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Abstract: In the hydrology field, hydrological forecasting is regarded as one of the most challeng-
ing engineering tasks, as runoff has significant spatial–temporal variability under the influences of
multiple physical factors from both climate events and human activities. As a well-known artificial
intelligence tool, Gaussian process regression (GPR) possesses satisfying generalization performance
but often suffers from local convergence and sensitivity to initial conditions in practice. To enhance its
performance, this paper investigates the effectiveness of a hybrid GPR and cooperation search algo-
rithm (CSA) model for forecasting nonstationary hydrological data series. The CSA approach avoids
the premature convergence defect in GPR by effectively determining suitable parameter combinations
in the problem space. Several traditional machine learning models are established to evaluate the
validity of the proposed GPR-CSA method in three real-world hydrological stations of China. In the
modeling process, statistical characteristics and expert knowledge are used to select input variables
from the observed runoff data at previous periods. Different experimental results show that the
developed GPR-CSA model can accurately predict nonlinear runoff and outperforms the developed
traditional models in terms of various statistical indicators. Hence, a CSA-trained GPR model can
provide satisfying training efficiency and robust simulation performance for runoff forecasting.

Keywords: streamflow prediction; Gaussian process regression; cooperation search algorithm;
artificial intelligence; machine learning

1. Introduction

Precise and timely runoff prediction is crucial for reducing flood damage, managing
water resources and optimizing reservoir scheduling [1–3]. Moreover, multiple huge reser-
voirs in large rivers are put into operation in succession and, thus, the actual practical
requirements for accurate runoff forecasting increase significantly [4–6]. Researchers and en-
gineers are devoted to establishing a more comprehensive forecasting model that facilitates
the scientific management of limited water resources under a changing environment [7–9].
However, the natural runoff process exhibits strong nonlinearity and nonstationarity owing
to the combined influences of multiple factors, such as meteorological events, natural
geography and watershed features [10–13]. Thus, accurate runoff forecasting remains an
important but challenging research topic for hydrology experts and scientists.

In the last few years, various runoff forecasting methods have been successfully estab-
lished, which can be broadly categorized into two different groups [14–16]: process-based
approaches and data-driven approaches. Process-based approaches often involve intricate
models, thorough knowledge of the physical mechanisms underlying runoff processes, suf-
ficient hydrometeorological data, and scientific expertise judgment. The strict requirements
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pose application limitations that may lead to poor prediction performance and uncertainty.
To address this problem, data-driven approaches have become the primary approach to
produce reliable forecasting information for reservoir operation and hydropower energy
management. Mathematical statistics techniques have been widely employed by many
researchers to forecast nonstationary hydrological data series [16–18]. Although the linear
relationship between predictors and predicted values can be well identified, these models
cannot provide satisfying prediction results as the highly nonlinear characteristics inher-
ent in runoff series are not given full consideration. With the advancement of intelligent
computing, numerous artificial intelligence techniques have been widely used in runoff
prediction [19,20]. Compared with the conventional regression approaches, the machine
learning methods have demonstrated significant improvements in prediction accuracy.

As a classical machine learning approach, Gaussian process regression (GPR) relies on
Bayesian theory and statistical learning theory [21–23]. By replacing the basis function used
in Bayesian linear identification, GPR can address the complicated regression problems
with small sample sizes and high dimensionality [24–26]. Compared to the traditional
forecasting models, GPR has the advantages of easy implementation, adaptively acquir-
ing hyperparameters, and producing probabilistic outputs. GPR has gained significant
attention in regression problems, such as runoff, wind power, and solar power forecasting.
Generally, the conjugate gradient method is often used to obtain GPR hyperparameters.
However, it suffers from high dependence on the initial values and difficulty in deter-
mining the number of iterations. In other words, the GPR model may suffer from local
convergence and strong parameter dependence, which obviously limit its practicality and
interpretability in runoff prediction. To mitigate the research gaps, it is essential to find
more practical methods to improve GPR’s performance for forecasting nonlinear runoff
series [27–29].

Recently, a novel meta-heuristic cooperation search algorithm (CSA) was developed
to resolve intricate engineering optimization problems [30]. In the foundational concept
of the CSA method, each solution can be viewed as a staff member in a teamwork setting
and multiple solutions form the swarm for evolutionary computing. The swarm converges
gradually towards the promising search regions around the optimal solution with three
operators, including the team communication operator for improving global search ability,
the reflective learning operator for facilitating local search ability, and the internal competi-
tion operator for ensuring the survival of elite solutions. The CSA approach has been used
to resolve numerical optimization problems. Despite its potential, there is little research on
applying the CSA to promote the GPR performance in runoff forecasting. Thus, the paper
proposes a hybrid GPR-CSA model that leverages the CSA algorithm to enhance the gener-
alization ability of GPR for runoff forecasting. The experiments show that compared with
conventional models, the GPR-CSA approach offers better prediction accuracy for different
applications. In summary, this paper contributes multiple effective models for forecasting
the real-world runoff data series; moreover, a novel GPR-CSA method with better forecast-
ing accuracy can be applied for nonlinear regression tasks, including runoff prediction, in
various scenarios. The application of the GPR-CSA to three hydrological stations in China
demonstrates that the GPR-CSA is able to fully identify the high-dimensional relationship
between predictors and predicted values, providing an effective artificial intelligence model
for addressing hydrologic forecasting problems.

