions as Vinalopó river does, crossing the
city of Elche from the north to the south.

The experiment was conducted over twenty weeks. Water was collected weekly
(Figure 1) (UTM geographical coordinates X: 701,170.5 m; Y: 4,239,112.38 m), and fed into
the biofilters systems. Irrigation water samples were analyzed immediately.
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2.2. Bioreactor Designs

Water pilot treatment plants were inspired by the performance of nature-based solu-
tions using wastes as the adsorbent material. They were located inside the greenhouse of
the University Miguel Hernández of Elche (Alicante, Spain) and were kept under controlled
conditions. Two types of anaerobic bioreactors were designed, one with subsurface water
and horizontal flow, and the other with subsurface water and vertical flow (Figure 2).

Both biofilters were made of fiberglass-reinforced polyester (Figure 2, part c). The
horizontal bioreactor size was 120 cm × 15 cm × 35 cm (L × W × H), and the vertical
bioreactor of 15 cm × 15 cm × 60.5 cm (L × W × H), and they had three sections. The
first and last one (10 cm × 15 cm × 27 cm) were the water inlet zone and the water outlet
zone, which were full of volcanic gravel (diameter approximately between 3–5 cm) and
worked as pre-treatment and homogenization areas prior to the introduction of water to
the anaerobic treatment. The middle section (length 100 cm) held the natural adsorbent,
and both horizontal treatments had two layers. The bottom one contained wastes (22 cm)
and the top one contained coarse sand (4 cm) to control and reduce the evapotranspiration
of subsurface flow. The inlet point was 24 cm high, and the outlet point 20 cm high from
the bottom of the bioreactor.



Water 2023, 15, 2464 4 of 24

Water 2023, 15, x FOR PEER REVIEW  4  of  25 
 

 

subsurface flow. The inlet point was 24 cm high, and the outlet point 20 cm high from the 

bottom of the bioreactor. 

 

 

 

 

Figure 2. Bioreactors diagrams. At the top: anaerobic bioreactor with subsurface water and horizon-

tal flow. At the bottom: anaerobic bioreactor with subsurface water and vertical flow. (a) Irrigation 

water in polyethylene deposits; (b) peristatic pump; (c) biofilter; (d) effluent recovered in polyeth-

ylene deposits. 

The vertical bioreactor had one section with two layers. The bottom one contained 

the wastes (48 cm high), and the top one contained sand (high 4 cm). The inlet point was 

situated at the top of the bioreactor, and the outlet point was 45 cm high from the bottom. 

Both types of bioreactors maintained the anaerobic conditions, and water (inlet and outlet) 

was disposed in polyethylene deposits. 

The wastes used were selected for treatments based on their availability in the area 

(considering circular economy and zero waste strategy) and their adsorption potentiality. 

Inorganic residue was collected from the extractive activities of  limestone deposits and 

fine gravel/coarse sand (2–3 mm) (G). This was composed mainly of calcium carbonate 

(over 99%), and to a lesser extent, magnesium carbonate, and the bed had a porosity of 

41.8%. Further, an organic residue of almond tree pruning (A) was collected from agricul-

tural areas close to Elche (Alicante, Spain). Almond tree pruning was subjected to condi-

tioning processes consisting of air drying at room temperature and chopping (5 cm size). 

The porosity was 69.6%, and its characterization is provided in Table 1, and methods of 

analysis were previously published [48,49]. 

   

Figure 2. Bioreactors diagrams. At the top: anaerobic bioreactor with subsurface water and hor-
izontal flow. At the bottom: anaerobic bioreactor with subsurface water and vertical flow. (a) Ir-
rigation water in polyethylene deposits; (b) peristatic pump; (c) biofilter; (d) effluent recovered in
polyethylene deposits.

The vertical bioreactor had one section with two layers. The bottom one contained
the wastes (48 cm high), and the top one contained sand (high 4 cm). The inlet point was
situated at the top of the bioreactor, and the outlet point was 45 cm high from the bottom.
Both types of bioreactors maintained the anaerobic conditions, and water (inlet and outlet)
was disposed in polyethylene deposits.

The wastes used were selected for treatments based on their availability in the area
(considering circular economy and zero waste strategy) and their adsorption potentiality.
Inorganic residue was collected from the extractive activities of limestone deposits and fine
gravel/coarse sand (2–3 mm) (G). This was composed mainly of calcium carbonate (over
99%), and to a lesser extent, magnesium carbonate, and the bed had a porosity of 41.8%.
Further, an organic residue of almond tree pruning (A) was collected from agricultural
areas close to Elche (Alicante, Spain). Almond tree pruning was subjected to conditioning
processes consisting of air drying at room temperature and chopping (5 cm size). The
porosity was 69.6%, and its characterization is provided in Table 1, and methods of analysis
were previously published [48,49].
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Table 1. Almond tree pruning characterization: organic matter content (OM), pH, electrical conduc-
tivity (EC) and bulk density ($b), mean value (M) and standard deviation (SD) [48,49].

Residue
OM (%) pH (units) EC (µS cm−1) $b (g cm−3)

M SD M SD M SD M SD

G 0 0 9.90 0.03 107.85 17.62 1.55 0.05

A 93.2 0.6 4.66 0.007 665 0.80 0.36 0.006

Therefore, by combining the wastes and bioreactors design, four treatments
were studied:

- Horizontal water flow with filter of G (HG).
- Horizontal water flow with filter of G and A (HA).
- Vertical water flow with filter of G (VG).
- Vertical water flow with filter of G and A (VA).

The constant supply of irrigation water to the bioreactors was achieved using peri-
staltic pumps (inlet point) from polyethylene deposits, keeping the flow rate in all the
treatments (2.3 L day−1) and the hydraulic retention time (4 days) the same. Bioreactors
were covered with a black mesh of 1 mm situated over them (5 cm) to reduce evapotranspi-
ration (0.5 mm m−2) and protect from insect access and seed germination. Influent water
in the deposits was replaced weekly to avoid water degradation. The effluent, as well, was
taken weekly and directly from the source point as it arrived for an hour to ensure that we
had enough water to analyze. Therefore, the bioreactors were used for substrate adsorption
and microbial degradation as removal mechanisms.

2.3. Water Characterization Methods

Influent (I) and effluent water (E) -EHG, EHA, EVG and EVA- from each treatment was
analyzed weekly: pH, electrical conductivity (EC), total suspended solids (SS), chemical
oxygen demand (COD), total alkalinity and bicarbonate, carbonate and total nitrogen
contents (N). Analysis of water samples was based on the APHA standard methods [50].
The pH was measured (method 4500-H+ and 2580) by using a CRISON GLP 21 pH-meter,
and electrical conductivity (EC) was measured with a CRISON GLP 31 conductivity meter
(method 2510). SS values were obtained after filtering the samples with 47 mm glass
microfiber filters and heating them in an oven (J.P SELECTA CONTEM) at 105 ◦C (method
2540 D). The COD was tested using a digestion vials regents kit, a thermoreactor (HI
839800-02) at 150 ◦C and a multiparameter photometer (HI 83300) (all from HANNA I
NSTRUMENTS (method 5220)). Alkalinity, bicarbonates and carbonates contents were
measured according to the methods, 4500-CO2 and 2320 D. The N content was measured
using the HANNA kit (HI94767). The persulfate method was used to determine the
total nitrogen content via the oxidation of all nitrogenous compounds to nitrate with the
HANNA reactor (HI839800) at 105 ◦C and HANNA multiparameter photometer (HI83399).

