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Abstract: Few studies have been conducted to simulate watersheds with insufficient meteorological
and hydrological information. The Jiyun River watershed was selected as the study area. A suitable
catchment area threshold was determined by combining the river network density method with the
Soil and Water Assessment Tool (SWAT) models, which was driven using the CMADS dataset (China
Meteorological Assimilation Driving Datasets for the SWAT model). Monthly runoff simulations were
conducted for the basin from 2010 to 2014, and the calibration and validation of model parameters
were completed with observed data. The results showed that the final expression for the density
of the river network in the Jiyun River basin as a function of density (y) and the catchment area
threshold (x) was obtained as y = 926.782x−0.47717. The “inflection point” of the exponential function
was the optimal catchment area threshold. The catchment area threshold had an upper and lower
limit of the applicable range and was related to the percentage of the total basin area. The simulation
results would be affected if the threshold values were outside the suitable scope. When the catchment
area was 1.42% of the entire watershed area, increasing the threshold value had less effect on the
runoff simulation results; decreasing the threshold value would cause the simulation results to be
unstable. When the catchment area reached 1.42% to 2.33% of the total watershed area, the simulation
results were in good agreement with the observed values; the coefficient of determination (R2) and
Nash–Sutcliffe efficiency coefficient (NSE) were more significant than 0.79 and 0.78 for the calibration
periods evaluation index. Both were greater than 0.77 and 0.76 for the validation period, which met
the evaluation requirements of the model. The results showed that the CMADS-driven SWAT model
applied to the runoff simulation and the river network density method adoption to determine the
catchment area threshold provided a theoretical basis for a reasonable sub-basin division in the Jiyun
River basin.

Keywords: SWAT model; CMADS; catchment area threshold; runoff simulation

1. Introduction

Floods provide a large amount of water resources and cause severe disasters. China is
flood-prone and suffers from severe floods annually [1]. The destructive power of floods
causes huge losses and significant threats to the safety of people’s lives and properties.
Various models have been modified and applied to flood simulation, emphasizing flood
process simulation [2–4]. Accurate prediction of flood events presupposes the study of
runoff processes in different periods, and runoff prediction is of great importance for river
flood control [5]. As a hydrological model, the SWAT model can be widely used to study
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runoff and water quality simulation of climate change by simulating many physical changes
in the water cycle [6]. The SWAT model can be integrated perfectly with a geographic
information system (GIS) to provide a runoff simulation [7–15] and a daily timescale for
continuous simulations, demonstrating its significant advantages and applicability in flood
process simulation. It lays the research foundation for future flood forecasting and provides
technical support for flood control.

The application of SWAT models in runoff simulation mainly focuses on studying their
applicability and uncertainty analysis. The applicability of model simulation primarily
depends on whether the constructed SWAT model can be applied to the research area
through relevant evaluation indicators. The uncertainty of the model is mainly related
to the accuracy of input data, model parameters, and watershed division accuracy. For
the applicability of model simulation, Zhang et al. [16] proved that the SWAT model
was suitable for multiple regions, such as the cold northwest part, and high-altitude
mountainous regions. Regarding the uncertainty of the model, Meng et al. [17] coupled
the snowmelt module with the SWAT model, further improving the accuracy of runoff
simulation. Sun et al. [18], by using DEM data of different resolutions to construct SWAT
models and other methods, reduced the uncertainty of the model, and the accuracy of runoff
simulation was improved. There needs to be more research into the further development
of models and inter-model coupling. However, most of the meteorological data and related
parameters required by SWAT models were measured by traditional weather stations or
calculated. For some watersheds, the scarcity of hydrometeorological data has been a
significant problem in hydrological modeling due to the sparse stations, uneven spatial
and temporal distribution, or discontinuity of observation time, which essentially restricts
the research work. To solve this problem, Fuka [19], and Xu et al. [20] started to apply
climate model datasets and reanalysis products to hydrological model simulations. Due
to the differences in the fusion methods and data sources used in the generation process
of different datasets, the adaptability of different datasets and analysis products in each
study area varied [21–23]. Therefore, choosing a climate data analysis product adapted to
the study area was essential.