The layout structure of this article is given as follows: Section 2 outlines the specifics
of our methodology for runoff forecasting; Section 3 gives four evaluation criteria; Section 4
examines the applicability of the proposed method; and Section 5 gives the conclusion.
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2. Methods
2.1. Gaussian Process Regression (GPR)

Suppose that y and t are the dependent and independent variable belonging to the
real number set R. The regression problem that further incorporates noisy information can
be expressed as:

y = f (t) + ε (1)

Here, ε ∈ N
(
0, σ2) and f (·) are the measurement error and an unidentified function.

Based on the Gaussian process technique, f (·) is a stochastic function with both a mean
function u(·) and a covariance function k(·, ·). The relationship between different instances
can be formulated as below:

k
(
t, t′; θ

)
= Cov

(
f (t), f

(
t′
))

(2)

where θ stands for the hyper-parameters requiring estimation.
For an observation set D = {(t1, y1), (t2, y2), · · · , (tn, yn)}, the equation can be ex-

pressed as the following equation:

yi = f (ti) + εi (3)

where {εi}i=1,2,··· ,n are the random disturbances in the normal distribution with mean 0
and variance σ2. Thus, the joint distribution of y1, y2, · · · , yn obeys a multivariate normal
distribution, which can be expressed as follows:

y = (y1, y2, . . . , yn)
T ∼ Nn(µ, Ψ) (4)

where ui = u(ti) is entries of average matrix µ. Ψ denotes an n× n matrix whose (i, j)th
element is specified by

Ψij = Cov
(
yi, yj

)
= k

(
ti, tj; θ

)
+ σ2δij (5)

where δij denotes the Kronecker delta.
It is assumed that t∗ and y∗ are the testing point and possible response value, and for

the training set D, the conditional distribution is characterized by a normal distribution
where the average and variance are computed as follows:{

E(y∗ | D) = µ(t∗) + ψT(t∗)Ψ−1(y− µ)
Var(y∗ | D) = k(t∗, t∗; θ) + σ2 −ψT(t∗)Ψ−1ψ(t∗)

(6)

where ψ(t∗) = [k(t∗, t1; θ), · · · , k(t∗, tn; θ)]T is the covariance between f (t∗) and
f = [ f (t1), · · · , f (tn)]

T. Ψ is the covariance matrix of (y1, y2, . . . , yn)
T. In GPR, the pa-

rameters are the hyperparameters θ in the covariance function, the noise variance σ2, and
other coefficients (indicated generally by β) in the mean function u(·). These parameters
are obtained by finding the maximum succeeding marginal log-likelihood function [31–33]:

l
(

θ, σ2, β | D
)
= −1

2
log(det(Ψ))− 1

2
(y− µ)T

Ψ−1(y− µ)− n
2

log(2π) (7)

2.2. Cooperation Search Algorithm (CSA)

The cooperation search algorithm (CSA) is a novel and effective meta-heuristic tool
for tackling complex optimization problems [34–36]. In the CSA optimizer, the target
problem is regarded as a growing company. Each solution is perceived as an employee,
while a group of solutions forms a team. The supervisor committee consists of the personal
best-known staff members, while the executive committee is composed of an elite staff
member set that contains M global best-known solutions. The chairman-in-office is picked
from the executive committee in a random manner. The CSA methodology starts with
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the random initialization of solutions, and then all solutions are dynamically updated
to gradually discover high-quality solutions through three operators. Specifically, the
team communication operator determines the solution’s probability of being influenced by
leader solutions, whereas the reflective learning operator determines whether to learn from
its own best-known position or that of its supervisor. The internal competition operator
selects solutions with better fitness values to compete for leadership positions, promoting
distribution diversity and global search ability of the swarm. By the above procedures, the
CSA method has been widely applied to resolve the complicated optimization problems in
different engineering fields.

Figure 1 shows the schematic diagram of the CSA method. Then, the technical details
that are crucial for solving the multivariable optimization problems are as below.
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(1) Team building phase. The initial positions of all staff members in the team are
determined by Equation (8). Based on the fitness value, M elite solutions are used to
form the exterior leader set.

xk
i,j = φ

(
xj, xj

)
, i ∈ [1, I], j ∈ [1, J], k = 1 (8)

where I is the number of solutions. The jth value of the ith solution at the kth iteration
is represented by xk

i,j. A uniformly distributed random number in [L, U] is denoted with
φ(L, U). xj and xj are the lower and upper bound of the jth variable, respectively.