Weekly changes in irrigation water characteristics were calculated as the percentage of
variation according to Equation (1) [51]:

Variation (%) = (1 − (Ce/Ci)) × 100 (1)

Ce: the value of the analyzed parameter in the bioreactor outlet water (effluent); Ci:
the value of the analyzed parameter in the bioreactor inlet water (influent). When the result
of variation is positive, there is a reduction of the analyzed parameter; on the contrary,
when it is negative, there is an increment.

2.4. Statistical Analysis

Descriptive statistics were used to calculate the mean and standard deviation for each
individual water test (five repetitions per each treatment). Analysis of variance (ANOVA)
and Tukey’s multiple comparisons test were conducted using SPSS Statistics (v.26).
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3. Results and Discussion
3.1. Irrigation Water Characterization

Table 2 provides the mean value of the parameters analyzed in the influent (I) in the
horizontal bioreactors (HG and HA) and in the vertical bioreactors (VG and VA).

Table 2. Irrigation water (influent) characteristics used for each type of bioreactor (horizontal and
vertical), mean value (M) and standard deviation (SD).

Parameter Units Horizontal Vertical

M SD M SD

pH (units) 8.25 0.09 8.27 0.11

EC (mS cm−1) 17.45 1.55 18.26 0.78

SS (mg L−1) 41.38 8.50 40.37 8.60

COD (mg L−1 O2) 96.84 61.99 100.29 60.79

Alkalinity (mg CaCO3 L−1) 250.69 18.16 260.12 14.85

Bicarbonates (mg HCO3- L−1) 150.15 10.76 155.60 8.78

Carbonates (mg CO3
−2 L−1) 2.66 0.50 2.96 0.88

Nitrogen (mg N L−1) 15.40 5.22 20.15 9.22

As it was expected, the inlet water characteristics were similar in both treatments;
al-though, the water derived from the deposits used to fill the horizontal bioreactors and
vertical bioreactors was obtained from the same source (time needed to prepare the systems
and refill the deposits). So, there are slightly variations in the composition of the inlet water.

3.2. Effluent Characterization

pH, EC, SS, COD, alkalinity, bicarbonates, carbonates and N data obtained weekly are
provided in a graphic format (Figures 3 and 4) and in detail in Appendix A (Tables 1–8).

All of the treatments showed a pH in the effluent (Figure 3a,b) lower than the pH of
the influents (Table 2). The maximum pH value (8.48) was reached in the EHA in the fifth
week, and the minimum (5.06) one was obtained in the EHA in the first week (Table 1).
The contribution of almond pruning residue leads to greater fluctuations in the pH of the
effluent (Figure 3a,b). Acidification in the first week of the EHA are due to the contribution
of the highly soluble compounds from the almond pruning that can acidify water, e.g.,
(dissolved organic matter). According to Rodríguez-Espinosa et al. [49], the pH of the
aqueous extract of almond pruning shows a value of 4.66 (Table 1). However, in the EHA, as
the weeks passed, the pH values increased, obtaining the same as that in the EHG in week
20 (Table 1). However, the changes in the pH in the VA treatment, after an initial reduction,
increased; although, at week 20, the lowest pH value of all effluents was observed (8.01).
This may be associated with the type of bioreactor. The mean pH of EHG and EVG, both
only with an inorganic bed, were similar and quite stable over time.

All the effluents showed a mostly higher EC than the incoming water did (Table 2).
However, some differences were observed between the types of bioreactor (Figure 3c,d).
Both horizontal effluents achieved lower EC during weeks 2 and 3, and only the EVA
among vertical effluents maintained reached a lower EC than the inlet water did in weeks 1,
4 and 20. EC may be influenced by the type of bioreactor and, in general, an increment
in the salinity was noticed in all the effluents. This means that these treatments have low
efficiency, reducing the salinity of low-quality water.
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Figure 3. pH, EC, SS and COD results of horizontal and vertical water flow bioreactors. (a) Weekly pH
(units) of horizontal water flow bioreactors. (b) Weekly pH (units) of vertical water flow bioreactors.
(c) Weekly EC (mS cm−1) of horizonal water flow bioreactors. (d) Weekly EC (mS cm−1) of vertical
water flow bioreactors. (e) Weekly SS concentration (mg L−1) of horizontal water flow bioreactors.
(f) Weekly SS concentration (mg L−1) of vertical water flow bioreactors. (g) Weekly COD concentration
(mg L−1) of horizontal water flow bioreactors. (h) Weekly COD concentration (mg L−1) of vertical
water flow bioreactors.
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Figure 4. Alkalinity, bicarbonates, carbonates and N results of horizontal and vertical water flow
bioreactors. (a) Weekly alkalinity concentration (mg L−1) of horizontal water flow bioreactors.
(b) Weekly alkalinity concentration (mg L−1) of vertical water flow bioreactors. (c) Weekly bi-
carbonates concentration (mg L−1) of horizontal water flow bioreactors. (d) Weekly bicarbonates
concentration (mg L−1) of vertical water flow bioreactors. (e) Weekly carbonates concentration
(mg L−1) of horizontal water flow bioreactors. (f) Weekly carbonates concentration (mg L−1) of verti-
cal water flow bioreactors. (g) Weekly N concentration (mg L−1) of horizontal water flow bioreactors.
(h) Weekly N concentration (mg L−1) of vertical water flow bioreactors.
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The values obtained for SS in the outlet waters in the EHA and the EVA were gener-
ally higher than those in the inlet water (Figure 3e,f). The use of organic waste in these
cases favored the increment of the SS. The SS in the EHA was very high throughout the
experiment, except for the last week (43.58 mg L−1), when it was close to the inlet value
(41.38 mg L−1), as it is showed in the Appendix A (Table 3). In the VA treatment, there was
an initial contribution to the SS that was stabilized from week 6, even reaching a lower
concentration than the inlet water had until the last week (Figure 3e,f). The SS in the outlet
water was always under the value of the inlet water in the EHG (except in week 4). The SS
in the EVG was below the inlet water during all 20 weeks. Although, the SS concentration
in the EVA reached the lowest value (22.07 mg L−1) in week 16 (Table 3). Therefore, the SS
was better controlled by the vertical bioreactors to facilitate precipitation and sedimentation
processes and favoring the diminution of the SS in the outlet water.

None of the four bioreactors achieved a weekly lower COD than that of the inlet water
(Figure 3g,h). A contribution of oxidizable organic matter released from the organic waste
(A) can be observed in both type of bioreactors (Table 4). However, the concentration
of the COD in the EVA was better, and even in week 20, the COD concentration was
lower (346.75 mg L−1) than the achieved in the EHG (396.25 mg L−1). The inorganic
bioreactors reached lower COD values comparing with the values of those containing
almond pruning (Figure 3g,h). During experimentation, the COD reached similar values in
the four treatments. In fact, this parameter is related to the biological activity of bioreactors
and also dead matter coming from the biomass formed in the bioreactors.

Figure 4a,b shows the weekly alkalinity concentrations of the effluents. The weekly
alkalinity concentration was always lower than the initial one (inlet waters) in the EHG
and EVG, and they were the most stable systems to control this parameter. Although, the
alkalinity concentration in the EVA fluctuated, from week 14, the results were below those of
the influent water (Table 2). Inorganic bioreactors obtained the best values (109.36 mg L−1

in EHG and 162.19 mg L−1 in EVG), although they are composed of fine gravel/coarse
sand composed mainly by calcium carbonate (Table 5).