Reanalysis data are developed based on climate models and satellite remote sensing
data sources. They have the advantages of uninterrupted regional coverage and high
spatial and temporal resolution, making them a potential alternative meteorological data
source for hydrological simulations and other applications. Some of the more widely
used reanalysis precipitation products include the National Centers for Environmental
Prediction (NCEP) Climate Reanalysis Data (CFSR) [24] (1979–2014-07, ~38 km), the Na-
tional Aeronautics and Space Administration (NASA) Climate Reanalysis Data (MERRA)
(1979–2012, ~50 km) [25], the European Centre for Medium-Range Weather Forecasts
(ECMWF) (1979–2012, ~82 km), [26] and JRA-55 (1958–2012, ~60 km) from the Japan Mete-
orological Agency (JMA) [27]. The CMADS (China Meteorological Assimilation Driving
Datasets for the SWAT Model, Version 1.1, 2008–2016, ~30 km) reanalysis data covering the
East Asia region has a high spatial resolution and provides an option to address the lack
of data from meteorological stations in East Asia. The CMADS v1.1 dataset can directly
drive the SWAT model, and the CMADS dataset series introduces the China Meteorologi-
cal Administration’s atmospheric assimilation system, using various techniques such as
data loop nesting and model extrapolation, with a spatial resolution of 1/4◦, ensuring the
density of meteorological data distribution. Meng et al. [28] studied the CMADS, CFSR
(Climate Forecast System Reanalysis) dataset, and traditional hydrological station data as
examples of meteorological data-driven models for the Heihe River basin. They found that
the CMADS series dataset was a better hydrological data-driven model. Qin et al. [29] also
showed that the CMADS could be applied to drive the SWAT model in Northeast China.
Cao et al. [30] evaluated the accuracy and efficiency of the SWAT model and CMADS for
simulating hydrological processes in the fan-shaped Lijiang River basin, China. The results
showed that the CMADS performed well in predicting daily streamflow.
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Furthermore, the runoff simulation also suffers from the complexity of the terrain and
the fact that the river channels and basins extracted based on the original DEM do not
match the reality and that the sub-basins are not reflective of the actual conditions within
the basin by ArcSWAT itself. The catchment area threshold is the minimum catchment area
required to support the permanent existence of a channel. The catchment area threshold
directly determines the partitioning of sub-basins within the basin, the sparseness of the
river network, and the generation of hydrological response units. As the catchment area
threshold varies, the extracted hydrological features vary considerably. More factors are
considered for the spatial variation in the basin topography, and the soil elements also
change. Since the accuracy of the model prediction results depends to some extent on the
description of the relevant characteristics of the watershed by the input spatial variables,
the optimal catchment area threshold of the SWAT model can, to some extent, provide
a reference for reducing the uncertainty of the simulation results [31]. Xing et al. [32]
and Seyler et al. [33] showed that the delineation of the river network was affected by
the DEM accuracy. The raw data determine the DEM accuracy and cannot be changed
much after the data source is determined. Therefore, the river network can be delineated
appropriately by selecting the optimal watershed area threshold to improve the simulation
results’ accuracy. This paper used the CMADS-driven SWAT model [19] to extract the river
network under different catchment area thresholds for reasonably classifying the Jiyun
River basin. Firstly, this paper addresses the lack of meteorological data in the study area
by coupling the CMADS V1.1 dataset with the SWAT model. A quality assessment of the
reliability and applicability of the CMADS dataset in the simulation of runoff from the
Jiyun River basin is carried out and the applicability of the CMADS dataset is analyzed.
The paper then focuses on the changes in river network density caused by catchment
area thresholds and analyzes the effect of subcatchment delineation on model simulation
results under different catchment area thresholds. Reasonable catchment area thresholds
for the SWAT model are explored. The CMADS-driven SWAT model applied to the runoff
simulation to determine the catchment area threshold provided a theoretical basis for a
reasonable sub-basin division in the Jiyun River basin and technical support for flood
control and resilience.

2. Materials and Methods
2.1. Study Area

The Jiyun River is an important river in the Haihe basin’s northern part. Its source
area is situated in Beijing, Hebei Province, Tianjin, and its geographical location is between
116◦51′~118◦15′ E and 39◦46′~40◦46′ N (Figure 1). The main tributaries of the Jiyun River
are the Juhe and Zhou Rivers. The two branches are called the Jiyun River after they con-
verge in Jiuwangzhuang (Figure 1) Baodi District, Tianjin. The area above Jiuwangzhuang
is the main catchment area of the Jiyun River; namely, the upper reaches of the Jiyun
River. The Jiyun River flows southeast into the Bohai Sea, with a basin area of 10,288 km2

and a total length of about 189 km, passing through the Binhai New Area in Tianjin. The
study area connects the Yanshan Mountains to the North China Plain. The northern and
northwestern regions mainly consist of undulating mountains and hills, whereas an area of
plains is found in the middle and southern regions. The basin has a large amount of arable
land, and the main crops are wheat and corn. The basin is significantly affected by human
activities. As a northern, temperate, semi-humid basin with a continental monsoon climate,
the study area is subject to precipitation and evaporation of approximately 610–780 and
1225.55 mm/year, respectively. Flooding frequently occurs in summer between June and
August, when more than 75% of the annual precipitation occurs. In contrast, the region
experiences drier conditions in the winter, with only 2% of the rainfall occurring from
December to February.
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Figure 1. Location of the study area and distribution of the hydrological and meteorological gauges.

2.2. Data Analysis

The SWAT model study’s data are divided into spatial and attribute data. Spatial
geographic information data include Digital Elevation Model (DEM), land use/land cover
change (LUCC), and soil data. The attribute data are meteorological data, soil attribute data,
and hydrological station runoff data. The DEM, land use, soil, and other spatial geographic
information data are all in the Beijing 1954 coordinate system and the CGCS2000 3 Degree
GK CK 117E projection system. The data sources are shown in Table 1.

Table 1. Data description for the study area.

