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Abstract: Biofilms in reactors usually grow on impermeable surfaces, and the mass transfer of
nutrients in biofilms is mainly driven by diffusion, which is inefficient especially for thick biofilms. In
this study, permeable materials (i.e., nylon meshes) were used as biocarriers in a biofilm reactor, and
their performance was evaluated and compared with the commercial biocarriers (PE08 and PE10)
used for treating slightly polluted water. The results indicate that the mesh-based bioreactor achieved
complete nitrification faster than the commercial biocarriers, with a more stable and better effluent
quality during long-term operation. At a two-hour hydraulic retention time, the average effluent
ammonia (NH4

+-N) and nitrite (NO2
−-N) concentrations during the stabilized phase were 0.97 ± 0.79

and 0.61 ± 0.32 mg-N, respectively, which are significantly lower than those with commercial carriers.
The estimated specific surface area activities for the mesh, PE08, and PE10 carriers were 1620, 769,
and 1300 mg-N/(m2·d)), respectively. The biofilms formed on the nylon mesh were porous, while
they were compact and nonporous on the PE carriers. Water with substrates might pass through the
porous biofilms formed on the meshes, which could enhance mass transfer and result in a better and
more stable treatment performance.

Keywords: biofilm; biofilm reactor; biocarrier; mass transfer; slightly polluted water

1. Introduction

Biofilm-based water treatment technologies, which mainly rely on the attached mi-
croorganisms on the surface of biocarriers to degrade pollutants in wastewater [1], have
been widely used in wastewater treatment since they enhance biomass retention and also
increase the diversity for bioreactions and microbial communities [2–5]. Biofilm reactors
can be divided into fixed bed biofilm reactors and moving bed biofilm reactors, both of
which have been popularly used due to their merits, e.g., easy to implement, high treat-
ment efficiency, high tolerance to loading fluctuation, extended sludge age, and small
footprint [6–9]. Therefore, biofilm-based processes have been widely embedded in various
wastewater treatment facilities, e.g., for enhancing denitrification in municipal wastewater
treatment plants, improving anerobic ammonia-oxidizing bacteria growth in the anaerobic
ammonia oxidation process [10–13], decolorizing dye-containing textile wastewater [14],
terephthalic acid wastewater treatment [15], anaerobic digestion processes [16], removing
petroleum hydrocarbons [17], removing ammonia and organics from slaughterhouse and
aquaculture wastewater [18], and conventional nitrification processes [19].

Powder or granular activated carbon, ceramic materials, nonwoven materials, and
plastics are materials that are widely used for biofilm carriers [20–22]. Due to their low
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density and high hardness, plastics have been the most commonly used materials for biofilm
carriers [23]. In addition to developing novel materials for biofilm carriers, optimizing
biocarrier design is another important research direction in the development of biofilm-
based technologies [24]. Previous studies on biocarriers have mainly focused on improving
the ease of microorganism attachment and growth and increasing the specific surface area,
with the aim to shorten the startup time and increase biofilm retention [25]. In addition
to biofilm concentration, the mass transfer in biofilms impacts the activity and reactor
performance as well [26]. Currently, biofilms usually grow on impermeable surfaces.
Oxygen, dissolved organics, ammonia, and other nutrients are transferred from the bulk
solution to the biofilm surface and then inwards, mainly being driven by the diffusion
process as a result of concentration gradients. However, the diffusion process is usually
inefficient, especially for thick biofilms. For biofilms growing on permeable materials, water
can pass through them from either side, especially under turbulent conditions resulting
from aeration, which can create convective flows that will enhance species (e.g., oxygen,
substrates, and nutrients) transport from the wastewater bulk solution towards the biofilm
interior and result in better mass transfer efficiency than that by diffusion only. It is most
likely that reactors with permeable materials as carriers could achieve a better and more
stable treatment performance.

In this study, permeable materials, i.e., nylon meshes, were used as the biocarriers to
build a biofilm reactor. Its performance during the startup period and long-term operation
were evaluated and compared with other commercial biocarriers in the treatment of slightly
polluted wastewater.

2. Materials and Methods
2.1. Biofilm Carrier Preparation

The monofilament (approximately 80 µm in diameter) woven nylon meshes with
a pore size of approximately 100 µm (Figure 1) were used as the biocarriers for the
growth of biofilms. The screens were tightly wrapped on a 10 cm × 15 cm × 1 cm
stainless steel frame and both sides were open. Two other commercial polyethylene
(PE) biocarriers, PE10 and PE08, were used for comparison in this study. PE10 had di-
mensions of 25 mm (diameter) × 4 mm (height). Each PE10 carrier had 64 voids, which
had a cross-sectional area ranging from 0.031 to 0.068 cm2. PE08 had dimensions of
5 mm (diameter) × 10 mm (height), and each PE08 carrier only had 8 voids with a cross-
sectional area of approximately 0.011 cm2.