(2) Team communication operator. Each solution has the opportunity to acquire fresh
insights from leader staff members. As showed in Equation (9), the team commu-
nication operator uses three components: the expertise A from the chairman, the
cumulative knowledge B from the leader staff members in board of directors, and
the combined knowledge C from leader staff members in the board of supervisors.
The chairman is selected randomly from M global best-known solutions, whereas all
directors and supervisors are assigned equal roles. The detailed equations are given
as below:

uk+1
i,j = xk

i,j + Ak
i,j + Bk

i,j + Ck
i,j, i ∈ [1, I], j ∈ [1, J], k ∈ [1, K] (9)

Ak
i,j = log(1/φ(0, 1)) ·

(
gbestk

ind,j − xk
i,j

)
(10)

Bk
i,j = α · φ(0, 1) ·

[
1
M

M

∑
m=1

gbestk
m,j − xk

i,j

]
(11)

Ck
i,j = β · φ(0, 1) ·

[
1
I

I

∑
i=1

pBestk
i,j − xk

i,j

]
(12)
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where the jth element of the ith group agent at iteration k + 1 is denoted with uk+1
i,j . The

jth element of the ith agent’s best-known position at iteration k is represented by pBestk
i,j.

The jth element of the indth global best-known agent is represented by gBestk
ind,j. ind is

the integer randomly chosen from {1,2, . . . ,M}. The expertise affected by the chairman is
denoted with Ak

i,j. The mean expertise affected by M global best-known staff members and

I personal best-known staff members are denoted as Bk
i,j and Ck

i,j. α and β are the learning
parameters.

(3) Reflective learning operator. In addition to studying from elite agents, each agent can
also acquire new information by considering their own experiences and observations,
which can be represented as follows:

vk+1
i,j =

 rk+1
i,j if

(
uk+1

i,j ≥ cj

)
pk+1

i,j if
(

uk+1
i,j < cj

) , i ∈ [1, I], j ∈ [1, J], k ∈ [1, K] (13)

rk+1
i,j =

 φ
(

xj + xj − uk+1
i,j , cj

)
if
(∣∣∣uk+1

i,j − cj

∣∣∣ < φ(0, 1) ·
∣∣∣xj − xj

∣∣∣)
φ
(

xj, xj + xj − uk+1
i,j

)
otherwise

(14)

pk+1
i,j =

 φ
(

cj, xj + xj − uk+1
i,j

)
if
(∣∣∣uk+1

i,j − cj

∣∣∣ < φ(0, 1) ·
∣∣∣xj − xj

∣∣∣)
φ
(

xj + xj − uk+1
i,j , xj

)
otherwise

(15)

cj =
(

xj + xj

)
· 0.5 (16)

where the jth element of the ith reflective agent at iteration k + 1 is denoted as vk+1
i,j .

(4) Internal competition operator. By guaranteeing retention of the high-quality agents,
the competitiveness of the swarm can be gradually enhanced by the following
equation:

xk+1
i,j =

 uk+1
i,j if

(
F
(

uk+1
i

)
≤ F

(
vk+1

i

))
vk+1

i,j if
(

F
(

uk+1
i

)
> F

(
vk+1

i

)) , i ∈ [1, I], j ∈ [1, J], k ∈ [1, K] (17)

where F(x) is the specific fitness score associated with staff x.
Based on the fitness value, the board of directors and the board of supervisors are

updated by the following equation:

pBestk+1
i =

{
pBestk

i i f (F(pBestk
i ) ≤ F(xk+1

i ))

xk+1
i i f (F(pBestk

i ) > F(xk+1
i ))

i ∈ [1, I] (18)

gBestk+1 = argminM(F(pBestk+1
1 ), F(pBestk+1

2 ), . . . , F(pBestk+1
I )) (19)

where pBestk+1
i is the ith personal best-known solution at iteration k + 1. gBestk+1 is the

board of directors containing M global best-known solutions.

2.3. Proposed Runoff Forecasting Method

The GPR method has satisfying performance in learning efficiency and satisfactory gen-
eralization ability compared to the traditional forecasting models. However, the standard
GPR method may yield undesirable hydrologic forecasting outcomes in actual application
scenarios because unsatisfying parameter combinations will lead to the local convergence
problem. To efficiently overcome this problem, this paper establishes a hybrid evolutionary
artificial intelligence model where the first-rank parameter combinations of the GPR model
is determined by the CSA method, and then the optimized GPR model to predict runoff
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data series in the coming periods. By linking the advantages of both GPR and CSA, this
study can offer a more robust runoff forecasting model with higher compactness than the
traditional GPR model. As showed in Figure 2, the specific process of the proposed model
is given as follows:
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Step 1: Preparatory work. The computation parameters of the proposed GPR-CSA
method are set before calculation, such as the maximum number of iterations K, solutions I,
leaders M in the CSA method, and the kernel function in the GPR model.

Step 2: Parameter optimization. Based on the training data, the detailed procedures
of the CSA method to determine the GPR parameters are given as follows:

Step 2.1: Define the counter k = 1. Then, use Equation (8) in the team building phase
to create the initial population in the feasible zone.