The trend in the bicarbonate content of the effluents (Figure 4c,d) is like that shown
for alkalinity (Figure 4a,b). Inorganic bioreactors achieved weekly concentrations lower
(Table 6) than the initial ones (Table 2). Despite the high initial contribution of bicarbonates
from the EHA and EVA effluents, due to the organic waste and the acidity of this residue,
the VA system stabilized it, and from week 15, it showed a concentration lower than that of
the influent (Table 6).

Figure 4e,f shows the concentration of carbonates determined in all the treatments over
the 20 weeks in each effluent. Inorganic bioreactors showed lower carbonate concentrations
than the incoming water did (Table 2). In the organic bioreactors, an initial contribution
of carbonates was observed, which was greatly exacerbated in the case of EHA (Table 7).
However, in the organic vertical system (VA), from week 6, the carbonate concentration was
lower than the concentration presented in the low-quality irrigation water, and it reached
the lowest value among all treatments in the first week (0.01 mg L−1).

Regarding the most important parameters of water quality, N concentration is one of
the most relevant due to the possible eutrophication that can be caused by inorganic N in
water (lakes and coastal areas). The results in the effluents are shown in Figure 4g,h and
in Table 8. All the treatments reached lower N concentrations than the inlet water did for
several weeks (Table 2), but fluctuations in N reduction are seen every 2–3 weeks. This
variability is associated with changes in the microbial activity and the removal capacity
associated with the increment of biomass and the needs of N for this increase (Table 8).
The HA treatments showed fewer fluctuations in the N concentration. In fact, from week
17, this treatment reached a substantial reduction of N, reaching an almost total reduction
in the last week. At this point, the microbial activity was very consolidated, and in the
last weeks, the inlet water shows a lower N concentration, so that the need for N by the
microbial population (sized for a higher N input) may not be met; so, there is a higher N
demand. Probably, this means that this treatment would be the best to control N.
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Table 3 provides the weekly variation, in percentages, for each parameter analyzed. In
all treatments, a pH variation was observed, reducing the pH of the effluents (0.8%, 0.8%,
3.6% and 6.5% in EHG, EHA, EVG and EVA, respectively) at the end of the 20 weeks. In
the systems with organic wastes, although there were fluctuations (increase and reduction),
the pH reduction was predominant, which may be due to the action of anaerobic microor-
ganisms’ metabolisms [52]. The inorganic vertical system achieved higher percentages of
pH reduction, reaching its maximum at week 17 with 6.8%. The highest percentages of pH
reduction were obtained in the EHA (38.2% in week 1) and EVA (8.4% in week 8) effluents,
mainly due to the initial contribution of the most soluble organic acids from the organic
waste. VA achieved the greatest reduction.

The trend of the EC was associated with the type of flow: water circulation, horizontal
or vertical (Table 3). In the horizontal systems, there was a very high contribution of EC
during the first week (−24.8% in EHG and −39.6% in EHA), but both systems reached
positive variations in the second and third weeks. However, from the third week, the
percentages of reduction, although fluctuating, remained negative. For the vertical systems,
though they also obtained negative percentages (except for the first week), the EVA one
obtained an EC variation percentage of 0.1 in the last week, which was compared to −0.2%
for the EVG one. In general, salinity was affected negatively, with slight increments in
the effluents.

Table 3 shows how the variation in the SS in the effluents depends to a greater extent
on the type of absorbent (inorganic or a combined organic+inorganic bed). Thus, EHG and
EVG showed positive SS variation over the 20 weeks, except in weeks 5 and 6 (EHG) and in
weeks 16 and 20 (EVG). EHG and EVG reached maximum SS variation percentages of 54.8%
and 58.2%, respectively. The bioreactors with organic waste showed greater difficulties in
reducing the SS, especially with horizontal water flow. EHA had a high initial SS input (up
to −1650.8%), so that its variation percentages up to week 17 showed very high negative
values. EVA managed to reach positive percentages of variation from week 7, ending with
the best percentage of variation (15.8%) in the last week. Particulate matter from the bed
of the bioreactors was responsible for this increment, mainly in the bioreactors with the
presence of almond waste.

None of the systems achieved a positive weekly variation in the COD percentage
(Table 3). These results agree, in some way, with the results obtained for the SS presented in
the effluents. The biological activity after the first few weeks can help to maintain a higher
COD in the effluents regarding the values of influents.

The inorganic systems showed positive variations in alkalinity (reducing the alkalinity)
during all the weeks (Table 3). In fact, EHG reached its maximum positive variation in
week 11 (58.2%), and EVG reached its maximum positive variation in week 6 (36.8%). EHG
maintained high percentages of variation until week 20 (51.4%); however, EVG at week 20
obtained a 12% variation. High initial alkalinity was observed in the organic treatments
with the presence of almond pruning; although, EVA continued to have a positive variation
from week 13 (except for week 14), and at week 20, this was 7%. The same trend of variation
was observed for bicarbonates (Table 3).

High percentages of variation were obtained with carbonates (Table 3). The systems
with only inorganic waste showed positive variations in all the weeks, obtaining the
highest percentages of variation in week 7 (78.2%) for EHG and in week 17 (77.5%) for
EVG. Regarding the bioreactors with almond waste, EVA started with negative variations,
but from week 5, the values were positive, ending in week 20 with the maximum value of
reduction (72.5%). However, EHA started with positive reduction percentages (99.7% at
week 1), but from week 4 (except for weeks 18 and 19), the percentages were negative.
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Table 3. Variation in the parameters analyzed (%) in horizontal and vertical bioreactors from weeks 1 to 20.

pH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EHG −0.6 3 2.6 2.8 0.7 1.4 0 −0.5 0.3 −1.6 −0.8 1.2 2.3 1.3 0.6 1.7 1.7 2.4 1.6 0.8
EHA 38.2 9.7 8.4 1.4 −2.8 4.3 −1.3 0.3 −0.4 −2.6 1.4 2.9 3.2 3.3 3.5 3.6 1.5 2.7 2.7 0.8
EVG 1.1 1.4 −0.6 −0.2 2.5 1.9 2.7 1.8 2.4 1.1 0.3 2.1 0 0.7 1.3 1.9 6.8 −1.7 2.6 3.6
EVA 2.2 6.5 2 5 2.5 4.1 6.8 8.4 6.1 4.9 6.4 4.8 1.7 1.7 2.3 1.9 0.7 0 2.3 6.5

EC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EHG −24.8 10.4 0.7 −3.2 −16 −14.3 −14.9 −14.5 −14.9 −13.4 −11.7 −15 −8.8 −13.6 −5.1 −11.6 −9.8 −8.6 −5.3 −13.0
EHA −39.6 8.2 0.4 −11.5 −14.8 −6.8 −8.4 −5.3 −11.1 −15.8 −9.4 −10.5 −7.3 −13.5 −2.8 −8.2 −6.7 −8.9 −5.5 −11.8
EVG 1.0 −2 −1.1 −1.6 −2.6 −1.1 −2.8 −3.7 −2.9 −1.8 −2.4 −0.1 −8.2 −6.8 −4.8 −5.5 −1.5 −2.7 −1.7 −0.2
EVA 0.3 −0.7 −3.3 0.7 −2 0 −1.6 0.9 −3.0 −1.6 −2.7 −0.1 −6.6 −0.7 −5.1 −1.3 −0.4 −2.5 −2.4 0.1