As the biofilms grow, the uneven, solid surface of the PE carriers will be covered.
Therefore, the actual effective surface area of the PE carriers is usually smaller than the
advertised values. In this study, the surface area of the PE carriers was calculated by
assuming their solid surface is flat. Thus, the total surface area (including the wall surface
for all of the voids) for one PE08 or PE10 carrier was estimated to be about 639 mm2 or
2160 mm2. A container with a volume of 1 L can hold 1368 PE08 carriers or 228 PE10
carriers. Therefore, the specific surface area for PE08 and PE10 carriers was estimated to
be 870 m2/m3 and 520 m2/m3, respectively. The pores of a nylon mesh are very tiny, and
can be easily and quickly covered by biofilms. Therefore, the total surface area for the
nylon meshes was estimated based on their size in this study. One stainless steel frame
(10 cm × 15 cm × 1 cm) for the nylon meshes had a volume of 150 cm3 and a surface area
of 600 cm2 (10 cm × 15 cm × 4 cm). Thus, the estimated specific surface area of the mesh
carriers was approximately 400 m2/m3.

2.2. Biofilm Reactor Setup and Long-Term Test

Three biofilm reactors were set up, as shown in Figure 1, to evaluate the performance
of the three biocarriers in the treatment of slightly polluted water, which contained a high
ammonia concentration like aquaculture wastewater and urban black and odorous water.
The biofilm reactors (20 cm × 10 cm × 25 cm, made of polymethyl methacrylate) had an
effective working volume of approximately 4 L and the volume fraction for biocarriers was
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approximately 50%. In the mesh reactor, six mesh frames were installed and the distance
between two frames was approximately 2.5 cm. The water level in the reactor was 20 cm
to ensure all of the carriers submerged. The three biofilm reactors were used to treat the
simulated slightly polluted water, which contained COD and ammonium concentrations
of 30 mg/L and 30 mg-N/L, respectively. The COD and ammonium in the influent were
provided by glucose and ammonium bicarbonate, respectively. In addition, trace elements
were added into the influent with the formula described previously [27]. The reactors were
operated under room temperature, at approximately 23 ◦C. The hydraulic retention time
(HRT) was controlled to be about 2 h at an inflow rate of approximately 33.3 mL/min.
Air was supplied by a fine bubble diffuser at the bottom of each reactor at a rate of about
1.0 L/min. Initially, most of the PE08 and PE10 carriers in the reactors were fluidized,
while most of them became settled when biofilms were formed. The dissolved oxygen
(DO) concentration in the reactors was above 4 mg/L and the pH was maintained at 7–8
using sodium carbonate. Analytical methods for determining the DO concentration and
pH have been described previously [28]. During the tests, the detached biofilms flowed out
of the system along with the effluent. The effluent’s COD, ammonium (NH4

+-N), nitrite
(NO2

−-N), and nitrate (NO3
−-N) concentrations were regularly measured using Hach test

kits with a spectrophotometer (DR3900; Hach, Loveland, CO, USA) [29].
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Figure 1. Biofilm reactor setup with different carriers: (a) PE08, (b) PE10, and (c) nylon mesh.

2.3. Biofilm Morphology Observation by SEM

After their stable operation, the biofilms on the biocarriers were observed using
scanning electron microscopy (SEM). The biofilm samples were dehydrated first and then
coated with an aurum–platinum alloy by following the procedure provided in a previous
study [30]. Finally, an S-4700 scanning electron microscope (Hitachi, Japan) was used to
observe the samples.

2.4. Estimating the Surface Loading Rates and Specific Surface Area Activity

The surface area loading rates were calculated using Equation (1):

SALR =
ANLRavg × V

TSA
(1)
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where ANLRavg is the average ammonium loading rate (ANLR) (kg-N/(m3·d)), and TSA
is the total surface area, which is 0.30, 0.87, and 0.52 m2 for the mesh, PE08, and PE10
biocarriers at a filling rate of 50%.

The specific surface area activity (SSAA, mg-N/(m2·d)), which assumes the surface
area available for microbe growth, can be estimated using Equation (2):

SSAA =
Q(S0 − S)

SSA × R × V
(2)

where Q is the inflow rate (m3/d); S0 is the substrate concentration in the influent (mg-N/L);
S is the substrate concentration in the effluent (mg-N/L); SSA is the specific surface area
(m2/m3), which is 400, 870, and 520 m2/m3 for the mesh, PE08, and PE10 biocarriers; V is
the reactor volume (m3); and R is the filling rate of the biocarriers in the reactors, which is
50% in the study.