Data Source Resolution

DEM ASTER GDEM https://earthexplorer.usgs.gov/ (accessed on 2 March 2021) 30 m
Land use Landsat-8 https://earthexplorer.usgs.gov/ (accessed on 5 March 2021) 30 m

Soil HWSD https://www.fao.org/ (accessed on 7 March 2021) 30 m
Weather CMADS version 1.1 http://www.cmads.org/ (accessed on 8 March 2021) 28 km

(1) The DEM data contain natural depressions and pseudo-depressions caused by data
errors, which makes it impossible to determine the specific direction of water flow [34–37].
Using these data directly will result in a discontinuous river network [31]. Hence, the data
need to be preprocessed to fill the depressions. The topography and geomorphology of the
Jiyun River basin are complex, the elevation information cannot be expressed accurately
by DEM, and the D8 algorithm within the SWAT model cannot accurately calculate the
river network location to define the river flow direction [31,38]. The “burn-in” algorithm
converts the digital river systems into raster data of the same size as the DEM raster
cells, then reduces the elevation values of the DEM river, and ensures that the corrected
channel elevation values are lower than the elevation values of the surrounding areas of
the channels so that the final extracted drains are closer to the actual river network.

(2) Land use and soil properties affect different hydrological units’ flow production
and sink characteristics [39,40]. After reclassification, the land was divided into six primary
types: arable land, forest, grassland, water area, unused land, and urban and rural indus-

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.fao.org/
http://www.cmads.org/
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trial, mining, and residential land. Of these, arable land occupies 57.24% of the total area;
forest 16.40%; grassland 6.45%; watershed 3.96%; unused land 0.11%; and urban and rural
industrial, mining, and residential land 12.93%. Arable land is the most significant land
type, occupying the majority of land, followed by forest and urban and rural industrial,
mining, and residential land (Figure 2). This shows that the land use types in the Jiyun
River predominantly represent land under human influence.
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The impact of land use change on runoff is mainly reflected in the redistribution
of precipitation, and land use change is also a measure for soil and water conservation.
On the one hand, land use change affects precipitation and runoff by influencing the
vegetation cover of the watershed, thus changing the production and sink mechanisms and
hydrological processes; on the other hand, land use change increases the impervious surface
area and affects the infiltration capacity of the soil, resulting in a decrease in subsurface
runoff. Land use and land cover changes alter the topography of the study area, affecting
not only the regional hydrological cycle but also the regional hydrological and ecological
processes in a more obvious way.

(3) The soils were classified into 11 major categories: fishpond, vertisols, solonchaks,
water bodies, regosols, luvisols, rankers, gleysols, fluvisols, cambisols, and arenosols. The
percentages of the different soils in the watershed area are fishpond 0.02%; vertisols 5.92%;
solonchaks 1.07%; water bodies 1.06%; regosols 3.17%; luvisols 33.57%; rankers 0.98%;
gleysols 8.32%; fluvisols 34.39%; cambisols 11.45%; and arenosols 0.05%. Luvisols and
fluvisols are the main soil types (Figure 2). A soil database was established, and soil
hydrology was grouped according to the minimum infiltration rate of the soil parameters.
SPAW software calculated soil parameters such as saturated hydraulic conductivity, wet
soil capacity, and available soil water in the study area. The anion-exchange porosity,
potential fracture volume of the soil profile, and surface reflectance rate were taken as
0.5, 0.5, and 0.01, respectively, following the Chinese soil structure. Soil erosion factors
(USLE-K) were calculated concerning the modified EPIC model [41]. We referred to the
World Soil Database for the organic carbon content of clay and electrical conductivity.
Details are given in Table 2.
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Table 2. Properties of soil physical parameters in the Jiyun River basin.

Soil Type Model Code Proportion SOL_K SOL_BD SOL_AWC SOL_CBN CLAY SILT SAND ROCK USLE-K

Rudiment soil CAMBISOLS 11.45% 8.79 1.52 0.14 0.65 21 43 36 6 0.33
Highly active leached soil LUVISOLS 33.57% 60.07 1.55 0.06 0.63 9 11 80 4 0.17

Alluvial soil FLUVISOLS 34.39% 9.32 1.53 0.13 0.6 18 48 34 15 0.35
Gley soil GLEYSOLS 8.32% 15.29 1.46 0.14 1.3 19 40 41 4 0.27

Sandy soil ARENOSOLS 0.05% 9.91 1.6 0.08 0.43 24 10 66 10 0.18
Thin layer soil LEPTOSOLS 0.98% 18.35 1.33 0.14 2.13 19 44 37 16 0.26

Loose lithologic soil REGOSOLS 3.17% 9.95 1.52 0.12 0.75 21 35 44 14 0.29
Denatured soil VERTISOLS 5.92% 6.76 1.44 0.12 1.5 29 27 44 7 0.22

Saline soil SOLONCHAKS 1.07% 5.62 1.52 0.13 0.46 25 41 34 7 0.33
Water body SHUITI 1.06% 5.62 1.52 0.13 0.46 25 41 34 7 0.33
Fish pond YUTANG 0.02% 15.29 1.46 0.14 1.3 19 40 41 4 0.27

Notes: SOL_K: saturated hydraulic conductivity (mm/h); SOL_BD: soil wet capacity (g/cm3); SOL_AWC: soil
available water (mm); SOL_CBN: organic carbon content; CLAY: clay; SILT: chalk; SAND: sand; ROCK: gravel.