SS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EHG 54.8 31.6 22 0.2 −80 −2.8 30.6 19.1 22.0 25.3 39.6 15.0 26.4 31 47.2 23 7.7 36.1 49.4 7.7
EHA −81.1 −1650.8 −1080.3 −994.1 −607.2 −499.2 −416.3 −651.1 −354.4 −93.6 −114.4 −148.0 −49.4 −134.2 −162.8 −104.3 −93.6 −14.8 1.7 −22.2
EVG 25.8 37.8 43.5 47.9 29.6 44.7 37.9 42.5 39.9 36.8 58.2 55.5 21.9 27.0 44.1 −13.3 8.3 23.8 23.1 −6.6
EVA −452.6 −354.4 −273.9 −108.2 −10.4 −50.2 18.9 36.2 17.5 36.7 41.1 48.6 24.1 12.3 31.7 24.9 −9.7 21.9 0.3 15.8

COD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EHG −695.3 −281.3 −401.9 −378 −508.6 −376.3 −390.3 −434.1 −344.4 −420.3 −315.9 −2.1 −192.3 −390.2 −303.1 −401.7 −268.4 −395.7 −344.9 −323.8
EHA −34,561.8 −7253.6 −4156.6 −3088.8 −2122.1 −1048.8 −951.0 −846.4 −689.4 −711.6 −545 −52.3 −314.2 −501.1 −424.2 −508 −371.3 −445.7 −344.1 −364.4
EVG −454.7 −233.2 −310.5 −246.2 −1.8 −141.8 −322.1 −233 −273.5 −183.1 −350.6 −292.9 −303.5 −204.0 −242.7 −351.3 −444.2 −275.5 −415.6 −316
EVA −1896.4 −1490.1 −1217.2 −410.6 −34.4 −137.7 −376.1 −259.8 −315.7 −247.1 −350.9 −265.1 −279.1 −258.5 −222.8 −281.7 −396.5 −298.6 −361.5 −391.8

Alkal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EHG 26.8 37.9 47.2 39.5 50.2 33.2 55.6 54.4 48.5 51.7 58.2 55 57.1 50.8 51.2 53.8 51.6 53.7 51.2 51.4
EHA −310.3 −348.3 −264.4 −385.3 −309.5 −281.6 −316.8 −274 −296.4 −229.5 −189.1 −171.4 −187.4 −133.3 −123.3 −112.9 −109.1 −77.0 −54.8 −42.4
EVG 20.6 19.2 32.4 36.7 36.2 36.8 26.3 34.1 35 29.7 30.2 29.5 29.3 29.8 27.3 36.5 34.5 32.2 19.2 12
EVA −184.8 −201.8 −221.6 −80.1 −89.5 −65.7 −42 −30.9 −9.8 −16.7 −4.2 −3.4 4 −9.9 19.1 17 18.9 24.5 16.2 7

Bicarb. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EHG 26.5 37.1 46.8 39.1 50 33 55.3 54.4 48.5 51.9 58.2 54.8 56.8 50.6 51.1 53.5 51.4 53.3 50.9 51.2
EHA −316.8 −357.8 −270 −387.5 −305.6 −286.2 −315.6 −274.7 −296.8 −227.7 190.5 −173.9 −189.8 −135.7 −125.4 −115.1 −110.2 −78.8 −56.2 −43
EVG 20.3 18.9 32.4 36.7 35.8 36.6 25.7 33.7 34.4 29.4 29.9 28.9 29.1 29.5 27.1 36.2 33.7 32.6 17.9 10.5
EVA −186.3 −204.9 −223.6 −81.8 −91.1 −67.6 −44.2 −32.8 −11.4 −18 −5.9 −4.6 3.4 −10.5 18.6 16.8 18.7 24.6 15 4.7

Carbo. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EHG 43.5 67.9 65.3 59.8 59.5 48.5 78.2 57.9 51.4 38.7 56.2 64.6 71.1 62.9 57.9 67.1 64.4 73.4 66 63
EHA 99.7 41.9 17.2 −287.3 −519.7 −41.8 −417.2 −226.5 −270.3 −379.2 −100.9 −46.8 −68.8 −25.1 −18.3 −11.6 −47.2 6.2 14.2 −12.3
EVG 43.6 34.9 33.2 38.8 60 51.9 56.2 53.2 63.1 43.9 42.4 57.2 43.9 44.7 41.4 55.3 77.5 9.1 54.9 55.7
EVA −82.8 10 −64.1 34 −11 29.2 61.6 69.6 68.6 54.6 60.5 57.4 33.9 24.4 45.6 33.1 30 24.5 50 72.5

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EHG 29.2 0 88.9 56 95.6 68.8 37.5 27.6 68 27 44.2 16.7 82.8 25.7 −36.4 −106.9 −37.8 6.3 9.1 −36.8
EHA 0 −100 −3.7 40 24.4 53.1 −4.2 −37.9 −4 24.3 44.2 −83.3 58.6 51.4 21.2 13.8 56.8 96.9 60.6 100
EVG 34.5 40 5.4 37.2 −16.7 51.7 0 −45.5 −31 31.1 12.5 3 −15.8 −165.2 41.4 55.9 47.5 20.5 −106.1 36.2
EVA 44.8 48 40.5 60.5 −50 75.9 68.6 75.8 41.4 51.4 87.5 18.2 47.4 −63 36.8 −7.4 67.8 43.6 −33.3 −24.6

Note(s): Alkal.: alkalinity; Bicarb.: bicarbonates; Carbo.: carbonates.
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Biological nitrogen removal is based on the process of the oxidation of ammonium
to nitrate (nitrification) and the denitrification of nitrate to nitrogen gas and the efficiency
of these processes. Increased dissolved oxygen contents can negatively affect nitrogen
removal [53]. So, maintaining anaerobic conditions would facilitate N removal. Although
the reactors are anaerobic, the best anaerobic conditions prevail in the deeper layers [20]. A
priori, by checking the great N results (reduction of 100%) of the EHA reactors at week 20
(Table 3), which were better than the others, we came to think that the absence of oxygen
contributed to N removal [54,55]. However, EHG and EVA reached high values of N
reduction at weeks 5 (95.6%) and 11 (87.5%), respectively.

The results of previous studies indicate that the pH can influence N removal processes.
Although Wu et al. [56] concluded that alkalinity enhances a higher denitrification rate,
Feng et al. [57] showed that the N removal was higher when reactors use acid-treated
carriers. As mentioned before, the pH of the aqueous extract of almond pruning shows
a value of 4.66 [49]. In these pilot bioreactors, the best nitrogen reduction values were
obtained in the presence of almond residue. Moreover, this waste facilities the microbial
biomass growth due to its porous structure.

The C/N ratio is also a determinant for denitrification processes; so, at a low C/N
ratio, denitrification is reduced [56], and the opposite is also true. According to the results
obtained by Rodríguez-Espinosa et al. [58], almond pruning residues have a high C/N ratio
(C/N = 89), which could facilitate nitrogen removal (denitrification). As a consequence,
microorganisms need an extra N supply (coming, in this case, from inlet water) to process
N from almond tree pruning. Therefore, this result is in line with the conclusions obtained
by the authors of the above-mentioned reference.

4. Conclusions

Water quality assurance is starting to be of interest mainly in water-deficient regions.
Technologies based on nature-based solutions are a valid option to improve the quality
of such water resources, as well as to promote the circular economy when using waste as
adsorbent materials. However, the changes in water quality parameters are not the same
for all of them, and the design and construction of pilot plants to improve water quality
should be considered for each case.

