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Abstract: The combination of several factors related both to human pressure as well as natural issues
could lead to a marked alteration of the groundwater budget terms and a decrease in groundwater
availability. The basal aquifer of the Sibillini Mts. is a strategic resource of drinking water in the central
sector of Apennine (Italy). The seismic sequence that occurred in this area in 2016 induced transient
and sustained modifications in the aquifer settings. Springs located on the western side of the Sibillini
Mts. were characterized by an increased discharge, while in contrast, the eastern springs suffered an
intense drop in their groundwater discharge. In 2017, a drought period started immediately after the
exhaustion of the seismic sequence effect. The comparison between the recharge and discharge of the
major springs in the 2000–2020 period allowed the definition of the different responses of the aquifer
to the co-occurrence of earthquakes and climatic events. The hydrodynamic alteration triggered by
the earthquake induced a huge depletion of the groundwater stored in the eastern sector of the basal
aquifer (at least 50 × 106 m3). The scarce recharge occurring in the following drought period (more
than 30% of the average annual value) was not enough to restore the groundwater resources, causing
a serious drinking water supply crisis in the main tapped springs in the eastern sector of the aquifer.

Keywords: recharge; droughts; groundwater reserve; groundwater resource; groundwater managements;
regional hydrogeology; earthquake hydrogeology

1. Introduction

The availability and safeguarding of groundwater resources have always been precious
assets for humanity. This issue has gained even more attention in the last decades from the
local scale up to a worldwide level in light of climate changes [1].

Applied research investigating all aspects of aquifer yields (e.g., safety, sustainabil-
ity) [2–5] is developing innovative models and criteria for necessary groundwater manage-
ment based on hydrogeological balance calculations, in which the relationships between
groundwater inflow and outflow and aquifer content are analyzed [6–9]. Despite several ap-
proaches to groundwater budget calculation, it is commonly accepted that the groundwater
yield (in its general meaning) primarily depends on the recharge [10,11].

In the case of prolonged periods characterized by a higher groundwater discharge than
recharge, the groundwater stored in the aquifers is progressively consumed. In addition, if
this condition is triggered by excessive anthropic withdrawals, the aquifer may reach the
point of overexploitation of the non-renewable groundwater reserves [12–14]. Examples of
aquifer overexploitation induced by withdrawals are known in the literature both at local
and global scales [15–19].

Several studies focus on the effects of diminished aquifer recharging induced by
climate change on groundwater resource availability [20–24], highlighting how the current
climate trends are seriously threatening groundwater supplies. Specifically, in some studies

Water 2023, 15, 2355. https://doi.org/10.3390/w15132355 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15132355
https://doi.org/10.3390/w15132355
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-3761-3719
https://orcid.org/0000-0002-2521-7463
https://orcid.org/0000-0003-1137-6137
https://doi.org/10.3390/w15132355
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15132355?type=check_update&version=2


Water 2023, 15, 2355 2 of 19

of carbonate aquifers of Central Italy, the comparation between the time-trend of the local
Standardized Precipitation Index (SPI) with the long-term spring hydrograph was used to
quantify the impact of dry periods on groundwater resources [9,25,26].

In addition, few works report aquifer imbalances induced by seismic effects. The mag-
nitude and duration of the effects may depend on the aquifer sensitivity to earthquakes [27].
This statement is defined by the study of the seismically induced variations in the hydraulic
parameters of the aquifer (recession coefficient, transmissivity, and storage coefficient) [28]
and specific analysis of the groundwater level and seismogram to determine the storage
coefficient [29].

A fair amount of research concerns the seismic reactions of carbonate fractured
aquifers, focusing on the physical modifications of the system. The increase in pore pressure,
the dynamic strain modifications, and the unlocking and dilation of preexisting fractures
may induce a general increase in bulk hydraulic conductivity at the aquifer scale. This also
produces changes in the hydraulic heads, with consequent increases in groundwater out-
flow rates. During persistent altered hydrodynamic conditions, the groundwater discharge
is higher than pre-seismic discharge [30–35]. In many cases, the surplus of groundwater
outflowed for years after the seismic event, altering the groundwater budget [36–38].

This alteration may be assumed to be similar to the overexploitation of aquifers
because in both cases the groundwater discharge does not depend on the natural recharge.
In addition, the co-occurrence of a post-seismic event and a drought period may induce
reductions in the groundwater reserves. This issue may be extremely relevant if the aquifer
represents a strategic drinking water supply.

The Sibillini carbonate massif, located in Central Italy, hosts two main fractured
aquifers. In 2016, a seismic sequence with events of intensity greater than 5.5 Mw affected
the whole hydrogeological system but only the larger and deeper basal aquifer (BA) suffered
sustained effects [34,39].

During the two following years, about 350 × 106 m3 of groundwater flowed out. This
value corresponds to a 70% increase in pre-seismic discharge [40]. After five years, the
BA still suffers from the sustained effects of the seismic sequence and, in addition, the
co-occurrence of drought periods.