Soil hydrological properties influence hydrological processes, climate change, and
carbon and nitrogen cycle processes. The spatial distribution of soil physical proper-
ties strongly influences soil moisture, which determines processes such as groundwater
recharge and unsaturated soil evaporation. The infiltration process at the profile level is the
link between surface water, groundwater, and soil water distribution, and the mechanism
by which soil hydrological properties influence the infiltration process is also an essential
link to hydrological processes such as rainfall runoff. The main hydrological process at the
slope scale is the slope surface flow production process, where the critical soil hydrological
properties are topography, soil hydraulic properties, soil porosity, and soil layer thickness.
The vital soil hydrological properties are soil saturation, hydraulic conductivity, soil texture,
stratigraphic characteristics, and geological conditions. Analyzing soil hydrological proper-
ties can provide theoretical support for studying hydrological processes and mechanisms
at the regional scale.

(4) In China, few large-scale meteorological datasets cover rainfall, temperature, rel-
ative humidity, wind speed, and solar radiation. Traditional meteorological observation
stations are scarce and unevenly distributed. As a result, Dr. Xianyong Meng from China
Agricultural University used Spatio-Temporal Multiscale Analysis System (STMAS) as-
similation and big data techniques to calibrate nearly 10,000 regional automatic stations
of the European Centre for Medium-Range Weather Forecasting (ECMWF) in China to
establish the CMADS dataset, to make it reflect the ground-based meteorological conditions
more closely [28,42]. CMADS made appropriate adjustments to the different formats of
the SWAT input files so that SWAT models can be input directly without format changes
to, for example, daily rainfall, maximum and minimum temperatures, mean wind speed,
relative humidity, and solar radiation meteorological data. The SWAT model can thus be
run directly without changing the data type [16,30].

(5) Monthly flow data for the hydrological stations were obtained from the Tianjin
Flood Control and Drought Relief Headquarters.

2.3. Hydrological Modeling

The SWAT hydrologic model simulates hydrologic processes, categorized as land
surface and riverine processes. Land surface processes are the internal circulation and
transformation of runoff, sediment, and nitrogen and phosphorus pollutants in river sub-
basins, which converge with the main river channels through each sub-basin. The riverine
process simulates the transport of river runoff, sediment, and nitrogen and phosphorus
pollutants through the river sub-basins to the outlet of the river basin. Its water balance
equation is:

SWt,i = SW0,i + ∑t
i=1

(
Rday,i −Qsur f ,i − Ea,i −Wseep,i −Qgw,i

)
(1)

where SWt,i is final soil water content (mm); SW0,i is the initial water content (mm); t is
time step (day); Rday,i, Qsurf,i, and Ea,i are the amounts of precipitation, surface runoff, and
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evaporation on day i (mm), respectively; Wseep,i is the amount of water entering the vadose
zone from soil profile on day i (mm), and Qgw,i is the amount of the return flows on day i
(mm) [43].

2.4. River Network Density Method

River network density refers to the ratio of the total length of main and tributary
streams in a watershed to the basin area or the whole length of the natural and artificial
streams in a unit area. The river network density method calculates the optimal catchment
area threshold by constructing a correlation between the river network density and the
threshold value. As the threshold value increases, the number of grids classified as river
channels decreases. The number of class 1 and 2 rivers is reduced after vectorization, and
the river network density is affected by this and decreases in proportion. By calculating the
river network density under different threshold values, the relationship curve between river
network density and the threshold value is obtained, and the threshold value corresponding
to the smooth change region of the curve is taken as the optimal reasonable threshold value.
The calculation formula for river network density is

D = L/S (2)

where D is the river network density, L is the length of the river under the corresponding
threshold, and S is the area of the study area.

ArcGIS generates the total length of waterways under different thresholds, counts
the length of rivers, and calculates the river network density. The image of river network
density and point is drawn by fitting the functional relationship. Finally, the coordinates
where the river network density tends to be smooth with the change in threshold are found
according to the location of the inflection point. Better accuracy can be obtained by using
the entry of this point for river network extraction.

2.5. Model Setup

Information was extracted from the digital elevation model map to divide the study
area into several sub-basins for applying the SWAT model. Each sub-basin was redivided
into corresponding hydrological response units by overlaying land use and soil spatial
data and setting the slope. Based on the D8 algorithm and the “burn-in” algorithm, this
study combined the steepest slope principle and the concept of minimum catchment area
threshold to automatically generate the river network of a watershed and the topological
relationships between sub-basins. The smaller the threshold setting, the more detailed the
river network and the smaller the sub-basin area. In the simulation process of the SWAT
model, three time periods of 2008–2009, 2010–2011, and 2012–2013 were set as the model
warm-up period, the calibration period, and the verification period, respectively, in the
Jiyun River basin.

