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Abstract: Extreme weather events will become more frequent and severe as a result of climate
change, necessitating an immediate need for cities to adapt to future climate change. Therefore, the
prediction of future precipitation and waterlogging is of utmost importance. Using Beijing as an
example, the simulation capability of different models was evaluated, and the optimal model for the
study area was screened using Taylor diagrams and interannual variability scores, along with actual
monthly precipitation data from Chinese weather stations from 1994 to 2014 and historical monthly
precipitation data from 10 coupled models from Coupled Model Intercomparison Project Phase 6
(CMIP6). The SWMM model was then used to simulate future rainfall and waterlogging scenarios for
the study area using precipitation forecast data for 2020–2050 from the best model to investigate the
impact of climate change on future rainfall and waterlogging in urban areas. CMIP6 brings together
the most recent simulation data from major climate models on a global scale, providing a broader
and more diverse range of model results and thereby making future predictions more accurate and
dependable, and its findings provide a theoretical foundation for the emergency management of
and scientific responses to urban flooding events. The following major conclusions were reached:
1. The best-performing models are EC-Earth3, GFDL-ESM4, and MPI- ESM1-2-HR. EC-Earth3 is a
modular Earth system model developed collaboratively by a European consortium. MPI-ESM1-2 is a
climate precipitation prediction model developed in Germany and promoted for global application,
whereas the GFDL-ESM4 model was developed in the United States and is currently employed for
global climate precipitation simulations. 2. Under future climate circumstances, the total annual
precipitation in the example region simulated by all three models increases by a maximum of 40%.
3. Under future climatic conditions, urban surface runoff and nodal overflow in the study area
will be more significant. The node overflow will become more severe with the increase in climate
scenario oppression, and the potential overflow nodes will account for 1.5%, 2.7%, and 2.9% of the
total number of nodes under the SSP1–2.6, SSP2–4.5, and SSP5–8.5 scenarios, respectively. 4. In
the future, the effectiveness of stormwater drainage systems may diminish. To increase climate
change resilience, the impacts of climate change should be considered when planning the scope of
stormwater optimization and the integrated improvement of gray–green–blue facilities.

Keywords: future climate change; CMIP6; precipitation; SWMM model; surface runoff; node overflows

1. Introduction

Presently, waterlogging incidents occur frequently in numerous cities worldwide [1],
which has attracted a great deal of attention from both domestic and international scholars.
Urban waterlogging has become one of the most significant natural disasters in cities [2],
which is a significant barrier to the sustainable development of cities. Increases in heavy
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urban rainfall and waterlogging in recent years [3] pose a serious threat to urban residents’
property and personal safety [4,5]. This is demonstrated by the impact of events such as
the “721” heavy rainfall in Beijing in 2012, the “720” heavy rainfall in Zhengzhou in 2021,
and the “Storm Issa” subtropical cyclone’s large-scale waterlogging events in South Africa
in 2022.

A large number of waterlogging simulation studies and waterlogging scenario pre-
dictions could provide theoretical support for the emergency management and orderly
response of heavy urban rainfall waterlogging disaster events [6] to combat waterlogging
more effectively. Numerous academics from both China and other countries have con-
ducted the following study to predict the outcomes of urban waterlogging disasters. The
researchers simulate various urban waterlogging conditions in the study area based on
PCSWMM and other software [7] for varying rainfall return periods, rainfall duration, and
peak coefficients. They identify locations with a high risk of waterlogging [8] and then
apply the research findings to other regions, such as Wales, United Kingdom; Wallonia,
Belgium; and Fujian and Shenzhen, China [7–13]. Alternatively, others estimate future
waterlogging scenarios using the correlation between flooding and other factors. For ex-
ample, Y. Kexin et al. [14] conducted estimations based on the close relationship between
the causes of waterlogging prediction changes and land cover using the LULC prediction
model combined with a hydrodynamic model to predict future waterlogging trends. Y.
Yue et al. [15] used topography, evaporation, infiltration, pipeline discharge, river flood
level, and other factors to evaluate the correlation between rainfall and waterlogging levels
and to develop a multifactor correlation model. The simulation results provide a basis for
scientific research and urban planning to reduce the risk of waterlogging.