The aim of this study is the elaboration of long-term analysis and quantification of the
combined effects induced by seismic events and climate variability on the groundwater
availability of the BA. At present, some springs tapped for drinking purposes are still
characterized by negative discharge trends, undermining the regional drinking water
supply system. By a comparative analysis of groundwater responses to the drought
periods occurring before and after the 2016 seismic events, we contribute to quantifying
the hydrogeological alteration triggered by the earthquake. The potential applications of
the study results might provide a scientific base for future decision-making procedures in
the resolution of the current crisis of groundwater supply in the study area.

2. Study Area
2.1. Hydrogeological Setting of Sibillini Mts.

The Sibillini Mts. are part of the Central Apennines (Italy), an E-verging arcuate
fold-and-thrust belt formed in the middle-late Miocene. They were later dissected by
SW-NE extensional tectonics since the early Pleistocene and are still considered active with
moderate seismicity [41]. The stratigraphy is composed of a Meso-Cenozoic calcareous
multilayer sequence (Umbria–Marche sedimentary succession) that is more than 2 km
thick [42].

The fracturing of the limestone units permits two main aquifers to be recharged: the
basal and Scaglia aquifers [43–47]. The mean discharge of the Sibillini Mts. aquifers is
approximately 23 m3/s, mainly in gaining streams in the Nera River basin (18.2 m3/s)
and along the eastern side of the carbonate massif (4.6 m3/s) [48]. The aquifers system is
hydraulically limited by two thrust faults: the Valnerina Thrust (VNT) [49] in the west and
the Sibillini Mts. Thrust (SMT) [50] in the east (Figure 1).
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Figure 1. Hydrogeological framework of the studied area (Adapted with permission from Ref. [39]).
Legend: (a) alluvial aquifers; (b) intermontane porous aquifer; (c) low-permeability turbidic deposits;
(d) Scaglia Cinerea aquitard; (e) Scaglia aquifer; (f) basal aquifer; (g) main fault thrust; (h) main normal
faults; (i) main springs fed by the basal aquifer; (j) main gaining streams fed by the basal aquifer;
(k) main groundwater flow direction within the basal aquifer; (l) groundwater divide; (m) monitoring
stations; and (n) earthquake epicenters (green: 24 October 2016 event; cyan: 30 October 2016 event).
Acronyms: CAT: tapped Capodacqua del Tronto spring; CSN: Nera River at Castelsantangelo gauging
station; FO: tapped Foce spring; SS: tapped Sassospaccato spring; TO: Nera River at Torre Orsina
gauging station. Tectonic elements’ acronyms: FNF: Fema Mt.–Norcia Fault; FVT: Fiegni–Vettore
Thrust; SMT: Sibillini Mts. Thrust; VBF: Vettore Mt.–Bove Mt. Fault; VNT: Valnerina Thrust; VT:
Visso Thrust.

The BA consists of fractured and karst lithotypes (Calcare Massiccio, Corniola, and
Maiolica formations, early Jurassic–early Cretaceous). It feeds approximately 70% of the
total discharge. The main recharge area is the southern sector of the Sibillini Mts. where
the aquifer units are exposed. The Triassic evaporites underlie the aquifer and act as a
regional aquiclude. The eastern sector of the BA feeds the springs at the eastern foot of
the Sibillini Mts. ridge at altitudes above 900 m a.s.l. with a discharge of approximately
2 m3/s. The western sector of the BA mainly drains towards the springs of the Nera River
basin at elevations between 760 and 250 m a.s.l. with a total discharge of approximately
14 m3/s. Minor groundwater flow (approximately 0.6 m3/s) drains southward, feeding
the Capodacqua del Tronto spring group (site CAT in Figure 1) [44,45].

The preferential groundwater flow directions in the BA are NNW–SSE and N– S; the
flow is parallel to the regional compressive faults that usually hinder transversal ground-
water exchanges [51]. This general hydrostructural setting is affected by the presence of
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normal faults that alter the sealing role of the thrusts, which permits minor groundwater
seepages [39,47,52]. The BA, therefore, results in a partially compartmentalized aquifer (a
basin in series system) where each basin has a high hydraulic interdependence [53].

The three main basins in the series were defined in the Sibillini Mts. (Figure 1)
hydrogeological system. The boundary between basins 1 and 2 is composed of three
segments (from north to south): the no-flow boundary corresponding to the Fiegni–Vettore
Mt. Thrust (FVT) (I), a small portion corresponding to a piezometric divide in the northern
sector of Vettore Mt. (II), and the groundwater divide caused by the bedrock reaching a
higher elevation than the water table (III) [39,47]. The hydraulic connection between basins
2 and 3 occurs through the Fema Mt.–Norcia Fault (FNF), and it plays a limited role as a
hydraulic barrier in the Norcia plain [52].

The average annual infiltration rate of the BA ranges between 500 and
1100 mm/year [44–46,54], which corresponds to 75% of the local effective rainfall [55].