For most of the studied parameters in this work (pH, SS, COD, alkalinity, bicarbonates,
carbonates and N), the type of waste used in the bioreactors has a large influence. However,
the design and flow of water (horizontal or vertical circulation) is important. In general, the
vertical flow regime was favorable for reducing the parameters analyzed. The exception
may be salinity, which was not strictly affected by the treatments, and this is an issue for the
future study of treatment systems, and the same is true for the COD, which was increased.

The most important result was that the N content was reduced and reached almost a
total diminution in water in the treatment EHA. In general, the C/N ratio, in this case of
the almond residue, is the key for N reduction.

Therefore, bioreactors can be helpful to improve the characteristics of irrigation water.
In view of the many design possibilities, future studies should be carried out to achieve
reductions in all the studied parameters, and a combination of several systems can favor
the treatment of the low-quality water by using nature-based solutions.
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Appendix A

Table 1. Mean value (M) and standard deviation (SD) of pH (units of pH) in horizontal and vertical flow bioreactors.

Horizontal Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 8.18 0.012 8.44 0.012 8.35 0.006 8.36 0.006 8.25 0.006 8.29 0.017 8.13 a 0.012 8.12 a 0.010 8.15 0.015 8.10 0.006
EHG 8.23 0.012 8.19 0.013 8.13 0.008 8.13 0.006 8.19 0.008 8.17 0.006 8.13 a 0.013 8.16 0.019 8.13 0.006 8.23 0.0010
EHA 5.06 0.006 7.62 0.008 7.64 0.008 8.24 0.006 8.48 0.006 7.93 0.006 8.24 0.006 8.09 a 0.013 8.19 0.017 8.31 0.013
F 1 × 106 *** 5906 *** 9400 *** 1588 *** 2057 *** 1100 *** 133 *** 19.3 *** 19.4 *** 2820 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

I 8.15 0.021 8.25 0.010 8.29 0.010 8.30 0.021 8.26 0.012 8.31 0.017 8.27 0.006 8.28 0.013 8.29 0.0010 8.25 0.013
EHG 8.21 0.019 8.15 0.006 8.11 0.006 8.19 0.005 8.21 0.005 8.17 0.006 8.12 a 0.021 8.08 0.006 8.16 0.006 8.18 a 0.005
EHA 8.04 0.006 8.01 0.008 8.03 0.017 8.03 0.005 7.98 0.006 8.01 0.008 8.14 a 0.008 8.05 0.008 8.06 0.008 8.18 a 0.008
F 119 *** 888 *** 532 *** 466 *** 1440 *** 653 *** 138 *** 723 *** 817 *** 63.0 ***

Vertical Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 8.12 0.010 8.15 0.015 8.10 0.006 8.15 a 0.021 8.25 0.010 8.29 0.010 8.30 0.021 8.26 0.012 8.31 0.017 8.27 0.006
EVG 8.03 0.008 8.04 0.029 8.14 0.013 8.17 a 0.005 8.05 a 0.006 8.14 0.013 8.08 0.006 8.11 0.005 8.11 0.006 8.17 0.010
EVA 7.94 0.006 7.63 0.013 7.94 0.013 7.74 0.036 8.04 a 0.017 7.96 0.017 7.74 0.021 7.57 0.017 7.80 0.008 7.86 0.008
F 522 *** 759 *** 396 *** 407 *** 399 *** 613 *** 1080 *** 3531 *** 1940 *** 2820 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

I 8.28 a 0.013 8.29 0.010 8.25 a 0.013 8.26 0.006 8.27 0.012 8.26 0.006 8.23 0.006 8.26 a 0.010 8.53 0.006 8.57 0.012
EVG 8.26 a 0.006 8.12 0.005 8.25 a 0.006 8.20 0.006 8.16 0.005 8.10 a 0.008 7.67 0.006 8.40 0.006 8.31 0.006 8.27 0.006
EVA 7.75 0.017 7.89 0.012 8.11 0.006 8.12 0.006 8.08 0.005 8.10 a 0.008 8.17 0.013 8.26 a 0.008 8.33 0.008 8.01 0.010
F 2230 *** 1909 *** 336 *** 592 *** 609 *** 577 *** 4862 *** 264 *** 1309 *** 3620 ***

Note(s): F values followed by ***, ** and * indicate significant differences at p = 0.001, 0.01 and 0.05. F values followed by ns indicates no significant differences. In the columns, mean
values followed by a letter in common are statistically equal to p = 0.05.
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Table 2. Mean value (M) and standard deviation (SD) of EC (mS cm−1) in horizontal and vertical flow bioreactors.

Horizontal Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 11.27 0.059 17.65 0.008 17.64 0.099 18.32 0.046 17.50 0.039 17.54 0.072 17.42 0.101 17.48 0.064 16.77 0.061 17.4 0.102
EHG 14.07 0.993 15.82 0.045 17.53 0.021 18.91 0.078 20.29 0.085 20.04 0.008 20.02 0.055 20.01 0.025 19.27 0.148 19.73 0.041
EHA 15.73 0.047 16.20 0.084 17.58 0.015 20.44 0.048 20.08 0.029 18.73 0.051 18.88 0.050 18.42 0.070 18.63 0.057 20.15 0.058
F 5455 *** 1219 *** 3.80 ns 1357 *** 3018 *** 2397 *** 1303 *** 1518 *** 702 *** 1703 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

I 17.76 0.078 17.42 0.095 17.64 0.024 16.99 0.070 18.07 0.043 18.05 0.034 18.37 0.086 18.62 0.056 18.71 0.053 18.49 0.176
EHG 19.84 0.028 20.03 0.019 19.20 0.177 19.30 a 0.061 18.99 0.081 20.14 0.140 20.16 0.158 20.23 a 0.096 19.70 a 0.141 20.90 a 0.141
EHA 19.43 0.083 19.26 0.049 18.93 0.119 19.28 a 0.161 18.57 0.010 19.53 0.140 19.60 0.148 20.28 a 0.050 19.73 a 0.054 20.68 a 0.150
F 1059 *** 1280 *** 180 *** 620 *** 300 *** 345 *** 206 *** 725 *** 161 *** 289 ***

Vertical Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 17.65 0.008 16.77 a 0.061 17.40 0.102 17.76 a 0.078 17.42 0.095 17.64 a 0.024 16.99 0.070 18.07 a 0.043 18.05 0.034 18.37 0.086
EVG 17.47 0.108 17.11 0.107 17.60 0.021 18.04 0.067 17.87 a 0.041 17.84 0.070 17.46 0.031 18.73 0.154 18.56 a 0.015 18.71 a 0.069
EVA 17.60 0.166 16.89 a 0.033 17.98 0.067 17.64 a 0.109 17.77 a 0.010 17.65 a 0.057 17.27 0.013 17.90 a 0.087 18.59 a 0.054 18.67 a 0.139
F 1.45 ns 21.2 *** 68.0 *** 22.4 *** 61.7 *** 16.8 *** 112 *** 69.5 *** 259 *** 13.1 **

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

I 18.62 0.056 18.71 0.053 18.49 0.176 18.69 0.062 18.94 0.017 19.14 a 0.065 19.21 0.026 18.95 0.070 19.03 0.083 19.41 0.039
EVG 19.06 a 0.080 18.73 0.125 20.00 0.164 19.96 0.008 19.85 a 0.071 20.19 a 0.257 19.50 0.025 19.47 a 0.048 19.34 a 0.031 19.45 0.062
EVA 19.12 a 0.042 18.73 0.053 19.72 0.021 18.82 0.050 19.90 a 0.019 19.40 0.031 19.29 0.026 19.42 a 0.026 19.48 a 0.124 19.39 0.057
F 79.6 *** 0.16 ns 133 *** 923 *** 611 *** 50.7 *** 134 *** 124 *** 27.4 *** 1.36 ns

Note(s): F values followed by ***, ** and * indicate significant differences at p = 0.001, 0.01 and 0.05. F values followed by ns indicates no significant differences. In the columns, mean
values followed by a letter in common are statistically equal to p = 0.05.
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Table 3. Mean value (M) and standard deviation (SD) of SS (mg L−1) in horizontal and vertical flow bioreactors.