2.6. Calibration and Validation

To evaluate the simulation accuracy of the model and whether the calibration results
were satisfactory, the Nash–Sutcliffe efficiency coefficient (NSE), the coefficient of determi-
nation (R2), and the percent bias (PBIAS) were chosen as the quantitative evaluation indices
of the applicability of the model. NSE is a standard statistical equation that reflects the de-
gree of fit between the observed values and the corresponding simulated values. The NSE
is calculated in the range of −∞~1. When NSE = 1, it can be considered that the simulated
value fits perfectly with the observed value; when 0.5 < NSE < 1, the simulation result of
the model is acceptable, and when NSE < 0, it can be considered that the model simulation
result is poor. The coefficient of determination, R2, characterizes the correlation between
the measured variables, referring to the relationship between measured and simulated.
PBIAS is a vital evaluation index for the efficiency of hydrological model simulations, which
quantifies the water balance error and measures the model’s performance by comparing the
average trend of observed and simulated values. The optimal value of PBIAS is 0, and the
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model simulation results are acceptable when |PBIAS| < 25%. Santhi [44] suggested that
the model simulation results can be obtained by considering R2 > 0.5 and NSE > 0.5 as good
SWAT model simulation criteria. Ahmad [45] argued that R2 > 0. 5 and NSE > 0.4 could
also be used as a criterion for good model metrics. Moriasi [46] thought that the model
simulation could be judged as good if NSE > 0.50 and R2 ≤ 0.7, and if |PBIAS| ≤ 25% for
streamflow, |PBIAS| ≤ 55% for sediment, and |PBIAS| ≤ 75% for N and P. If the metrics
are met, the model can be considered suitable for simulation flow-through processes in the
basin. Concerning the above evaluation system for simulation results, this was classified
into four grades. The grading is shown in Table 3. The detailed equations for the evaluation
indicators are as follows.

Table 3. Evaluation of SWAT model simulation results.

Result Grade NSE R2 PBIAS (%)

Very good 0.75 < NSE ≤ 1.00 0.80 < R2 ≤ 1.00 PBIAS < ±10
Good 0.65 < NSE ≤ 0.75 0.70 < R2 ≤ 0.80 ±10 ≤ PBIAS < ±15

Satisfactory 0.50 < NSE ≤ 0.65 0.50 < R2 ≤ 0.70 ±15 ≤ PBIAS < ±25
Unsatisfactory NSE ≤ 0.50 R2 ≤ 0.50 PBIAS ≥ ±25

The Nash–Sutcliffe efficiency coefficient (NSE) equation is

NSE = 1− ∑n
i=1(Qobs −Qsim)

2

∑n
i=1

(
Qobs −Qobs

)2 (3)

The coefficient of determination (R2) is obtained using

R2 =

[
∑n

i=1
(
Qobs −Qavg

)
×

(
Qsim −Qsim

)]2

∑n
i=1

(
Qobs −Qavg

)2 ×∑n
i=1

(
Qsim −Qsim

)2 (4)

The percent bias (PBIAS) formula is

PBIAS =
∑n

i=1(Qobs −Qsim)

∑n
i=1 Qobs

× 100 (5)

In the above equation, Qobs is the actual observed value of the data; Qsim is the
simulated value of the data; Qavg is the observed mean of the data; Qsim is the simulated
mean of the data; and n is the number of samples.

2.7. Sensitivity Analysis

The parameter sensitivity test was an essential step in evaluating the results that affect
the calibration and verification of the model. It would take a lot of time and effort to adjust
each parameter one by one manually, and the value of the manual calibration is also easily
affected by human subjective factors. SWAT-CUP is software for calibrating SWAT models,
which can be used to perform calibration, verification, sensitivity, and uncertainty analysis.

This study used SWAT-CUP software for parameter sensitivity analysis and calibra-
tion [47,48]. The SUF1-2 algorithm in SWAT-CUP was used, whereas the parameters were
selected using the Latin hyper-dimension method [49–52], which was calculated by ran-
dom sampling. Then, the selected sensitivity parameters and parameter value ranges were
obtained. The t and p values evaluate the sensitivity and identify parameters sensitive
to runoff processes. The larger the absolute value of t, the greater the sensitivity of the
parameter; the p-value reflects the significance of the sensitivity, and the closer the p-value
is to 0, the more significant the sensitivity of the parameter. The higher the absolute value
of t, the greater the sensitivity of the parameter [52,53].

SWAT-CUP was used for sensitivity analysis of the model to filter out the parameters
with little influence and improve the efficiency of the model calibration determination. The
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runoff-related SWAT model parameters were chosen using sensitivity analysis. From this,
nine parameters significantly influencing the model were selected for model calibration
determination, and their sensitivity ranking is shown in Table 4.

Table 4. Parameter sensitivity of SWAT model.