Existing research, however, focuses primarily on the simulation and disaster risk
analysis of waterlogging scenarios under the existing atmospheric conditions of cities, and
there are relatively few studies on the simulation and prediction of waterlogging disaster
events under different future climate scenarios with climate change. Utilizing Chicago
rain patterns to generate rainfall sequences, Mei Chao et al. [16] constructed a numerical
model of urban waterlogging in order to simulate waterlogging in the central urban area of
Shanghai. Wang Shijing et al. [17] designed rainfall patterns based on 24 h rainfall in the
local rainstorm and flood atlas and simulated scenarios with various rainfall return periods.
P. Chen et al. [9] determined the average rainfall intensity at any point in the rainfall process
by analyzing historical rainfall data and incorporating the rainfall intensity formula into the
rainfall model as a parameter input in the numerical model of waterlogging. The majority of
the rainfall data used in current studies for the prediction of future waterlogging scenarios
are rainfall data series generated or predicted under current climate conditions, which
do not fully account for rainfall conditions under future climate change conditions and
could result in inaccurate estimation results. As a significant factor influencing rainfall and
waterlogging, the climate is better suited to the realities of the future when fully combined
with the results of climate change scenarios for urban waterlogging. Therefore, this paper
will use CMIP6 rainfall model data to provide a reasonable portrayal of precipitation
changes and provide scientific support for assessing climate change risks and effectively
responding to climate-change-induced waterlogging disasters.

As the most recent stage with the greatest number of models and the richest data
since the inception of the CMIP program, the CMIP6 model has significantly improved
the simulation effect of average precipitation and extreme precipitation events [18–21] and
is widely used in climate simulation and evaluation across a variety of spatial scales. Y.
Farhad et al. [22] analyzed the performance of CMIP6 on the historical operating precipi-
tation estimation results of Iran’s climate zone. They discovered that each CMIP6 model
had its own adaptive specific climate zones, such as the model that performed well in
a humid zone but poorly in ultra-arid and arid zones. H. Zahra [23] examined trends
in extreme precipitation in the Middle East and North Africa (MENA) during historical
periods (1985–2014) and future periods (2021–2050), and the results suggest that extreme
precipitation and its intensity will continue to increase despite the decrease in precipitation
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in the Middle East and North Africa region. J. d. M. Felipe et al. [24] estimated the changes
in CMIP6’s worst-case scenario for the medium term (2046–2065) and future (2081–2100),
predicting more severe, frequent, and persistent extreme precipitation events in all regions
of Brazil and more pronounced changes in heavy precipitation and severe drought in
north-central and southern Brazil.

In the rainfall forecast for China, Yang Yang et al. [25] estimated precipitation in
Asia over the next 30 years, revealing that flooding in western China could increase, and
precipitation in southwest and northern China could decrease during the warm season.
Drought disasters could occur in northern South Asia and southern Central Asia during
the cold season. A further evaluation by Xiang Junwen [26] and others determined that
the simulation effect of CMIP6 in precipitation and temperature in northwest China was
improved, particularly in the semi-arid area of the arid region, where the precipitation sim-
ulation ability was significantly enhanced compared to CMIP5 [27]. Zhao Mengxia [28] et al.
simulated the spatial distribution of precipitation in the upper reaches of the Yellow River
using the average data of CMIP6 multi-model collections and estimated that the annual
precipitation in the upper reaches of the Yellow River would fluctuate and increase in
the future. Global climate models are an important tool for studying past climate change
mechanisms and predicting future climate change; however, due to the complexity of
the global climate system and the stability of climate models, global climate models have
certain deficiencies in East Asia’s climate simulation capabilities [29–31]. Therefore, before
using climate models to conduct climate change mechanism studies and climate forecasts,
it is necessary to test and evaluate their simulation capabilities, which not only provide
a foundation for improving model performance but also aid in identifying the sources of
uncertainty in model results [32].

This paper uses the most recent global climate models and datasets to predict future
urban rainfall and flooding scenarios that are more closely aligned with realistic future
scenarios, and it assesses the precipitation modeling capabilities of China’s major regions
using the ten most recent climate models released by CMIP6. The SWMM model was used
to predict future urban waterlogged scenarios based on varying climate scenarios. The
CMIP6-based urban rainfall forecasts provide decision makers and planners with important
information for urban planning, infrastructure design, and climate change adaptation, while
the predicted flooding scenarios enable city management to better understand and assess
the potential future flood risk and to take steps to mitigate the potential impact of flooding.
This ensures the sustainable development of cities and the protection of residents and
provides a theoretical foundation for emergency management and the scientific response
to urban waterlogging events.

2. Materials and Methods
2.1. Study Area

The study area is located in Beijing. As shown in Figure 1 below, the topography of
Beijing is high in the northwest and low in the southeast. Mountains surround it on three
sides in the west, north, and northeast, and a plain that slopes gently towards the Bohai
Sea in the southeast. Five major waterways run through the city from west to east, and
the area of parkland per capita is 16.63 square meters. In the summer, the climate is a
warm, temperate, semi-humid, semi-arid, monsoon climate with high temperatures and
rain. It also has cold and dry winters, short springs and autumns, and an average annual
precipitation of 550 mm (according to the annual rainfall statistics of typical hydrological
stations in the study area from 1956 to 2017).