Horizontal Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 51.96 3.18 35.64 1.14 31.31 a 8.29 29.49 a 2.69 35.13 4.47 30.78 a 2.55 41.08 0.88 34.98 0.84 36.7 0.07 44.55 0.58
EHG 23.50 6.18 24.39 3.22 24.43 a 2.36 29.43 a 0.05 63.24 5.17 31.66 a 0.40 28.52 1.92 28.31 2.18 28.63 2.74 33.26 4.44
EHA 94.08 3.57 624.00 2.31 369.56 15.90 322.65 18.07 248.39 14.47 184.44 10.90 212.05 1.88 262.69 4.60 166.78 4.63 86.24 8.68
F 248 *** 82,946

*** 1431 *** 1030 *** 629 *** 748 *** 15,774
*** 8098 *** 2491 *** 98.0 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

I 53.12 6.22 35.60 a 0.79 41.64 0.73 42.39 1.13 47.99 2.93 42.42 a 1.05 42.55 a 1.01 57.98 2.55 56.73 a 1.03 35.67 a 0.55
EHG 32.09 1.07 30.25 a 0.84 30.65 6.28 29.27 0.11 25.35 1.59 32.68 a 0.18 39.29 a 0.34 37.05 2.80 28.70 2.44 32.91 a 0.29
EHA 113.90 2.62 88.28 14.10 62.22 6.80 99.30 6.81 126.11 10.89 86.68 9.87 82.39 27.97 66.58 2.12 55.75 a 0.58 43.58 4.95
F 464 *** 61.7 *** 35.8 *** 349 *** 258 *** 101 *** 8.82 ** 147 *** 412 *** 14.8 ***

Vertical Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 34.98 0.69 36.70 a 0.07 44.55 0.58 53.12 6.22 35.60 a 0.79 41.64 0.73 42.39 1.13 47.99 2.93 42.42 1.05 42.55 1.01
EVG 25.97 1.69 22.82 a 1.06 25.18 1.88 27.67 1.30 25.06 2.66 23.04 2.27 26.34 0.67 27.60 a 0.58 25.51 1.07 26.90 a 2.67
EVA 193.26 4.25 205.36 13.72 166.57 5.44 110.58 2.95 39.31 a 6.50 62.54 3.45 34.39 0.84 30.62 a 0.50 35.01 4.82 26.93 a 1.99
F 4967 *** 655 *** 2109 *** 441 *** 13.1 ** 266 *** 318 *** 158 *** 33.9 *** 80.7 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

I 57.98 2.55 56.73 1.03 35.67 0.55 37.93 0.20 43.64 3.34 29.37 1.18 30.02 a 1.42 32.43 0.28 31.92 a 7.47 29.89 a 4.43
EVG 24.25 1.63 25.22 0.51 27.86 a 1.32 27.68 2.11 24.41 3.08 33.29 2.36 27.53 a 6.24 24.72 a 5.45 24.54 a 4.28 31.88 a 1.92
EVA 34.15 1.47 29.19 0.94 27.08 a 0.87 33.25 1.44 29.82 1.29 22.07 0.91 32.95 a 1.61 25.34 a 3.64 31.83 a 6.36 25.18 a 5.98
F 318 *** 1598 *** 96.9 *** 48.1 *** 52.8 *** 50.1 *** 2.03 ns 5.11 * 1.88 ns 2.4 ns

Note(s): F values followed by ***, ** and * indicate significant differences at p = 0.001, 0.01 and 0.05. F values followed by ns indicates no significant differences. In the columns, mean
values followed by a letter in common are statistically equal to p = 0.05.
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Table 4. Mean value (M) and standard deviation (SD) of COD (mg L−1) in horizontal and vertical flow bioreactors.

Horizontal Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 43 5.20 80 3.77 67 a 10.11 72 6.35 70 2.31 80 0.00 75 1.73 69 0.01 81 1.73 89 10.97
EHG 338 0.02 306 0.01 335 a 0.82 342 15.84 426 22.00 381 15.01 365 10.81 369 36.37 358 24.54 461 30.60
EHA 14,731 94.37 5901 16.52 2841 515.40 2280 208.01 1556 35.22 919 121.25 783 0.01 653 12.73 636 4.04 718 2.50
F 94,705 *** 4.5 ×

106 *** 106 *** 400 *** 4173 *** 145 *** 12,693
*** 689 *** 1487 *** 1132 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 85 2.31 351 a 7.53 120 8.66 87 10.39 97 0.02 88 13.00 104 0.58 87 5.20 103 8.66 94 1.73
EHG 354 26.56 359 a 8.10 349 10.11 427 17.90 391 3.56 440 11.84 381 92.68 429 33.20 456 a 25.40 396 26.29
EHA 548 10.53 535 22.52 495 9.24 523 42.15 509 8.66 534 9.81 488 25.12 472 0.82 445 a 10.98 434 2.63
F 790 *** 206 *** 1638 *** 285 *** 6150 *** 1636 *** 51.2 *** 474 *** 576 *** 597 ***

Vertical Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 69 0.01 81 1.73 89 10.97 85 2.31 351 a 7.53 120 8.66 87 10.39 97 0.02 88 13.00 104 0.58
EVG 383 27.43 268 9.54 363 10.69 294 75.93 357 a 0.50 289 a 2.31 367 0.50 323 a 32.33 328 a 31.48 293 11.55
EVA 1378 37.53 1280 20.80 1166 36.69 434 35.22 472 0.96 284 a 19.63 414 15.88 349 a 6.93 365 a 24.45 359 22.81
F 2592 *** 9486 *** 2378 *** 52.1 *** 959 *** 240 *** 1042 *** 211 *** 154 *** 323 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 87 5.20 103 8.66 94 1.73 106 1.15 97 1.73 78 1.41 65 1.29 74 0.58 66 5.20 71 7.51
EVG 390 a 11.30 403 6.40 377 a 28.58 322 3.20 331 7.23 352 4.08 351 15.64 276 a 28.87 338 a 36.11 293 17.63
EVA 390 a 16.79 374 1.5 355 a 8.66 380 1.15 312 15.02 298 25.12 320 8.54 293 a 4.62 302 a 13.57 347 6.08
F 843 *** 2789 *** 333 *** 19,382

*** 722 *** 389 *** 930 *** 209 *** 174 *** 637 ***

Note(s): F values followed by ***, ** and * indicate significant differences at p = 0.001, 0.01 and 0.05. F values followed by ns indicates no significant differences. In the columns, mean
values followed by a letter in common are statistically equal to p = 0.05.
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Table 5. Mean value (M) and standard deviation (SD) of alkalinity (mg L−1) in horizontal and vertical flow bioreactors.