Step 2.2: Evaluate the fitness value of all staff members to update the optimal position
of each staff member and the globally best-known position of the swarm.

Step 2.3: Use the team communication operators defined in Equations (9)–(12) to
enhance global exploration as while the reflective learning operators in Equations (13)–(16)
to improve local exploitation. Then, the internal competition operator in Equation (17) is
used to select better solutions for the iteration k + 1.

Step 2.4: Increment the counter k by 1. If k is smaller than the maximum iteration, go
to Step 2.2; otherwise, the globally best-known position of the CSA represents the ideal
GPR model parameters.

Step 3: Operational prediction. Utilize the optimized GPR model to forecast the
potential predicted values of the new predictors in the testing dataset.

3. Performance Evaluation Criteria

In this section, four evaluation criteria are used to evaluate the performance of the
developed models in hydrologic forecasting, including root mean squared error (RMSE),
mean absolute error (MAE), correlation coefficient (R), and Nash–Sutcliffe efficiency (NSE).
In practical applications, a reliable and robust model can be capable of producing lower



Water 2023, 15, 2111 7 of 17

RMSE and MAE values, as well as larger values of R and NSE. The equations for these
evaluation criteria are provided as below:

RMSE =

√
1
n

n

∑
i=1

(yi − ỹi)
2 (20)

MAE =
1
n

n

∑
i=1
|ỹi − yi| (21)

R =

n
∑

i=1

[
(yi − yavg)(ỹi − ỹavg)

]
√

n
∑

i=1

(
yi − yavg

)2
√

n
∑

i=1
(ỹi − ỹavg)

2
(22)

NSE = 1−
n

∑
i=1

(yi − ỹi)
2
/ n

∑
i=1

(
yi − yavg

)2 (23)

where yi and ỹi are the ith point in the recorded and estimated dataset. The average of all
the recorded and estimated points are denoted with yavg and ỹavg. The set of the data being
evaluated is represented by n.

4. Case Studies
4.1. Engineering Background

The presented GPR-CSA model is used to predict the nonlinear and nonstationary
runoff data series of three representative hydrological stations in China, i.e., SX station with
daily runoff data, LYX station and TNH station with weekly runoff data. Next, this study
conducts a comparative analysis utilizing the runoff data of the SX, LYX and TNH stations.
Figure 3 offers a comprehensive overview and statistical information of the recorded runoff
data. The recorded runoff data are partitioned into two distinct subsets, with the first 70%
reserved for training and validation, while the last 30% are reserved for testing.

Water 2023, 15, x FOR PEER REVIEW 8 of 18 
 

 

4. Case Studies 
4.1. Engineering Background 

The presented GPR-CSA model is used to predict the nonlinear and nonstationary 
runoff data series of three representative hydrological stations in China, i.e., SX station 
with daily runoff data, LYX station and TNH station with weekly runoff data. Next, this 
study conducts a comparative analysis utilizing the runoff data of the SX, LYX and TNH 
stations. Figure 3 offers a comprehensive overview and statistical information of the rec-
orded runoff data. The recorded runoff data are partitioned into two distinct subsets, with 
the first 70% reserved for training and validation, while the last 30% are reserved for test-
ing. 

   
(a) 

  
(b) 

  
(c) 

Figure 3. Sketch map of the studied streamflow data. (a) SX Station; (b) LYX Station; (c) TNH Station. 

4.2. Model Development 
Several runoff forecasting models were applied to check the effectiveness of the pro-

posed model, including linear regression (LR), artificial neural network (ANN), recurrent 
neural network (RNN), Gaussian process regression (GPR), and long short-term memory 
network (LSTM). It is worth noting that appropriate inputs play an important place in 
improving the performance of machine learning models. Thus, expert knowledge and 
partial autocorrelation functions were implemented to identify suitable inputs. For the SX, 
LYX and TNH stations, the input variables are all three antecedent runoffs at period t − 1, 
t − 2, and t − 3, which are used to forecast the runoff at period t + τ, where τ is the forecast-
ing period. Moreover, the parameters for the models were determined as follows: for the 
ANN, RNN and LSTM models, the activation function was set as the sigmoid function, 
and the Adam optimizer was used for tuning parameters; for GPR, the combined RBF and 
rational quadratic kernel was used while the default parameter configurations in the 
scikit-learn toolbox in Python 3.10 were adopted for tunning parameters.  

4.3. Experiment Results 
4.3.1. Case 1: One-Step-Ahead Prediction Outcomes 

This study develops several runoff forecasting models and then compares their per-
formances at different forecasting horizons by four statistical evaluation indicators, 
namely RMSE, MAE, R, and NSE. Table 1 lists the detailed statistical indicators of one-

0 200 400 600 800 1000 1200 1400 1600
0

20,000

40,000

60,000

80,000

Ru
no

ff(
m

3 /s)

Period

Training Testing Mean 14007.6

Maximum 74600

Minimum 4100

Std.Dev. 10079.4

0 200 400 600 800
0

1000

2000

3000

4000

Ru
no

ff(
m

3 /s)

Period

Training Testing Mean 684.42

Maximum 2974.29

Minimum 117.71

Std.Dev. 553.84

0 200 400 600 800
0

1000

2000

3000

4000

Ru
no

ff(
m

3 /s)

Period

Training Testing Mean 695.70

Maximum 3155.71

Minimum 122.14

Std.Dev. 560.39

Figure 3. Sketch map of the studied streamflow data. (a) SX Station; (b) LYX Station; (c) TNH Station.