2.2. Effects of the 2016–2017 Seismic Sequence on the Sibillini Mts. Groundwater Flow

A seismic sequence affected the Sibillini Mts. during 2016–2017. The mainshocks
that occurred on 24 August (Mw = 6.0) and 30 October 2016 (Mw = 6.5) (Figure 1) were
caused by the rupture of the different segments of the Vettore Mt.–Bove Mt. Fault system
(VBF) [56]. The activation of this fault system induced sustained hydrodynamic responses
in the BA, with a sustained increase in groundwater discharge on the western springs and
a prolonged decrease in the discharge of some eastern springs [34,37,57]. Many factors
might have contributed to this alteration, such as the increase in the hydraulic conductivity
induced by the fracture cleaning, the increase in permeability due to seismic rupturing
along normal faults, and the aquifer distance from the activated faults [39,40,58,59]. The
effects of the seismic sequence enhanced the E–W hydraulic continuity, which produced a
surplus of groundwater outflow from the BA in the western sector of about 350 × 106 m3

and a groundwater outflow deficit in the eastern sector of 50 × 106 m3 during the 2016–2020
period. Figure 2 shows the hydrodynamic alteration induced by the earthquake in the BA
that is extensively explained in the literature [39,40].
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Figure 2. Not to scale schematic sketch of the hydrodynamic alteration induced by the earthquake in
the BA (Adapted with permission from Ref. [39]). Legend: (a) basal aquifer; (b) bedrock; (c) main
faults; (d) springs; (e) water table at the time of the earthquake; (f) water table due to the long-lasting
effects of the earthquake; (g) water table after the earthquake’s transient effects; (h) new cross flow
between nearby basins in series due earthquake effects; (i) position of the groundwater divide before
the earthquake; (j) position of groundwater divide after the earthquake; (k) position of the basins
in series boundaries before the earthquake; (l) position of the basins in series boundaries due to the
earthquake effects.
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3. Materials and Methods
3.1. The monitoring Sites and Collected Data

The five sites (Table 1; the locations are in Figure 1) that are used to monitor the
groundwater discharge were chosen to investigate the responses of the different BA sectors
to the groundwater consumption induced by the earthquake and climate. The sites corre-
spond to two gauging stations along the Nera River managed by the Umbria Hydrographic
Service on the western side of the BA and three springs on the eastern side that are ex-
ploited for drinking purposes by Cicli Integrati Impianti Primari S.p.A. All the monitoring
stations were equipped with water level probes to acquire daily data. The water levels were
converted into discharge data according to each specific flow rate curve. Seasonal control
discharge measurements were performed at the CSN, FO, SS, and CAT sites by using an
OTT Nautilus C2000 current meter.

Table 1. Features of the measurement sites of groundwater discharge. TO: Nera River at Torre Orsina
gauging station; CSN: Nera River at Castelsantangelo gauging station; FO: tapped Foce spring; SS:
tapped Sassospaccato spring; CAT: tapped Capodacqua del Tronto spring. Extension of the recharge
areas of the monitored springs (site) and the whole group (total) to which each monitored spring
belongs is reported.

Site Period Elevation (m a.s.l.)
Recharge Area (km2)

Total Site

TO 2003–2020 210 1292 1292
CSN 2007–2020 750 99 99
FO 2006–2020 910 30–50 20
SS 2014–2020 1300 7 2.1

CAT 2010–2020 840 32 21

The Torre Orsina (TO) station is located along the Nera River at the exit of the Sibillini
Mts. system. Here, the baseflow (about 20 m3/s before the seismic event) accounts for
more than 90% of the total discharge, with a negligible contribution from the runoff [60].
At least 78% of the baseflow is fed by the BA [44], and it has a recharge area of 1292 km2.
The TO site can, therefore, be considered a strong control point that can be used to monitor
the outflow of the western side of the BA.

The Castelsantangelo (CSN) station monitors the baseflow fed by the BA springs
located in the upper Nera River basin. The recharge area has a size of 99 km2 and also feeds
the groundwater transfer toward basin 3 through the FNF fault. Before the 2016 earthquake,
the mean discharge was 2.3 m3/s subdivided between the baseflow discharge at the CSN
(1.3 m3/s) and the lateral transfer westwards of the Norcia plain (1 m3/s) [52]. This lateral
contribution is monitored in the Sordo River (Figure S1) at the exit of the Norcia plain
(Figure 1). The discharge components were accounted for together in the groundwater
budget evaluation because the recharge area is the same.

The Capodacqua del Tronto (CAT) site refers to a drainage tunnel with an average
discharge of 0.385 m3/s (65% of the total discharge of the spring group). The recharge area
of the whole spring system is approximately 32 km2 [61], of which 21 km2 feeds the tapped
spring. It is geographically located in the eastern side of the Sibillini Mts. but its recharge area
is in basin 2, which is west of the groundwater divide near Vettore Mt. (Figures 1 and 3).

The springs, including the Sassospaccato (SS) site, have the highest outflow from
basin 1 (1300 m a.s.l.). The recharge area of the springs group is approximately 7 km2 and it
is located between the SMT and the segment of the groundwater divide that corresponds to
the bedrock uplift. The total discharge is about 0.125 m3/s, 0.035 m3/s of which is tapped
at the SS site (which has an estimated recharge area of 2.1 km2) [62,63].