Horizontal Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 213.11 1.17 264.47 0.17 265.40 0.90 208.32 0.15 248.33 0.15 253.55 1.21 261.01 0.10 244.50 0.58 217.00 2.66 240.00 1.13
EHG 156.10 0.64 164.27 0.80 140.22 0.34 125.99 0.30 123.66 2.37 169.26 11.18 115.97 0.59 111.40 1.62 111.67 0.77 115.99 1.86
EHA 874.33 1.95 1185.71 0.58 967.23 0.60 1011.05 1.21 1016.84 1.82 967.56 0.62 1087.99 0.65 914.37 1.24 860.11 0.62 790.81 2.48

F 3.4 × 105

***
3.9 ×
106 ***

1.9 ×
106 ***

1.8 ×
106 ***

3.1 ×
105 ***

18,195
***

4.2 ×
106 ***

5 × 105

***
2.4 ×
105 ***

1.4 × 105

***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 261.43 0.65 262.68 0.32 262.03 1.68 246.50 1.73 257.91 2.21 259.70 0.34 251.17 9.51 260.85 0.32 265.47 1.13 270.33 1.54
EHG 109.36 0.41 118.25 0.81 112.50 0.06 121.26 0.86 125.93 0.82 120.00 1.15 121.47 0.00 120.74 0.29 129.65 0.40 131.27 2.26
EHA 755.85 0.63 712.91 0.62 753.20 1.24 575.08 0.00 576.11 3.57 552.95 1.73 525.10 0.60 461.77 2.32 411.00 1.15 384.98 1.13

F 1.4 × 106

***
1 × 106

***
3.1 ×
105 ***

1.8 ×
105 ***

35.122
***

1.3 ×
105 *** 5616 *** 63,407

***
85,661
*** 22,125 ***

Vertical Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 244.50 0.58 217.00 2.66 240.00 1.13 261.43 0.65 262.68 0.32 262.03 1.68 246.50 1.73 257.91 2.21 259.70 0.34 251.17 9.51
EVG 194.05 0.20 175.39 2.31 162.19 0.22 165.47 0.40 167.48 0.60 165.50 0.58 181.61 0.45 170.00 0.00 168.74 0.29 176.70 0.80
EVA 696.33 1.17 654.82 1.68 771.88 0.00 470.96 1.17 497.76 3.43 434.28 0.34 349.95 1.12 337.73 0.55 285.04 2.29 293.00 0.10

F 5.3 × 105

*** 55,542 ** 9.9 ×
105 ***

1.5 ×
105 ***

28,388
***

67,609
***

19,423
***

16,304
*** 8262 *** 458 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 260.85 0.32 265.47 1.13 270.33 1.54 270.72 2.22 272.64 0.00 276.00 0.00 276.24 2.26 280.16 11.31 269.00 1.15 258.00 2.31
EVG 182.10 0.12 187.16 1.06 191.00 1.15 190.06 0.02 198.13 0.00 175.35 1.13 181.00 3.46 190.00 0.00 217.47 2.26 227.00 8.08
EVA 271.92 0.25 274.42 0.16 259.59 1.13 297.39 1.20 220.60 0.00 229.00 1.15 224.00 6.93 211.40 1.18 225.39 0.00 240.00 0.00

F 1.6 × 105

***
11,356
*** 4472 *** 5885 *** 4.3 ×

103 ***
11,649
*** 419 *** 206 *** 1432 *** 41.1 ***

Note(s): F values followed by ***, ** and * indicate significant differences at p = 0.001, 0.01 and 0.05. F values followed by ns indicates no significant differences. In the columns, mean
values followed by a letter in common are statistically equal to p = 0.05.
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Table 6. Mean value (M) and standard deviation (SD) of bicarbonates (mg L−1) in horizontal and vertical flow bioreactors.

Horizontal Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 127.97 0.57 157.73 0.22 158.78 0.54 124.50 0.09 148.63 0.31 151.76 0.80 157.08 0.06 147.01 0.35 130.43 1.55 144.59 0.66
EHG 94.06 0.76 99.04 0.50 84.44 0.19 75.81 0.15 74.25 1.39 101.74 6.70 70.26 0.19 67.03 0.99 67.15 0.45 69.62 1.15
EHA 533.34 1.19 721.22 0.30 587.47 0.36 607.00 0.98 602.86 0.86 586.15 0.32 652.83 0.53 550.90 0.93 517.59 0.56 473.85 1.71

F 3.1 × 105

***
3.6 ×
106 ***

1.9 ×
106 ***

1.0 ×
106 ***

3.6 ×
105 ***

18,642
***

3.7 ×
106 ***

4.1 ×
105 ***

2.4 ×
105 ***

1.2 × 105

***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 157.14 0.33 157.15 0.05 156.77 1.01 147.20 1.03 154.44 1.32 155.12 0.25 150.40 5.69 155.88 0.23 158.72 0.80 161.87 0.92
EHG 65.66 0.22 71.02 0.50 67.71 0.05 72.77 0.50 75.57 0.48 72.09 0.68 73.07 0.01 72.78 0.18 77.97 0.23 78.93 1.39
EHA 456.44 0.50 430.40 0.49 454.34 0.95 346.89 0.05 348.05 2.25 333.66 0.95 316.21 0.30 278.67 1.36 247.97 0.73 231.46 0.72

F 1.2 × 106

***
8.5 ×
105 ***

2.6 ×
105 ***

1.8 ×
105 ***

33,592
***

1.5 ×
105 *** 5694 *** 66,589

***
70,420
*** 21,167 ***

Vertical Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 147.01 0.35 130.43 1.55 144.59 0.66 157.14 0.33 157.15 0.05 156.77 1.01 147.20 1.03 154.44 1.32 155.12 0.25 150.40 5.69
EVG 117.16 0.12 105.71 1.41 97.71 0.17 99.49 0.22 100.91 0.35 99.46 0.35 109.39 0.23 102.35 0.02 101.71 0.16 106.19 0.52
EVA 420.91 0.76 397.72 1.07 467.92 0.08 285.76 0.75 300.24 2.20 262.75 0.35 212.26 0.73 205.14 0.36 172.84 1.40 177.46 0.08

F 4.8 × 105

***
56,969
***

1.0 ×
106 ***

1.5 ×
105 ***

24,450
***

65,361
***

19,651
***

16,878
*** 834 *** 475 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 155.88 0.23 158.72 0.80 161.87 0.92 162.14 1.29 163.46 0.07 165.54 0.07 165.69 1.36 167.97 6.78 158.57 0.68 152.02 1.29
EVG 109.20 0.12 112.78 0.62 114.80 1.09 114.26 0.06 119.18 0.02 105.69 0.70 109.77 2.08 113.22 0.10 130.15 1.35 136.09 4.85
EVA 165.00 0.13 166.03 0.04 156.35 0.71 179.15 0.73 133.01 0.02 137.80 0.67 134.77 4.19 126.73 0.65 134.71 0.07 144.92 0.02

F 1.3 × 105

*** 9676 *** 3126 *** 6195 *** 9.5 ×
105 ***

11,418
*** 396 *** 210 *** 1213 *** 30.4 ***

Note(s): F values followed by ***, ** and * indicate significant differences at p = 0.001, 0.01 and 0.05. F values followed by ns indicates no significant differences. In the columns, mean
values followed by a letter in common are statistically equal to p = 0.05.
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Table 7. Mean value (M) and standard deviation (SD) of carbonates (mg L−1) in horizontal and vertical flow bioreactors.