3. Results and Discussion
3.1. Reactor Performance during Start-Up Period

Figure 2 depicts the effluent NH4
+-N, NO2

−-N, and NO3
−-N concentrations of the

three reactors equipped with different biocarriers during the 455 days of operation. In the
start-up phase, the effluent NH4

+-N concentration in the PE08 biofilm reactor decreased
to below 1 mg-N/L after 26 days of operation, while the effluent NO2

−-N concentration
fluctuated between 20 and 25 mg-N/L from the 23rd to the 120th day, and then decreased to
approximately 1 mg-N/L after the 130th day. In the PE10 biofilm reactor, the effluent NH4

+-
N and NO2

−-N concentrations decreased to less than 1 mg-N/L after 40 and 105 days of
operation, respectively. In the mesh-based biofilm reactor, however, the effluent NH4

+-N
and NO2

−-N concentrations were less than 1 mg-N/L starting from the 69th and 78th day,
respectively. In addition, during the start-up period, the peak value of NO2

− for the PE08
and PE10 biofilm reactor was as high as 20 mg-N/L or even more, while it was below
20 mg-N/L in the mesh-based biofilm reactor. During nitrification, ammonia is oxidized
into nitrite by ammonia oxidizers, and then into nitrate by nitrite oxidizers [31]. These
results, as shown in Figure 2, again indicate that the ammonia oxidizers grew faster than
nitrite oxidizers in the biofilm reactors without the retention of suspended solids.

It is well known that a long start-up time is required due to the slow growth of
nitrifiers, especially for nitrite oxidizers [32]. In this study, it took 113, 119, and 78 days
for the biofilm reactors filled with PE08, PE10, and mesh biocarriers to achieve complete
nitrification, suggesting that mesh biocarriers could shorten the start-up time even at a
short HRT of 2 h without the retention of suspended solids. In another study, it took
84 days to initiate complete nitrification using a novel biocarrier [33]. Previous studies
have shown that although PE is the most commonly used carrier for biofilm reactors [26],
its high hydrophobicity and low surface energy limit the initial microbial cell attachment,
which may be the reason for the longer start-up time [34].

3.2. Reactor Performance under Stabilized Conditions

During the subsequent operation after start-up, the effluent nitrite in the PE08 biofilm
reactor significantly fluctuated between 4 and 10 mg-N, while the effluent ammonia was
more stable, ranging from 0.01 to 3.0 mg-N. In the PE10 biofilm reactor, the effluent
ammonia fluctuated significantly between 0.1 and 10 mg-N/L, while the effluent nitrite
was more stable, being generally less than 2 mg-N/L. However, both the effluent ammonia
and nitrite were very stable in the mesh-based biofilm reactors. As shown in Figure 3, the
average effluent ammonia concentration for the mesh biofilm reactor was 0.97 ± 0.79 mg/L,
which was significantly (p < 0.05) lower than those in the PE08 (1.84 ± 2.18 mg/L) and PE10
(2.11 ± 3.07 mg/L) biofilm reactors. In addition, the average effluent nitrite concentration
of the mesh biofilm reactor was 0.61 ± 0.56 mg-N/L, which was significantly (p < 0.01)
lower than those in the PE08 (0.95 ± 0.66 mg/L) and PE10 (2.37 ± 2.09 mg/L) biofilm
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reactors. These results indicate that a better and more stable effluent quality was obtained
in the biofilm reactor with mesh as the biocarrier.
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3.3. SALR and SSAA for Different Biocarriers during Long-Term Tests

The surface area loading rates (SALR) and the specific surface area activity (SSAA)
for the three biocarriers were calculated, with results shown in Figure 4. Due to the PE08
and PE10 biocarriers having a higher specific surface area, the estimated SALR for PE08
(828 mg-N/(m2·d)) and PE10 (1385 mg-N/(m2·d)) were lower than that (2400 mg-N/(m2·d))
in the mesh biofilm reactors. However, the mesh biofilm reactor had a better treatment
performance, and its SSAA (1620 mg-N/(m2·d)) was significantly greater than those in the
PE08 (769 mg-N/(m2·d)) and PE10 (1300 mg-N/(m2·d)) biocarriers. These results suggest
that, although the mesh biocarriers had a lower specific surface area, they performed
significantly better than the commercial biocarriers of PE08 and PE10.
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3.4. Biofilm Morphology Formed on Nylon Mesh and PE Carriers

As shown in Figure 5, the biofilms formed on the surface of the PE biocarrier are very
compact without obvious pores. The biofilm cracks shown in Figure 5f might be caused
by excessive dehydration prior to SEM analysis. After zooming in further on the image, it
can be observed that bacterial cells were embedded in compact gel-like EPS. EPS refers to
macromolecular polymers secreted by microorganisms, and mainly includes extracellular
proteins, polysaccharides, and nucleic acids, which can accelerate the formation of biofilms.
As shown in Figure 5b,c, however, porous and thick biofilm layers were formed on mesh-
based carriers. A large number of microorganisms were observed in the biofilms. These
results indicate that the biofilms formed on the PE carriers and permeable materials (i.e.,
nylon meshes) had significantly different structures. However, why the biofilms that
formed on the permeable and impermeable materials had significantly different structures
demands further studies.