The Foce spring (FO) site is the main drinking water supply for those on the eastern
slope of the Sibillini Mts., and it is included in a spring group with a total discharge of
1.15 m3/s. Before the 2016 earthquake, 0.55 m3/s of groundwater was steadily tapped
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by a drainage tunnel, and 0.6 m3/s of groundwater supported the discharge of the Aso
River [64]. After the seismic events, the Aso River became dry, and the drainage tunnel
tapped less than 0.2 m3/s [62,65]. The actual recharge area of the whole spring group in
the eastern side of basin 1 has still not been defined. The extension should range between
30 and 50 km2 [65] but it probably decreased after the 2016 earthquake due to the eastward
shift of the groundwater divide [39]. The recharge area of the tapped spring monitored at
the FO site is estimated to be at least 20 km2 [65].
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(a) Monitoring sites; (b) thrusts; (c) normal faults; (d) groundwater divide; (e) TO recharge area;
(f) CSN recharge area; (g) CAT recharge area; (h) SS recharge area; (i) FO recharge area.

In the CAT, SS, and FO sites, the discharge monitoring data were collected inside the
drainage tunnels and did not correspond to the total discharge of each spring group. The
FO dataset includes only discharge values that are less than or equal to the maximum
capacity of the drainage tunnel. The SS dataset was created in 2014 and includes only
6 years of data, only three of which were before the earthquake, which are too few to be
representative of the preseismic period.

Daily climate data (the rainfall, air temperature, and snow thickness) were acquired
from 61 weather stations by the Umbria, Marche, and Lazio Regional Hydrographic Services
for the years 2000–2020 [66–68]. A total of 20 daily rainfall datasets from 1951 to 2020 were
collected to calculate the Standard Precipitation Index (SPI). The data were aggregated
on a monthly scale, and any data gap was filled according to the correlation between the
contemporaneous data from the nearby stations. The snow thickness data, acquired from
three snow gauge stations, were converted into water-equivalent values [69] and summed
to obtain the rainfall data collected by the pluviometers.

The location, details of the weather stations, and yearly rainfall data collected between
2010 and 2020 are reported in the Supplementary Materials (Figure S2 and Table S1).

3.2. Elaboration Methods

The SPI was calculated, and we chose a 12-month scale (SPI12) because it is more
related to groundwater time dynamics [70,71]. A total of two mean SPI12 were calculated
for the eastern and western sides of the area according to the location of the surface
water divide.
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The SPI is the number of standard deviations that the observed value deviated from
the long-term mean by for a normally distributed random variable. A drought event occurs
when the SPI is continuously negative and reaches an intensity of at least −1. The duration
of the drought period comprises two SPIs that are equal to 0 [72].

The aquifer recharge was calculated by using the monthly rainfall and mean monthly
temperature in the 2000–2020 period. The actual evapotranspiration was estimated by
using the Thornthwaite–Mather method [73]. The monthly water surplus values were
calculated by using the data from each meteorological station as the difference between
the rainfall and actual evapotranspiration. The water surplus data were spatialized by
using the ArcGIS Geostatistical Analyst, and the result of the spatialization was clipped
according to the extension of the recharge area at each monitoring point. The effective
infiltration over the BA that consisted of fractured limestone was estimated as 75% of the
water surplus [55]. The monthly variability of the effective infiltration permitted us to
define the recharge periods and quantify the total recharge of each hydrological year.

The groundwater discharge was calculated by considering the baseflow measured at
the CSN and TO hydrographic stations. The baseflow was roughly separated from the data
by using the Straight-Line Method [74], whereby we drew a straight line from the beginning
to the end of the surface runoff occurrence on the hydrograph. The approximation of this
approach was suitable due to the regional scale of this study.

3.3. Components of Groundwater Stored in the Aquifer: Reference Model

The components of the groundwater in an aquifer with a geometry such as the one
that was studied are described in the following section (Figure 4) [13,15,75,76].
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head; GWD: groundwater discharge; W0: dynamic reserve; Wg geological reserve; RRc: renewable
resource; RRv: renewable reserve (Adapted with permission from Ref. [75]).

The geological reserve (Wg) corresponds to the amount of groundwater that is stored
in the aquifer below the spring elevation, and the groundwater may remain stored even if
the spring becomes dry. In a tapped aquifer, the Wg can be extracted by pumping but the
prolonged consumption may trigger the overexploitation condition.

The dynamic reserve (W0) corresponds to the annual amount of groundwater that can
naturally discharge from a spring during the recession period. The discharge rate may vary
during the year according to the hydraulic gradient and may reach the no-flow condition
(i.e., the groundwater discharge is zero, as shown in Figure 3) when the water table drops
to the spring elevation.