Horizontal Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 1.94 0.1377 3.47 0.3173 3.00 0.0102 2.46 0.0018 2.75 2.7481 2.80 0.0596 2.05 0.0008 2.06 0.0049 1.87 0.0718 1.74 0.0311
EHG 1.10 0.3475 1.11 0.0092 1.04 0.0162 0.99 0.0283 1.11 0.0505 1.44 0.1141 0.45 0.5160 0.87 0.0012 0.91 0.0182 1.07 0.0108
EHA 0.01 0.0001 2.01 0.0544 2.48 0.0015 9.53 0.2380 17.03 0.2505 3.97 0.0550 10.61 0.1324 6.72 0.1672 6.92 0.1765 8.35 0.1918
F 81.2 *** 163 *** 33,501

*** 4358 *** 8307 *** 983 *** 1262 *** 4098 *** 3416 *** 5128 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 2.25 0.0646 2.97 0.2359 2.96 0.0190 3.05 0.0214 2.78 0.0239 3.17 0.0371 2.71 0.1027 3.12 0.0368 3.10 0.1080 2.92 0.0166
EHG 0.98 0.0295 1.05 0.0065 0.85 0.0107 1.13 0.0228 1.17 0.0230 1.04 0.0237 0.97 0.0127 0.83 0.0020 1.05 0.0171 1.08 0.0097
EHA 4.52 0.1152 4.36 0.1110 5.00 0.1887 3.81 0.0501 3.29 0.0663 3.54 0.1042 3.99 0.0569 2.92 0.0531 2.66 0.0275 3.28 0.0333
F 2105 *** 488 *** 1426 *** 6567 *** 2676 *** 1705 *** 1985 *** 4625 *** 1097 *** 11,286 ***

Vertical Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 2.06 0.0050 1.87 0.0718 1.74 0.0311 2.25 0.0646 2.97 0.2359 2.96 0.0190 3.05 0.0214 2.78 0.0239 3.17 0.0371 2.71 0.1027
EVG 1.16 0.0010 1.22 0.0001 1.16 0.0290 1.38 0.0214 1.19 0.0199 1.42 0.0050 1.33 0.0383 1.29 0.0169 1.17 0.0174 1.52 0.0329
EVA 3.76 0.0432 1.68 0.0402 2.86 0.0755 1.49 0.0356 3.30 0.1074 2.10 0.1363 1.17 0.0426 0.85 0.0211 1.00 0.0052 1.23 0.0158
F 11,045 *** 200 *** 1186 *** 462 *** 230 *** 375 *** 3466 *** 9507 *** 10,292

*** 622 ***

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 3.12 0.0368 3.10 0.1088 2.92 0.0166 2.89 0.0614 2.75 0.0719 2.72 0.0712 2.72 0.0223 2.83 0.1141 5.32 0.0229 5.16 0.1125
EVG 1.80 0.0458 1.33 a 0.0250 1.64 a 0.3716 1.60 0.0417 1.61 0.0211 1.22 0.0081 0.61 0.0279 2.57 0.0000 2.40 0.0250 2.29 0.0816
EVA 1.23 0.0158 1.32 a 0.0531 1.93 a 0.0169 2.18 0.0088 1.50 0.0197 1.82 0.0331 1.91 0.0340 2.13 0.0676 2.66 0.0000 1.42 0.0187
F 3040 *** 836 *** 39.0 *** 897 *** 963 *** 1108 *** 5597 *** 83.7 *** 27,339

*** 2342 ***

Note(s): F values followed by ***, ** and * indicate significant differences at p = 0.001, 0.01 and 0.05. F values followed by ns indicates no significant differences. In the columns, mean
values followed by a letter in common are statistically equal to p = 0.05.
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Table 8. Mean value (M) and standard deviation (SD) of total nitrogen (mg L−1) in horizontal and vertical flow bioreactors.

Horizontal Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 12 0.82 5.5 2.89 13.5 a 1.73 12.5 9.81 22.5 a 1.73 16 a 5.77 12 4.62 14.5 1.73 12.5 1.73 18.5 8.66
EHG 8.5 6.35 5.5 4.04 1.5 0.58 5.5 6.35 1 b 1.15 5 b 5.77 7.5 6.35 10.5 7.51 4 4.62 13.5 4.04
EHA 12 5.77 11 3.46 14 a 5.77 7.5 1.73 17 c 2.31 7.5 ab 2.89 12.5 6.35 20 8.08 13 6.93 14 9.24
F 0.66 ns 3.3 ns 16.4 *** 1.12 ns 155 *** 5.32 * 0.89 ns 2.19 ns 4.24 ns 3.59 ns

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 21.5 4.04 9 1.15 29 a 12.70 17.5 1.73 16.5 ab 1.73 14.5 a 2.89 18.5 2.89 16 a 2.31 16.5 a 4.04 9.5 a 1.73
EHG 12 a 3.46 7.5 2.89 5 b 4.62 13 3.46 22.5 a 5.20 30 5.77 25.5 14.43 15 a 1.15 15 a 4.62 13 b 0.00
EHA 12 a 3.46 16.5 10.97 12 ab 13.86 8.5 9.81 13 b 3.46 12.5 a 0.58 8 5.77 0.5 0.58 6.5 0.58 0.00 c 0.00
F 8.95 ** 2.15 ns 4.89 * 2.18 ns 6.60 * 26.2 *** 3.72 ns 129 *** 9.18 ** 181 ***

Vertical Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 14.5 1.73 12.5 1.73 18.5 8.66 21.5 4.04 9 a 1.15 29 12.70 17.5 a 1.73 16.5 a 1.73 14.5 ab 2.89 18.5 2.89
EVG 9.5 5.20 7.5 0.58 17.5 2.89 13.5 a 2.89 10.5 a 0.58 14 13.86 17.5 a 4.04 24 b 3.46 19 a 3.37 12.75 4.50
EVA 8 4.62 6.5 6.35 11 3.46 8.5 a 0.58 13.5 1.73 7 6.93 5.5 2.89 4 c 4.62 8.5 b 5.20 9 6.93
F 2.71 ns 2.84 ns 2.09 ns 20.6 *** 13.5 *** 3.78 ns 20.8 *** 33.7 *** 7.14 * 3.59 ns

Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

I 16 a 2.31 16.5 4.04 9.5 a 1.73 11.5 a 1.73 43.5 7.51 34 a 3.46 29.5 9.81 19.5 a 0.58 16.5 a 7.51 34.5 a 0.58
EVG 14 a 6.63 16 1.15 11 a 1.15 30.5 b 1.73 25.5 12.12 15 5.77 15.5 a 4.04 15.5 a 1.73 34 b 11.55 22 5.77
EVA 2 2.31 13.5 0.58 5 2.31 18.75 c 0.50 27.5 8.66 36.5 a 10.97 9.5 a 1.73 11 3.46 22 ab 5.77 43 a 6.93
F 12.6 *** 1.72 ns 12.1 ** 177 *** 4.19 ns 10.0 ** 10.9 ** 14.1 ** 4.31 ns 16.4 ***

Note(s): F values followed by ***, ** and * indicate significant differences at p = 0.001, 0.01 and 0.05. F values followed by ns indicates no significant differences. In the columns, mean
values followed by a letter in common are statistically equal to p = 0.05.
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