Water 2023, 15, 2111 8 of 17

4.2. Model Development

Several runoff forecasting models were applied to check the effectiveness of the pro-
posed model, including linear regression (LR), artificial neural network (ANN), recurrent
neural network (RNN), Gaussian process regression (GPR), and long short-term memory
network (LSTM). It is worth noting that appropriate inputs play an important place in
improving the performance of machine learning models. Thus, expert knowledge and
partial autocorrelation functions were implemented to identify suitable inputs. For the
SX, LYX and TNH stations, the input variables are all three antecedent runoffs at period
t − 1, t − 2, and t − 3, which are used to forecast the runoff at period t + τ, where τ is the
forecasting period. Moreover, the parameters for the models were determined as follows:
for the ANN, RNN and LSTM models, the activation function was set as the sigmoid
function, and the Adam optimizer was used for tuning parameters; for GPR, the combined
RBF and rational quadratic kernel was used while the default parameter configurations in
the scikit-learn toolbox in Python 3.10 were adopted for tunning parameters.

4.3. Experiment Results
4.3.1. Case 1: One-Step-Ahead Prediction Outcomes

This study develops several runoff forecasting models and then compares their perfor-
mances at different forecasting horizons by four statistical evaluation indicators, namely
RMSE, MAE, R, and NSE. Table 1 lists the detailed statistical indicators of one-step-ahead
predicting results by the GPR-CSA method and several control methods. The data illustrate
that the data at the SX station present the largest forecasting biases at both the training and
testing sets, and the TNH station and LYX station present the lower forecasting biases than
the SX station. This phenomenon lies in the higher runoff values of the SX station, showing
the significant impacts of the runoff dataset at hand. Table 1 also supports the following
interesting conclusions: (a) the GPR-CSA model displays superior forecasting ability owing
to its lowest values of RMSE and MAE, coupled with the highest R and NSE indicators;
(b) the standard GPR method outperforms the LR model in terms of the fitting ability and
overall performance, highlighting the importance of the employed model structure; (c) the
comparison of the GPR and GPR-CSA models highlights the validity of the CSA algorithm
in identifying feasible parameters, demonstrating the superior ability of CSA in optimizing
multivariable combinations.

Table 1. Statistical indicators of one-step-ahead runoff predicting results by different methods.

Station Method Training Testing

RMSE MAE R NSE RMSE MAE R NSE

SX LR 2179.8125 1087.0266 0.9779 0.9564 2067.5276 967.7999 0.9735 0.9477
ANN 2141.9027 1081.5492 0.9789 0.9579 2023.4121 953.2562 0.9750 0.9499
RNN 2132.8611 1092.9085 0.9790 0.9582 2025.3833 959.7314 0.9750 0.9498
LSTM 2116.3733 1059.8781 0.9792 0.9589 2032.6758 931.1892 0.9746 0.9494
GPR 2133.3407 1074.1451 0.9789 0.9582 2021.9179 933.6396 0.9748 0.9499
GPR-CSA 2090.5676 1040.6587 0.9797 0.9599 2014.4942 910.2308 0.9750 0.9503

LYX LR 146.5653 84.6916 0.9491 0.9008 224.2732 132.8247 0.9433 0.8885
ANN 145.0672 85.5849 0.9503 0.9028 223.3189 131.6143 0.9440 0.8895
RNN 143.9679 81.9808 0.9509 0.9042 222.0857 128.5580 0.9456 0.8907
LSTM 145.0215 83.2984 0.9502 0.9028 226.2795 130.8222 0.9435 0.8865
GPR 146.1233 84.2844 0.9494 0.9013 223.8168 132.3147 0.9436 0.8890
GPR-CSA 143.7597 81.5556 0.9511 0.9045 220.4119 127.9265 0.9460 0.8923