If the natural groundwater discharge is perennial, W0 can be conceptualized as the sum
of the renewable resource (RRc) and the renewable reserve (RRv) (Figure 4). The RRc is the
amount of groundwater that is present between the maximum and minimum values of the
hydraulic head during the hydrological year. The RRv is the amount of groundwater that
is present between the average minimum hydraulic head and the elevation of the spring.



Water 2023, 15, 2355 8 of 19

The RRv supports the spring discharge during drought periods, and it is restored
during the recharge period of the wet years.

To investigate how the groundwater is stored in the different BA sectors, the hydro-
graphs of the recession periods were examined by using the Maillet equation [77], which
allows the depletion coefficient (α) and amount of W0 to be calculated.

Regarding the yearly data, W0 is defined as the amount of groundwater stored in the
aquifer at the beginning of the recession period, and ∆W is the amount of groundwater
discharge that outflows until the end of the recession period.

These values were defined according to the Maillet equation, and the hydrograph
was measured at each monitoring site. The difference between W0–∆W corresponds to Wr,
which is the RRv left in the aquifer at the beginning of the next recharge period.

The estimation of what the hydrographs would look like if the aquifer had not been
affected by seismic activities was realized by using the α values calculated during the
preseismic period. The seismic-induced groundwater discharge surplus was evaluated by
comparing the actual and calculated hydrographs.

In the studied cases, the amount of ∆W in each postseismic year included the ∆W
that outflowed during the recession and the amount of the groundwater surplus that
outflowed during the following recharge period. This is because the groundwater surplus
that is outflowing during the recharge period consumes the W0 stored in the aquifer at the
beginning of the previous recession period every year.

4. Results
4.1. Climate Analysis

The results of the SPI12 allowed us to identify the drought periods since the 1950s
(Figure S3). A detailed focus on the 2000–2020 period is reported in Figure 5. In this
period, four droughts (SPI < −1) were recognized, three of which reached extremely dry
conditions with an SPI < −2 (October 2001–December 2002; November 2006–December
2008; September 2011–December 2012; March 2017–February 2018).
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The 2017 drought period started immediately after the exhaustion of the 2016 seismic
sequence, and it seemed to be shorter than the other droughts that have occurred since
2000. The intensity of the drought seemed to be less severe in the eastern sector than in the
western one.

4.2. Groundwater Budget Estimation

The average values of the yearly recharge and discharge were calculated for the pre-
and post-seismic periods (Figure 6). In all sites, the mean effective infiltration (recharge)
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was higher during the pre-seismic period than the post-seismic one. Moreover, during the
post-seismic period, the annual effective infiltration was always below the mean, except for
the years 2017–2018. The yearly variability in the recharge aligned with the SPI12 trend.
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Nera River at Castesantangelo gauging station; FO: tapped Foce spring; SS: tapped Sassospaccato
spring; CAT: tapped Capodacqua del Tronto spring.
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On the contrary, the mean pre-seismic discharge was higher than the post-seismic one,
except at the FO and SS sites, where the average groundwater discharge consistently fell.
The annual groundwater discharge values during the post-seismic period were abnormally
high, especially during the 2016–2017 drought period as the result of the more intense effect
of the earthquake rather than the climate issues.

A rough average annual groundwater budget was calculated for each measurement
point during the pre- and post-seismic periods (Table 2). During the pre-seismic period,
the difference (∆) between the effective infiltration and groundwater discharge was al-
ways <17% of the effective infiltration, except for the SS (∆ = 25% of effective infiltration),
which was probably due to the limited monitoring period. This inconsistency may have
been caused by the uncertainties in the recharge area definition and instrumental issues,
especially for the monitoring systems that were installed in the drainage tunnels. The
postseismic groundwater budgets highlight the unbalanced conditions that may refer to
different factors. The TO, CSN, and CAT sites showed a negative ∆ corresponding to
56% (TO), 11% (CAT), and 117% (CSN) of the effective infiltration. This means that the
groundwater discharge was higher than the aquifer recharge.

Table 2. Average annual groundwater budget differentiated between pre- and post-seismic events.
EI: effective infiltration; GWD: groundwater discharge; ∆: difference in budget (EI minus GWD); TO:
Nera River at Torre Orsina gauging station; CSN: Nera River at Castelsantangelo gauging station; FO:
tapped Foce spring; SS: tapped Sassospaccato spring; CAT: tapped Capodacqua del Tronto spring.

Site
Preseismic Period Postseismic Period

EI (106 m3) GWD (106 m3) ∆ (106 m3) EI (106 m3) GWD (106 m3) ∆ (106 m3)

TO 569 573 −4 451 704 −253
CSN 87 72 15 70 152 −82
CAT 9.8 8.1 1.7 8.3 9.2 −0.9
SS 1.6 1.2 0.4 1.2 1.0 0.2
FO 18 16 2 16 10 6

On the contrary, the SS and FO sites presented a positive ∆ equal to 17% and 38%
of the effective infiltration, respectively, which indicated less groundwater outflow than
recharge. The ∆ in the FO site was also much higher in the post-seismic period than the
pre-seismic one, as the changes in the local hydrogeological settings rather than monitor-
ing uncertainties.