Susceptibility Parameter Definition t-Value p-Value Range

1 SOL_K Saturated hydraulic conductivity of first layer (mm/h) 18.75 0.0000001 −1.2
2 SOL_BD Moist bulk density (g/cm3) 10.65 0.0000001 −1.2
3 SOL_Z Depth from soil surface to bottom of layer (mm) −9.27 0.0076368 10–3500
4 RCHRG_DP Deep aquifer percolation fraction 8.99 0.0253185 0–1
5 REVAPMN Depth of water for evaporation (mm) 4.32 0.1000428 0–500
6 ALPHA_BNK Recession constant value of base flow −3.76 0.1079156 0–1
7 GW_REVAP Groundwater evaporation coefficient −2.27 0.1080458 0.02–0.2
8 CANMX Maximum canopy storage (mm) −1.56 0.3081987 0–10
9 HRU_SLP Average slope steepness (m/m) 1.33 0.31099899 0–1

The physical soil traits control water and air movement across the soil slope and
significantly impact water circulation within the HRU. Inputs for chemical characteristics
were used to set initial values for the different chemicals in the soil. RCHRG_DP has
essential roles in hydrologic simulation. SOL_K relates the flow rate (flux density) of
soil water to the hydraulic gradient and measures the ease of water movement in the
soil. SOL_BD is the ratio of the mass of solid particles to the total volume of the soil and
reflects the degree of soil density. SOL_Z measures soil water. RCHRG_DP is an indicator
of the comprehensive infiltration capacity of the soil. CANMX is the maximum canopy
retention, which shows the significant effect of crop canopy on infiltration, surface runoff,
and evaporation. GW_REVAP is the submersible recharge coefficient, which refers to
the infiltration capacity of groundwater in the soil and is a critical fluid flow parameter.
REVAPMN is the shallow groundwater re-evaporation coefficient, which indicates the
evaporation depth threshold of shallow aquifers. ALPHA_BNK is the baseflow recession
constant, which affects water flow in the main river or river within a sub-basin. HRU_SLP
is the average slope of the sub-basin. In hydrology, its most direct effect is the flow velocity,
bringing about more hydrodynamically induced energy transfers, such as the conversion of
potential and kinetic energy. As can be seen from the table, the study area simulation was
particularly sensitive to the soil database parameters. The four most sensitive parameters
for runoff simulation in the study area were saturated soil hydraulic conductivity (SOL_K),
soil bulk density (SOL_BD), bottom soil depth (SOL_Z), and deep storage infiltration
coefficient (RCHRG_DP).

3. Results and Discussion
3.1. Sub-Basin Division

The river network density method was used to select the best threshold conditions
for the river network division. The catchment areas were set as 17, 27, 37, 47, 57, 67, 77, 87,
97, 107, 117, and 147 km2. Finally, 12 river network division schemes were obtained. The
different sub-basin classification schemes are shown in Figure 3.

The catchment area threshold and river network density were presented as scatterplots
using five function analyses: linear, exponential, logarithmic, polynomial, and power
function for trend line fitting. The power function was found to be the best fit. Using the
river network density method, we took the second derivative of the power function and
performed trend fitting again (Figure 4). According to the river network density method,
it was known that the catchment threshold area was best when the river network density
tended to flatten out with the threshold change. The functional density expression was
y = 926.782x−0.47717. As the catchment area threshold increases, the river network density
approaches infinitely close to 0. It took a lot of work to solve the turning point to extract
the catchment threshold using the first-order and second-order derivatives of the power
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function. Therefore, this paper proposes to extract the catchment area threshold by the
tangent of the power function to a straight line.

y = 926.782x−0.47717 (6)

y = −x + a (7)

where y is the river network density in km−1, x is the catchment area in km2, and a is
the intercept.
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The point where the power function is tangent to the equation of the line is the
inflection point, also called the stability point in mathematics. Before the point of stability,
the rate of change in catchment area threshold ∆x is smaller than the rate of change in
river network density ∆y, and vice versa ∆y < ∆x. The inflection point is found when the
density of the river network is stable with the change in the catchment area threshold,
and the reasonable catchment area threshold is obtained. When x has a unique solution,
∆y = ∆x, the value taken is the optimal catchment area threshold. After calculation, when
a = 191.33037, the unknown x of the system of equations has a unique solution of 61.80518,
and thus the optimal threshold area of the study area is determined to be 61.80518.
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As the catchment area increases, the starting point of the rivers on the slope will move
closer to the adjacent flat terrain area in the watershed. The number of rivers on the slope
decreases, and the pseudo rivers are removed. The river network density and catchment
threshold power function are coupled with the tangent equation. A numerical method with
the rate of change in river network density equal to the rate of change in catchment value
is adopted to determine the optimal catchment threshold in the region. Better accuracy can
be obtained by extracting the river network with the threshold value at this point. This
method can effectively avoid the influence of human subjectivity.