Liquid diffusion and nutrient penetration through the biofilms are important factors
affecting the overall treatment performance. Previous studies have suggested that thin
and porous biofilms perform much better in terms of substrate transport even under
normal operation conditions [35]. During a long-term operation, the initial advantages of
fast biofilm growth and high microbial activity might be lost due to partial or complete
blockage [36], particularly under a high organic load [9]. Desmond et al. (2018) found that
the biofilms with compact and homogeneous structures had a higher hydraulic resistance,
while those with a heterogeneous and porous structure had a lower hydraulic resistance [37].
Obviously, the biofilms with lower hydraulic resistance will have much better substrate
transfer efficiency inside the biofilms. As shown in Figure 5b,c, the porous structure for the
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biofilms formed on the new biocarriers will allow water, oxygen, and substrates to pass
through the biofilms easier, and then created a better environment for inner biofilm growth.
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3.5. Proposed Mass Transfer in the Biofilms Formed on Permeable Materials

In biofilm reactors, biofilms usually grow on impermeable surfaces, i.e., dead-end
biofilms (Figure 6a). Oxygen, dissolved organics, ammonia, and other nutrients are trans-
ferred from the bulk solution to the biofilm surface and then inwards to support biofilm
growth [38]. When biofilms become thick, usually the inner biofilms will become inactive
since oxygen and other electron acceptors are used up during the diffusion process from
the surface to the interior [36–41]. As a result, the adhesions for the inner biofilms or those
between the biofilms and solid surface become weak, leading to biofilm detachment. In
biofilm reactors, biofilm detachments will impact treatment performance until fresh and
active biofilms are formed again [42]. Therefore, the mass transfer in the biofilms is very
important, as it not only impacts the treatment performance but also the activity of inner
biofilms and biofilm detachment.
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Figure 6. (a) The schematic for the mass transfer in the biofilms formed on the impermeable surface;
(b) the proposed schematic for the mass transfer in the biofilms formed on the permeable surface (i.e.,
nylon meshes).
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For the biofilms developed on the impermeable surface (i.e., dead-end biofilms), the
mass transfer of nutrients in the biofilms is mainly driven by the diffusion process as
the result of concentration gradients [43]. The differences in the concentration gradient,
biofilm thickness, and inner structures will impact the diffusion efficiency [44]. Previous
studies have shown that in aerobic systems, sufficient turbulence is created by aeration to
control the turnover of microorganisms in biofilms, and then appropriate biofilm thickness
is maintained by shear force [9]. As a result, the activity of biofilms and their effective
mass transfer performance are maintained [9]. Our research showed that when permeable
materials, e.g., meshes, are used as biocarriers, thick biofilms will be formed on both
sides of the mesh and also inside the mesh pores (Figure 5). Since the mesh are thin and
porous, water may pass through the biofilms from either side, especially under turbulent
conditions resulting from aeration, creating convective flows that will bring species (e.g.,
oxygen, substrates, and nutrients) from bulk solutions to the biofilm interior and then
result in greater mass transfer efficiency than that by diffusion only. These water-permeable
biofilms that are formed on the meshes are shown in Figure 6b. The mesh pores can
additionally provide more spaces for biofilm inhabitation, further enhancing the treatment
efficiency. Moreover, after the biofilms form and grow inside the pores of PE08 and PE10,
the contact area between biofilms and wastewater per unit carrier can be higher in the
nylon meshes than in PE08 and PE10, which may be another reason for the better and more
stable treatment performance of the mesh biofilm reactor.

This study demonstrated that the biofilm reactor with permeable materials (i.e.,
meshes) as carriers achieved a better and more stable effluent quality. However, more
studies should be conducted to characterize the mass transfer performance and activities in
biofilms formed on permeable surfaces (Figure 6b) and validate the proposed mechanisms.

4. Conclusions

The performance of a biofilm reactor with a nylon mesh as the biocarrier was evaluated
and compared with other commercial biocarriers in the treatment of slightly polluted
water. The mesh-based bioreactor achieved a faster start-up time and more stable and
better effluent quality than the commercial biocarriers. The estimated specific surface area
activities for the mesh, PE08, and PE10 carriers were 1620, 769, and 1300 mg-N/(m2·d)),
respectively. On the permeable meshes, convective and porous biofilms formed and water
with substrates passed through the mesh biofilms, which enhanced the mass transfer, and
in turn, achieved a better and more stable treatment performance.
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