TNH LR 156.1520 90.5924 0.9491 0.9008 225.4124 128.9411 0.9385 0.8794
ANN 157.7914 93.3550 0.9482 0.8987 227.0591 134.6547 0.9373 0.8776
RNN 159.8438 92.2203 0.9466 0.8961 231.0292 133.9100 0.9355 0.8733
LSTM 155.8957 90.6369 0.9493 0.9011 225.7327 130.1097 0.9382 0.8791
GPR 155.6946 90.1865 0.9494 0.9014 224.8368 128.4849 0.9388 0.8800
GPR-CSA 153.7759 88.1168 0.9507 0.9038 221.4671 125.6045 0.9407 0.8836
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To illustrate the prediction ability of the developed model, Figure 4 shows the one-
step-ahead predicting results for the analyzed runoff data series. It shows that the runoff
predicting curves of the GPR-CSA model approximate the original runoff curves, better
than the other models at the three hydrological stations. Figure 5 depicts the radar plots
of R and NSE at the one-step-ahead forecasting results. It can be seen that the values of
R and NSE of the GPR-CSA method in the radar plots are the farthest to the center zone,
proving the effectiveness of GPR-CSA in providing satisfactory predicting results. Thus,
the GPR-CSA model can trace the complex features of runoff data, thereby leading to highly
satisfactory forecasting outcomes. These findings serve to prove the feasibility of the model
for hydrological forecasting.
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Figure 4. One-step-ahead predicting results by various methods at the testing phase. (a) SX; (b) LYX;
(c) TNH.
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(c) TNH.
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4.3.2. Case 2: Two-Step-Ahead Prediction Outcomes

The refined model boasts adequate forecasting accuracy in the above one-step-ahead
runoff prediction. In real-world scenarios, the forecasting model’s performance at various
horizons is also critical to promote water resource utilization. Consequently, the two-
step-ahead runoff predicting results are compared. As outlined earlier, Table 2 gives the
statistical indicators of the predicting outcomes by various models. For both the training
and testing data, the statistical data fully highlight the superiority of the GPR-CSA model
compared to other control methods. Thus, this section provides further evidence of the
engineering feasibility of the hydrological forecasting approach.

Table 2. Statistical indicators of the two-step-ahead runoff predicting results.

Station Method Training Testing

RMSE MAE R NSE RMSE MAE R NSE

SX LR 3942.6985 2057.7949 0.9260 0.8574 3687.9804 1836.8307 0.9131 0.8334
ANN 3796.7594 1985.0689 0.9316 0.8678 3556.6630 1734.4789 0.9204 0.8451
RNN 3785.2346 1965.4362 0.9320 0.8686 3558.4027 1721.2091 0.9203 0.8449
LSTM 3772.2812 1952.1839 0.9325 0.8695 3553.0890 1712.4415 0.9205 0.8454
GPR 3921.7630 2042.2414 0.9268 0.8589 3674.1653 1820.1443 0.9138 0.8347
GPR-CSA 3717.3493 1926.0842 0.9345 0.8733 3509.4283 1690.3785 0.9222 0.8492

LYX LR 244.1420 151.6329 0.8515 0.7250 386.6832 232.6207 0.8226 0.6686
ANN 242.7675 149.0092 0.8534 0.7281 384.8749 235.3607 0.8268 0.6717
RNN 237.6878 144.4694 0.8599 0.7393 384.0141 231.8109 0.8279 0.6732
LSTM 237.6402 143.2128 0.8599 0.7394 385.2297 231.1241 0.8308 0.6711
GPR 242.9637 150.3755 0.8530 0.7276 385.4811 231.8700 0.8238 0.6707
GPR-CSA 236.6189 142.8215 0.8612 0.7417 379.1407 228.6581 0.8330 0.6814

TNH LR 257.0790 161.1098 0.8553 0.7315 373.6444 226.9604 0.8222 0.6687
ANN 254.3070 156.0087 0.8587 0.7373 370.6303 227.0324 0.8258 0.6740
RNN 254.4948 158.7407 0.8584 0.7369 370.3550 226.7389 0.8251 0.6745
LSTM 254.8199 156.2293 0.8581 0.7362 368.1236 229.1052 0.8289 0.6784
GPR 255.8652 160.0530 0.8568 0.7340 372.2691 226.1210 0.8235 0.6711
GPR-CSA 250.4350 154.1625 0.8633 0.7452 364.5931 222.4808 0.8313 0.6845

Figure 6 illustrates the scatter plots of two-step-ahead predicting results for the testing
dataset derived through several techniques. It shows that the proposed model exhibits
superior prediction accuracy in comparison to other models, as it attains the largest corre-
lation between the recorded and predicted runoff in all simulations. Figure 7 shows the
bar graphs of the RMSE and MAE for the two-step-ahead predicting results at the testing
phase. It shows that GPR-CSA has smaller RMSE and MAE values compared with other
forecasting methods, demonstrating the superiority of CSA in forecasting nonstationary
runoff series. Thus, incorporating artificial intelligence and metaheuristic optimization can
effectively meet the practical needs of hydrological forecasting tasks.
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Figure 6. The scatter plots of the two-step-ahead predicting results by various methods at the testing
phase. (a) SX; (b) LYX; (c) TNH.
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Figure 7. RMSE and MAE of the two-step-ahead predicting results at the testing phase. (a) SX;
(b) LYX; (c) TNH.
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4.3.3. Case 3: Three-Step-Ahead Prediction Outcomes

Table 3 displays the statistical metrics of three-step-ahead predicting results obtained
through multiple models. Figure 8 illustrates the statistical indicators of the three-step-
ahead estimated results for the testing dataset. The data show that the standalone models
yield limited forecasting results, while the evolutionary algorithm substantially improves
the achieved outcomes in different cases. Compared to other models, the developed GPR-
CSA model attains the best forecasting performance for the testing datasets at the three
stations. Thus, the introduced parameter optimization strategy can significantly enhance
the forecasting effectiveness of a standalone model for runoff forecasting.