The results of the comparison between the inflow and outflow in each hydrological
year (Figure 6) identified the critical years when the outflow amount was considerably
higher than the inflow amount. This finding highlights the probable consumption of the
renewable reserve (RRv) that may be replenished by the recharge that occurs during the
following wet years.

In the pre-seismic period, the groundwater outflow exceeded the recharge in all sites
during the drought years (2006–2007 and 2011–2012), with imbalances ranging between
36% of the effective infiltration (FO, 2006–2007) and 60% (CAT, 2011–2012).

During the post-seismic period, except in 2017–2018, the western side of the BA
presented an excess of groundwater discharge. On the contrary, the amount of effective
infiltration in the eastern springs has been higher than the groundwater outflow since
2017–2018. The discrepant responses in the western and eastern sides of the BA under
similar climate conditions suggest the persistence of the seismic-induced effects.

4.3. Hydrograph Analysis

Daily hydrographs of the five sites are shown in Figure 7. The average values of the
baseflow in the river hydrographs (TO and CSN) correspond to 91% of the total discharge
during the pre-seismic period, according to the literature [60]. This percentage slightly
increased (94%) during the post-seismic period (Table 3).
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Figure 7. Daily hydrograph of the considered sites and time distribution of monthly effective
infiltration. (a) Daily hydrograph; (b) rising limb (only for river hydrographs); (c) recession limb;
(d) reconstruction of the undisturbed hydrographs in the absence of the earthquake; (e) monthly
effective infiltration; (f) seismic events. TO: Nera River at Torre Orsina gauging station; CSN: Nera
River at Castelsantangelo gauging station; FO: tapped Foce spring; SS: tapped Sassospaccato spring;
CAT: tapped Capodacqua del Tronto spring.
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Table 3. Average values of river discharge and related baseflow for the pre- and post-seismic period.
TO: Nera River at Torre Orsina gauging station; CSN: Nera River at Castelsantangelo gauging station.

Site

Preseismic Period Postseismic Period

Discharge
(m3/s)

Base Flow
(m3/s)

Discharge
(m3/s)

Base Flow
(m3/s)

TO 20.24 18.16 24.17 22.1
CSN 1.25 1.16 2.13 2.05

Using the α values that were calculated with Maillet’s equation, the amount of ground-
water that was stored (W0) and outflowed (∆W) after the seismic effects occurred was
estimated for each recession period and compared with the groundwater discharge amount
that was unaffected by the earthquake to calculate the amount of the outflow surplus or
deficit in each site (Table 4).

Table 4. Groundwater reserve amount stored in the BA and outflowed during the recession periods
affected by seismic consequences. The n.d.: not determined; W0: amount of groundwater stored
in the aquifer at the beginning of the recession period; ∆W: amount of groundwater discharge that
outflowed until the end of the recession period; A: actual recession; B: assumed recession; C: surplus
or deficit during recession; D: surplus or deficit during the next recharge period; E: total surplus or
deficit; Wr: difference between W0–∆W, which is amount of groundwater left in the aquifer at the
beginning of the next recharge period; TO: Nera River at Torre Orsina gauging station; CSN: Nera
River at Castelsantangelo gauging station; FO: tapped Foce spring; SS: tapped Sassospaccato spring;
CAT: tapped Capodacqua del Tronto spring.

Sites
Recession

Year W0 (106 m3)
∆W (106 m3)

Wr (106 m3)
A B C D E ∆W Tot

TO
2016 893 240 227 13 137 150 377 516
2017 1220 377 296 81 44 125 421 799

CSN
2016 82 61 29 32 31 63 92 −10
2017 103 24 13 11 9 20 33 70

CAT
2016 6.0 4.1 3.0 1.1 3.9 5.0 8.0 −2.0
2017 7.3 4.5 3.7 0.8 n.d. 0.8 4.5 2.7

SS 2016 1.2 1.0 0.6 0.3 0.1 0.4 1.0 0.1

FO

2017 17.6 9.1 12.2 −3.1 −4.8 −7.9 9.1 8.5
2018 13.4 3.7 7.5 −3.8 −5.7 −9.5 3.7 9.6
2019 7.5 2.0 5.8 −3.8 −5.9 −9.7 2.0 5.5
2020 6.4 1.8 5.8 −4.0 n.d. n.d. 1.8 4.6

After the earthquake, the excess groundwater discharge in the western side was at
least 364 × 106 m3. In the eastern side, a surplus of 0.4 × 106 m3 existed in the SS site,
whereas the FO site was characterized by a groundwater deficit of 27 × 106 m3. The
seismic-induced groundwater discharge variations disappeared in two years except in the
SS site, where the seismic effects lasted only one year. On the contrary, in the FO site, the
deficit remained until 2020. The negative values of the Wr amount highlight the exhaustion
of the W0 and the partial consumption of the Wg. This critical condition occurred in the
CSN and CAT sites during the recession period immediately after the seismic events, when
about 12 × 106 m3 of the Wg was consumed due to the earthquake effect.