3.2. Runoff Simulation

It can be seen that the variation trend of the simulated value of the flood was consistent
with the measured value, whereas the peaks and valleys of runoff as a whole were better
simulated (Figure 5A,B). The model can reasonably simulate the runoff from June to
October. The flood periods of the measured and simulated flows are mainly concentrated
in June, July, and August, consistent with the study area’s perennial meteorological rainfall
conditions. The most significant runoff was in August and the second largest in July. The
runoff was smaller in winter. The maximum monthly runoff in the calibration period on
August 2011 was 12.42 m3·s−1, whereas the simulated monthly runoff was 12.84 m3·s−1.
The measured runoff in flood season was 0.42 m3·s−1 lower than the simulated runoff. On
August 2012, the measured runoff reached the highest value of 27.45 m3·s−1, whereas the
simulated runoff was 32.98 m3·s−1. The measured runoff in flood season was 5.53 m3·s−1

higher than the simulated runoff.
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Figure 5. Hydrographs and scatter plots of the model calibration and validation for Jiuwangzhuang
(A,B), Erdaozha (C,D), and Haihezha (E,F) hydrological stations.

The measured values of the 2012 flood peak are low. A significant error compared
with the simulated values is probably related to the heavy rainfall in the study area in 2012.
When the monthly runoff had low values during the verification period, it was found that
the simulated runoff of the Jiyun River was higher than the measured average runoff. The
average flow difference between the monthly simulated runoff and measured runoff in
the verification period was 0.76 m3·s−1. The 2012 flood peak simulated values are high,
and a low base flow is shown in the simulated results for the four years from 2010 to 2013.
There is little snowfall in the study area, and rainfall mainly recharges surface water. From
November to April, the rain is low, and the corresponding surface water volume passing



Water 2023, 15, 2110 13 of 17

into the river is also low. This is another reason for the low simulated values during the
non-flood period.

The calibration period models R2, NSE, and PBIAS were 0.82, 0.79, and −13.4, re-
spectively. The validation period models R2, NSE, and PBIAS were 0.8, 0.79, and 11.1,
respectively. Calibration and validation period coefficient R2 > 0.80, NSE > 0.70, and
|PBIAS| < 25, indicating that the simulation results have reached the standard of good
or close to good, and the results are acceptable. The above analysis shows that the SWAT
model constructed for the Jiyun River basin can simulate local hydrological processes. This
indicates that the CMADS dataset is a reasonable basis for making the SWAT model and
can be used for runoff simulation in the Jiyun River basin.

3.3. Analysis of Simulation Scenarios with Different Thresholds

To resolve the sub-basin delineation problem, we investigated the influence of the
catchment area threshold on the control of sub-basin size and model simulation results.
This study selected the nine sensitivity parameters mentioned above as the model rate
parameters. SWAT models with different thresholds were developed. The results of the
twelve model scenarios and the evaluation coefficients of the simulation results relative to
the measured results are shown in Table 5.

Table 5. Monthly scale simulation evaluation results of different catchment area thresholds.

Scheme
Catchment

Area
Threshold/km2

Proportion
of Area

Number of
Sub-Basins

Calibration Validation Annual
RunoffR2 NSE PBIAS R2 NSE PBIAS

1 17 0.52% 1022 0.46 0.45 −2.1 0.75 0.73 14.8 27.83
2 27 0.82% 616 0.61 0.6 −2.7 0.77 0.76 14.3 27.42
3 37 1.12% 465 0.7 0.7 −4.8 0.8 0.8 12.3 26.74
4 47 1.42% 359 0.79 0.78 −4.7 0.84 0.83 13.2 26.22
5 57 1.73% 315 0.82 0.79 −13.4 0.8 0.79 11.1 26.21
6 67 2.03% 277 0.82 0.79 −13.6 0.79 0.78 11.1 26.2
7 77 2.33% 241 0.81 0.8 −7.2 0.77 0.76 16.5 26.19
8 87 2.64% 215 0.81 0.8 −7.3 0.75 0.74 16.5 26.4
9 97 2.94% 201 0.82 0.82 −7.4 0.73 0.72 16.4 26.52

10 107 3.24% 183 0.81 0.8 −4.9 0.74 0.72 19 26.42
11 117 3.55% 163 0.81 0.81 −4.6 0.7 0.69 19.5 26.11
12 147 4.45% 143 0.79 0.78 −4.8 0.65 0.64 19.5 25.87

As sub-basins increase, the modeled mean annual runoff decreases and becomes
relatively stable. When the number of sub-basin divisions changes from 17 to 47, the
average yearly runoff value decreases more; when the number of sub-basin divisions is
between 47 and 87, the average annual runoff value tends to stabilize; when the number of
sub-basin divisions exceeds 85, the average yearly runoff value tends to decrease slightly
with the increase in the number of sub-basin divisions, but also tends to stabilize, with
values ranging from 26.19 to 26.22 m3·s−1. The values fluctuate within a small range. It
can be seen that there is a level of sub-basin division in the Jiyun River basin that stabilizes
the basin runoff simulation. When below this level, the number of divisions influences the
simulation results.