Table 3. Statistical indicators of three-step-ahead runoff forecasting results.

Station Method Training Testing

RMSE MAE R NSE RMSE MAE R NSE

SX LR 4793.3394 2588.2535 0.8885 0.7895 4525.6364 2391.3104 0.8660 0.7492
ANN 4563.0691 2454.2423 0.8997 0.8092 4334.6286 2254.3684 0.8798 0.7699
RNN 4542.2538 2438.6045 0.9005 0.8109 4321.9372 2237.3552 0.8807 0.7713
LSTM 4532.9915 2452.7204 0.9010 0.8117 4300.6186 2247.8933 0.8817 0.7735
GPR 4548.5324 2464.9372 0.9002 0.8104 4325.5558 2261.5996 0.8799 0.7709
GPR-CSA 4492.1895 2424.8873 0.9028 0.8151 4259.7887 2204.6138 0.8838 0.7778

LYX LR 306.6492 203.0209 0.7524 0.5662 474.2153 306.9632 0.7212 0.5021
ANN 292.4584 187.3703 0.7781 0.6054 468.7709 295.1098 0.7445 0.5135
RNN 290.3365 184.7736 0.7818 0.6111 466.1477 292.4331 0.7454 0.5189
LSTM 292.5871 186.6877 0.7779 0.6050 467.8508 294.4701 0.7477 0.5154
GPR 295.2664 189.9242 0.7732 0.5978 468.1844 297.8071 0.7380 0.5147
GPR-CSA 279.4007 172.0490 0.7999 0.6398 463.4016 289.1666 0.7514 0.5245

TNH LR 325.8074 214.8081 0.7541 0.5686 459.6293 298.6075 0.7175 0.4992
ANN 315.2876 201.6766 0.7721 0.5960 449.3503 292.8334 0.7376 0.5214
RNN 315.5895 204.7256 0.7716 0.5953 448.3488 293.8328 0.7339 0.5235
LSTM 316.0069 204.4948 0.7709 0.5942 448.1143 294.4648 0.7371 0.5240
GPR 314.9528 203.3613 0.7726 0.5969 446.4302 291.9147 0.7374 0.5276
GPR-CSA 310.9775 200.1707 0.7794 0.6070 443.6498 288.7442 0.7468 0.5334
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Figure 8. RMSE and NSE of the three-step-ahead predicting results by various methods. (a) SX;
(b) LYX; (c) TNH.
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4.4. Simulation Discussion
4.4.1. Analysis of the Kernel Function

The experiments are executed to show the influences of different kernel functions on
the predicting results at the three stations. Table 4 gives the statistical indicators of one-
step-ahead predicting results using different kernel functions, where kernel1 represents the
radial basis function kernel, kernel2 represents the rational quadratic kernel, and kernel3
represents the compound kernel with the radial basis function kernel and rational quadratic
kernel. Figure 9 draws the correlation coefficients of the predicting results with different
kernels at the SX station. The following phenomenon can be observed: (1) compared with
the standard GPR model, GPR-CSA achieves better prediction results regardless of the
employed kernel functions; (2) for the same station, the predicting results change with the
kernel functions, and thus, it is necessary to carefully select the kernel function according to
the actual runoff situation by experiments; (3) with the extension of the forecasting period,
the prediction performances of three kernel functions decrease gradually at the SX station.
In all cases, the GPR-CSA model is always superior to the GPR model, demonstrating the
superiority of the CSA method in finding suitable computation parameters of the GPR
model. Thus, the GPR-CSA method is an effective tool to provide accurate hydrological
forecasting information.

Table 4. Statistical indicators of the one-step-ahead predicting results using different kernel functions.

Station Kernel Method Training Testing

RMSE MAE R NSE RMSE MAE R NSE

SX kernel1 GPR 2176.7778 1082.6186 0.9780 0.9565 2064.6345 966.2568 0.9736 0.9478
GPR-CSA 2090.7676 1040.6310 0.9797 0.9599 2015.0046 910.6999 0.9750 0.9503
Improvement 3.95% 3.88% 0.18% 0.35% 2.40% 5.75% 0.15% 0.26%

kernel2 GPR 2133.3397 1073.5378 0.9789 0.9582 2021.9094 933.6112 0.9748 0.9499
GPR-CSA 2090.8223 1040.6587 0.9797 0.9599 2015.0183 910.7315 0.9750 0.9503
Improvement 1.99% 3.06% 0.09% 0.17% 0.34% 2.45% 0.02% 0.04%

kernel3 GPR 2133.3407 1074.1451 0.9789 0.9582 2021.9179 933.6396 0.9748 0.9499
GPR-CSA 2090.5676 1040.6587 0.9797 0.9599 2014.4942 910.2308 0.9750 0.9503
Improvement 2.00% 3.12% 0.09% 0.17% 0.37% 2.51% 0.02% 0.04%