5. Discussion

The annual average values of the groundwater discharge and the effective infiltration
of the pre- and post-seismic periods were normalized and compared.
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The data collected during the pre-seismic period did not show a trend, and a high
dispersion existed around the 1:1 line (Figure 8A). This means that even if the effective infil-
tration and groundwater outflows were the main terms of aquifer recharge and discharge,
respectively, they cannot be expressed by a unique mathematical equation, so analyzing this
relation every year is necessary. The geological and structural nature of the studied aquifer
facilitates the storage of a high amount of the RRv that supports the annual groundwater
regime more than the recharge processes.
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Figure 8. Groundwater discharge (GWD) versus effective infiltration (EI) of monitoring points for
all years of the pre-seismic period (A) and for SPI12 dry years (2006–2007 and 2011–2012) and their
following ones (B). The plotted values were normalized.

The points located above the 1:1 line (Figure 8) indicate the situations where the
RRv supports the discharge because the previous annual recharge level was not high
enough to justify the discharge. On the contrary, the points falling below the 1:1 line
(recharge > discharge) indicate the RRv restoration conditions.

Most of the points corresponding to the preseismic SPI12 dry periods (2006–2007
and 2011–2012) fell above the 1:1 line (Figure 8B), which suggests that the groundwater
discharge was supported by the RRv stored in the aquifer. In the following years, the points
were located below the 1:1 line. This means that most of the effective infiltration restored
the RRv that was employed in the previous dry years. The residual effective infiltration fed
the discharge, which, thus, means that the discharge occurred less than expected. During
the observed period, at least two years were necessary to restore the RRv consumed during
the dry periods.

In the post-seismic period (Figure 9), the groundwater surplus triggered by the earth-
quake outflows consumed the RRv. The huge amount of the surplus hid the effects of the
2016–2017 dry conditions and altered the impacts of the recharge in the following years.

Despite the drought year, the results of the analysis of the data from 2016 to 2017
showed that the points were abnormally above the 1:1 line at all the sites; specifically, they
fell in the first quadrant of the graph, which represents a serious imbalance between the
shortage of the effective infiltration and the discharge surplus. The sites located in basin 2
(CSN, and CAT) were, therefore, mainly affected by the seismic effects rather than climatic
ones, which were reflected in the higher W0 consumption than expected in the dry year.
Critical W0 consumption occurred in the CSN and CAT sites, and they were fed by the
aquifer sectors that were located closer to the seismogenetic fault BVF (Figure 1). Here, the
Wg consumption was about 10 × 106 m3 at the CSN and 2 × 106 m3 at the CAT (Table 4).
Similar conditions never existed during the observation periods, even in the driest years.
The W0 depletion recorded at the TO site was less intense due to the large extension of the
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western BA (Figure 3). The position of the SS and FO points was lower and closer to the 1:1
line, which refers to an apparent lower W0 consumption.
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tions at all monitoring points and at each monitoring site. The plotted values were normalized. TO:
Nera River at Torre Orsina gauging station; CSN: Nera River at Castelsantangelo gauging station; FO:
tapped Foce spring; SS: tapped Sassospaccato spring; CAT: tapped Capodacqua del Tronto spring.

In agreement with the placement of the points that were obtained by using data from
the pre-seismic period, we expected that the points obtained during 2017–2018, as shown in
Figure 9, would be placed in the third quadrant, which corresponds to the RRv restoration.
This condition occurred only at the SS and FO sites, which were both located east of the
groundwater divide. In the wet 2017–2018 year, the recharge should have restored the W0
consumption that was induced by the co-occurrence of the seismic and drought events in
the previous year. On the contrary, the points from the western side of the BA (TO, CSN,
and CAT) fell in the second quadrant and were above or very close to the 1:1 ratio line, as
if the RRv consumption never happened. This result led us to hypothesize the additional
contribution of groundwater, which would integrate the RRv consumption in the western
side of the BA.

In 2018–2019, an imbalance between the effective infiltration shortage and the dis-
charge surplus was highlighted with the TO and CSN points, and these points fell in the
first quadrant. The persistence of these anomalous conditions suggests that in the western
BA, the RRv consumption did not seem to occur, despite the high amount of groundwa-
ter that outflowed. On the contrary, the position of the CAT and SS points in the fourth
quadrant suggests that the recharge–discharge balance was reached. The position of the FO
point below the 1:1 line suggests that in 2017–2018, the effective infiltration was not enough
to restore the RRv of the FO aquifer.

In 2019–2020, all the points fell in the fourth quadrant due to the effective infiltration
and groundwater discharge shortage. In the western BA, the RRv, which seemed to not be
depleted by seismic effects, continued to support the baseflow of the TO and CSN, and the
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points remained above the 1:1 line. On the contrary, the CAT, SS, and FO points showed a
lack of RRv support and were below the 1:1 line.