From the simulation evaluation results of the SWAT model of the Jiyun River basin,
we can observe that: the R2 of Scenarios 5, 6, and 9 were all as high as 0.82 in the calibration
period, with the best correlation between the simulation results and the measured results;
the best match of the simulation effect was Scenario 9, with an NSE of 0.82; the R2 of
Scenario 1 was 0.61, and the NSE was 0.60, which was the worst degree of correlation
and match of the simulation effect. In the validation period, Scenario 4 showed a good
correlation between the simulation results and the measured results and good agreement
of the simulation effect, with an R2 of up to 0.84 and NSE of up to 0.83. The worst degree of
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correlation and agreement of the simulation effect was in Scenario 12, where the R2 was
0.65 and the NSE was 0.64. The percentage deviations of all 12 scenarios were within 25%.

By utilizing the power function tangent to a straight line, the inflection point between
the rate of change in river network density and the catchment threshold can be mathemati-
cally derived in order to identify the optimal threshold value of the basin. The simulation
results were found to be more accurate when the watershed area was between 1.42% and
2.33% of the total watershed area. To validate the results, a SWAT model was employed to
simulate the runoff in the mainstream area of the Haihe River. The central stream system of
the Haihe River has a catchment area of 2066 km2, stretching from Sanchakou to Dagukou
and featuring two hydrological stations, Erdao Gate and Haihe Gate. The relationship
between river network density and catchment area threshold yields a river network density
function of y = 112.166x−0.3572 and a threshold value of 40.5598 km2. The results of the
runoff simulation are illustrated in Figure 5C–F. The simulation results correspond to the
observed values, where the determination coefficient R2 and Nash–Sutcliffe coefficient
NSE are 0.88 and 0.83 for the Erdao gate monitoring station and 0.74 and 0.71 for both in
the validation period. At the Haihe Gate monitoring station, the rate periodic evaluation
index had a determination coefficient R2 of 0.87 and a Nash–Sutcliffe coefficient NSE of
0.84 during the determination period, which fulfilled the model’s evaluation criteria. The
R2 and NSE were 0.77 and 0.76 during the validation period, respectively. The validation
results of the SWAT model for the Haihe mainstem region demonstrate that the optimal
threshold value of the basin can be determined by exploring the correlation between the
river network density and the catchment area threshold, thus making the simulation results
of the SWAT model more precise.

The exponential function determined the “inflection point” as the optimal catchment
area threshold. This point was used to extend the threshold range and analyze the model
results for different threshold ranges. Different approaches to setting catchment area
thresholds affect the simulation results of the SWAT model. The simulation results of
Scenario 1 were less, mainly because the number of sub-basin divisions was too large, and
more pseudo-channels were generated and calculated in the river confluence process. The
catchment area at this point was 0.52% of the total watershed area. The reason for the
poor simulation results of scheme 12 was the number of sub-basins was too small, and the
river network water system did not match the actual situation, leading to an unrealistic
simulation. The catchment area at this point was 4.45% of the total watershed area. The
overall evaluation of the simulation results was better, and the values of the evaluation
indicators fluctuated less for catchment area thresholds between 47 km2 and 77 km2, with
values of R2 and NSE that were greater than 0.75 in both the validation period and the
rating period. The catchment area in this threshold range was 1.42% to 2.33% of the total
watershed area. The analysis showed a reasonable range for the catchment area threshold,
closely related to the entire watershed area. The threshold should not be too large or small.
The catchment area threshold should be kept at 1.42% to 2.33% of the total catchment area
threshold when sub-basins are divided in the Jiyun River basin.

4. Conclusions

In this study, using the CMADS dataset combined with basin-related spatial and
attribute data, the runoff simulation and analysis of the basin were conducted by applying
the SWAT model under different catchment area thresholds with the upstream basin of
Jiuwangzhuang hydrological station as the study area, and the following conclusions
were obtained.

(1) The combination of the river network density method and SWAT method quickly
locked the reasonable catchment area threshold of the SWAT model, excluded the
subjectivity and arbitrariness of the traditional SWAT model to extract the river net-
work of the basin, and finally determined the functional expressions of river network
density function and catchment area threshold in the study area: y = 926.782x−0.47717.
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(2) Various types of databases were constructed for the Jiyun River basin by using
CMADS dataset combined with basin-related spatial and attribute data. The monthly-
scale runoff processes were accurately simulated. In the scenarios with optimal
catchment area thresholds, the R2 for both the calibration and validation periods of
the model rate was greater than 0.78, and the NSE was greater than 0.75, which was
generally satisfactory for the simulation.

(3) Different threshold schemes had a direct impact on the simulation results of the SWAT
model. The model results under different catchment area threshold conditions had
upper and lower limits of the applicable range of thresholds. The model’s simulation
results were less when the thresholds were set too large or too small.

(4) From the simulation results of the catchment area threshold sequence, it could be
concluded that the simulation results obtained from the pre-selected optimal thresh-
old were within the final determined suitable threshold; thus, the corresponding
exponential function could be established by the river network density method to
lock the optimal threshold of the catchment area.

The SWAT model has good applicability in the Jiyun River basin by using the CMADS
dataset. The river network density method combined with the SWAT model effectively
extracts digital river networks. It is an efficient and reasonable approach to studying the
proper range of thresholds from the optimal threshold of the “inflection point.” It helps
provide a scientific basis for determining the catchment area threshold and realizing the
runoff simulation in the study area.
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