LYX kernel1 GPR 146.4337 84.6313 0.9492 0.9009 224.3537 132.7793 0.9433 0.8884
GPR-CSA 143.7545 81.5415 0.9511 0.9045 220.3405 127.8677 0.9460 0.8924
Improvement 1.83% 3.65% 0.20% 0.40% 1.79% 3.70% 0.29% 0.45%

kernel2 GPR 146.2409 84.4382 0.9493 0.9012 224.1000 132.5332 0.9434 0.8887
GPR-CSA 143.7740 81.5776 0.9511 0.9045 220.4450 127.9491 0.9460 0.8923
Improvement 1.69% 3.39% 0.18% 0.37% 1.63% 3.46% 0.27% 0.41%

kernel3 GPR 146.1233 84.2844 0.9494 0.9013 223.8168 132.3147 0.9436 0.8890
GPR-CSA 143.7597 81.5556 0.9511 0.9045 220.4119 127.9265 0.9460 0.8923
Improvement 1.62% 3.24% 0.18% 0.35% 1.52% 3.32% 0.26% 0.38%

TNH kernel1 GPR 156.0139 90.5336 0.9492 0.9010 225.3258 128.9740 0.9385 0.8795
GPR-CSA 153.7880 88.1002 0.9507 0.9038 221.3923 125.5130 0.9407 0.8837
Improvement 1.43% 2.69% 0.16% 0.31% 1.75% 2.68% 0.23% 0.47%

kernel2 GPR 155.8151 90.3433 0.9493 0.9012 225.0535 128.7429 0.9387 0.8798
GPR-CSA 153.7588 88.0945 0.9507 0.9038 221.3747 125.5502 0.9407 0.8837
Improvement 1.32% 2.49% 0.14% 0.29% 1.63% 2.48% 0.22% 0.44%

kernel3 GPR 155.6946 90.1865 0.9494 0.9014 224.8368 128.4849 0.9388 0.8800
GPR-CSA 153.7759 88.1168 0.9507 0.9038 221.4671 125.6045 0.9407 0.8836
Improvement 1.23% 2.29% 0.13% 0.27% 1.50% 2.24% 0.20% 0.41%
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Figure 9. The correlation coefficient of predicting results with different kernels at the SX station.

4.4.2. Analysis of the Forecast Errors

Figure 10 draws the forecast errors of various methods with different leading times
at the SX station. The prediction performances of the three methods become worse with
the increasing leading time, while the forecast errors of the GPR-CSA model are always
better than the errors of the two other models (LR and GPR) regardless of the changing
leading time. Thus, the proposed GPR-CSA model is effective in providing satisfactory
runoff forecasting results.
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Figure 10. Forecast errors of various methods with different leading times at the SX station.
(a) one-step-ahead; (b) two-step-ahead; (c) three-step-ahead.

4.4.3. Analysis of the Model Robustness

To analyze the robustness of the GPR-CSA model, the GPR-CSA model was run
50 times for the one-step-ahead prediction at the three stations. Figure 11 shows the RMSE
of the one-step-ahead predicting results from the GPR-CSA and ANN model at the testing
phase in different runs. Compared with the conventional ANN method, the predicting
results of the GPR-CSA model at the testing dataset are stable with little fluctuations, which
demonstrates the reliable forecasting performance of the GPR-CSA method. Thus, the GPR-
CSA model has an outstanding parameter optimization ability and a robust performance
for runoff prediction.
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Figure 11. RMSE values of one-step-ahead predicting results at the testing phase in different runs.
(a) SX; (b) LYX; (c) TNH.

5. Conclusions

Accurate hydrological prediction is critical for the effective management of water
energy resources. For addressing practical demands, this article proposes a hybrid arti-
ficial intelligence model for predicting runoff under uncertainty. For the first time, the
cooperation search algorithm (CSA) is used to find the suitable parameter combinations
of the classical Gaussian process regression (GPR) model. Through three well-designed
operators, the CSA tool effectively overcomes the local convergence defects associated with
the traditional gradient-based methods. To validate its efficacy, the GPR-CSA model is
used to predict the nonlinear runoff data of three hydrological stations. The simulations
indicate that the CSA method achieves a balance between global search and local search
by optimizing the computational parameters of the traditional GPR model. Moreover, the
results of the GPR-CSA method are better than several control models in both training
and testing datasets. Thus, a novel hybrid artificial intelligence model is proposed for
forecasting nonstationary and nonlinear streamflow. Combining the advantages of the
GPR model and the CSA algorithm, the proposed model shows superior forecasting ability
and robust prediction results in addressing complex hydrologic forecasting tasks. The
research presented in this paper has resulted in innovative outcomes for the application of
artificial intelligence methods in the field of hydrological forecasting. The findings have
facilitated early warnings of flood disasters in river basins and the efficient utilization of
water resources, making them a significant contribution to this field.
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