According to the results of this analysis, the groundwater discharge in the western
sector of the BA was also supported by the lateral contribution from the RRv of the eastern
BA that was induced by the earthquake, as supposed by the literature [39,40,59]. This
would mean that mostly the RRv of the eastern BA was consumed and maybe exhausted,
which explains the persistent decrease in the eastern spring discharge.

In the SS site, the 2017–2018 wet year resulted in the original discharge being recovered,
even though the discharge values were slightly below the average, and this occurrence
was compatible with the actual climate condition. On the contrary, the effective infiltration
that occurred during the 2017–2018 wet year and the two years that were not too dry that
followed could not properly recharge the W0 of the FO springs, mostly because its RRv
was involved in the E-W groundwater transfer induced by the seismic sequences.

The different nature of the groundwater divide, which separates basins 1 and 2, could
be one of the causes of the different trends in the discharge of the SS and FO springs, which
are both located east of the groundwater divide. The SS hydrogeological basin is partitioned
from the whole BA because the uplift of the bedrock in this area reaches a higher elevation
than the water table (Figure 10A). This local hydrogeological setting could have dampened
the seismic-induced hydrodynamic effects, which limited any E-W groundwater transfer.
Differently, the FO reservoir is separated from the western side of the BA by a dynamic
piezometric divide (Figure 10B) that was shifted eastward after the earthquake [39]. Thus,
the groundwater transfer almost exclusively involved the RRv of the FO reservoir, which
explains the different time trends with the SS and FO spring discharge.
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6. Conclusions

The co-occurrence of the hydrodynamic alteration triggered by the 2016 earthquake
and the 2016–2017 drought period resulted in a crisis with the drinking water supply in the
Sibillini Mts. area.

The different responses of the monitored springs to the drought periods before and
after the earthquake highlight the impact of the hydrogeological seismic effects on the BA
recharge. During the 2016–2017 dry period, which started immediately after the seismic
event, the western springs did not suffer from a recharge shortage as they did during the
previous drought periods (2006–2007 and 2011–2012). After the end of the 2016–2017 dry
period, the eastern springs showed a more limited discharge recovery than what occurred
during the pre-seismic period.

This anomalous condition was due to the earthquake, which caused a groundwater
transfer from the eastern side of the BA toward the western side, and this caused an increase
in the discharge of the western springs and induced a persistent decrease in the eastern
spring’s outflow.

Considering the amount of the groundwater surplus that outflowed from the western
side of the BA since 2016–2017 (364 × 106 m3), assuming that at least part of the Wg of the
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eastern side of the BA was consumed due to the groundwater transfer is reasonable. The
eastern side of the BA reached a condition such as overexploitation immediately after the
earthquake, and the following recharge shortage failed to restore the groundwater reserves
at least until 2020.

A period of four years after the earthquake, the eastern aquifer resources were still
recovering only in the sectors of the aquifer that were partly separated by a physical
groundwater divide (e.g., the SS spring). Where a dynamic piezometric divide allowed for
a hydraulic connection, the spring discharge failed to recover, such as for the FO spring,
which is the main drinking water supply for the eastern slope of the Sibillini Mts.

Due to the geomorphological features of the Sibillini Mts., monitoring the total ground-
water discharge of the eastern side of the BA at a unique point that is similar to the TO site
in the western side is not possible. The lack of these data prevented us from assessing the
overall groundwater reserve stored in the eastern side of the BA because we would need
to evaluate the actual Wr amount left in this sector of the aquifer after the seismic effect
occurred. For this reason, forecasting if and when the original condition of the FO spring
will be restored is not actually possible. Therefore, continuous daily discharge monitoring
is recommended not only at the tapped springs but as well in the entire spring’s groups
in the eastern side of the BA to increase the data availability, which is useful to enhance
scientific research and to forecast the restoration of the groundwater resources.

Our results highlight the relevance of conducting hydrogeological regional studies to
characterize the spatiotemporal variability of the available groundwater resources that may
be tapped. Without a complete and detailed hydrogeological framework, interpreting the
different responses of the springs to the co-occurrence of the earthquake and dry conditions
would not have been possible.

The future development of groundwater management plans for the eastern BA should
consider the possibility that recovering the FO spring is not probable and that finding
alternative groundwater sources is necessary. Additionally, in this case, knowledge of both
the hydrogeological regional framework and its possible time trends could help optimize
groundwater resource management, indicate where new drinking water sources must be
searched, and replace drinking water sources after they become inadequate. For this study
area, planning new ways to access groundwater resources in the western sector of the BA
that, at present, is little exploited compared to its groundwater capacity is desirable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15132355/s1, Figure S1: Discharge measurements in the Sordo
River; Figure S2: Location map of meteorological stations used for recharge estimation. Details in
Table S1; Figure S3: SPI_12 calculated for the 1951–2020 period and differentiated in Western and
Eastern side. Table S1: Code, name, location, and type of active gauges of the meteorological stations
used for SPI and recharge estimation and measured yearly rainfall. Legend: T: Temperature, R:
Rainfall, S: Snow thickness, n.a.: data of the yearly rainfall missing or incomplete, “-” rainfall was not
measured in the thermometric stations.
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