The most frequent rainfall in Beijing City is light rain (daily rainfall below 10 mm),
accounting for 61% of the total rainfall frequency. In contrast, the largest contributors to
rainfall are moderate and heavy rainfall, each accounting for 28% of the total rainfall [33].
In the past ten years, there have been six occurrences of extremely heavy rainfall in the
study area and 165 occurrences of extreme rainfall weather at the district level. Extreme
rainfall in the study area occurred between June and September, with July and August



Water 2023, 15, 2045 4 of 23

being the wettest months, but July’s total rainfall was significantly higher than August’s.
There are three peaks in the frequency of accumulated extreme rainfall per five-day period:
early August, mid-to-late July, and late June and early July, with the highest frequency
occurring in early August.
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Due to the characteristic nature of Beijing’s urban climate and precipitation, Beijing’s
climate and precipitation patterns can help us comprehend urban hydrological responses
in similar climatic regions or cities with comparable characteristics.

2.2. Data Sources

The data involved in rainfall analysis and modeling in this study are shown in Table 1 below.
In addition, the study utilizes geographic information data, including land use vector

data of the research region, water system vector, DEM raster data (30 m precision), and
administrative border zoning vector.

The global climate model data chosen for this paper are the monthly precipitation and
raster data from 1994 to 2014 that were simulated by the latest ten climate models in CMIP6.
Each model has a different spatial resolution, based on https://esgf-node.llnl.gov/search/
cmip6/ (accessed on 22 August 2022). In the meantime, this paper employs the CMIP6
SSP1–2.6, SSP2–4.5, and SSP5–8.5 scenarios. SSP1–2.6 is the modified RCP2.6 scenario
from CMIP5 in CMIP6 exhibiting low social vulnerability, low mitigation stress, and low
radiative forcing. The SSP2–4.5 scenario in CMIP6 represents a mix of moderate societal
vulnerability and moderate radiative forcing. SSP5–8.5 is the upgraded CMIP5 RCP8.5

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
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scenario in CMIP6 and the only shared socioeconomic pathway capable of achieving an
anthropogenic radiative forcing of 8.5 W/m2 by 2100 [34].

Table 1. Data types and sources utilized for the analysis.

Data Types Description

Observed rainfall data Chinese monthly precipitation data with a 1 km grid dimension (1901–2017) from the
National Tibetan Plateau Scientific Data Center.

Climate scenario data The projections of EC Earth3, MPI-ESM1-2, and GFDL-ESM4 models are downloaded
on top of ESGF and extracted by Matlab/python scripts.

The formula of rainstorm intensity and
distribution coefficient of typical rainfall

duration
From Regional Hydrological Manual. The distribution coefficient’s time step is 5 min.

Conduits The main stormwater network covering the entire case area
Land use in the catchment area Land use in each sub-catchment (mainly including buildings, green space, and roads)

Rainfall time series Downscaled rainfall data extracted for the study area with a 5 min timestamp from
CMIP6 projected scenario and observed daily rainfall.

The 1 km resolution monthly precipitation dataset (1901–2017) of the National Tibetan
Plateau Data Center is used as the observation data to test the simulation ability of the
model set to China’s precipitation process. This dataset is generated based on the global
0.5◦ climate dataset released by CRU and the global high-resolution climate dataset released
by WorldClim, via the Delta spatial downscaling scheme in China. In addition, verification
included data from 496 separate weather observation stations.

2.3. Method
2.3.1. Evaluation of CMIP6 Models

This study carried out a literature review of CMIP6 model comparisons and then
selected the ten best models for rainfall simulation in China based on the degree of model
adaptation to the region within China, the degree of model simulation performance im-
provement over CMIP5, the model simulation effect on historically observed rainfall in
China, the model simulation ability on future rainfall trends, the model prediction ability
on extreme rainfall, and the model resemblance to observed rainfall in China. Due to the
different data resolutions, the bilinear interpolation method is used to interpolate the data
of each model to 0.5◦ × 0.5◦and then to extract the corresponding rainfall data required by
meteorological stations in Beijing, with an evaluation period of 1994–2014.

The Taylor plot was then employed to assess the model’s capacity to mimic precip-
itation. The Taylor graph combines the three model evaluation indicators, including the
correlation coefficient, centered root mean square, and standard deviation, on a polar graph
based on the cosine relationship between the three. The radian axis represents the spatial
coefficient, whereas the horizontal and vertical axes represent the standard deviation ratio
of the model to the observation or the distance from the model point to the origin. The
closer the standard deviation ratio is to 1, the closer the model simulation standard de-
viation is to the observation. The RMSE is the distance between the mode point and the
reference point of the observations; the closer the mode point is to the Obs, the smaller the
RMSE. The model performs decently well when the correlation coefficient is greater, the
RMSE is smaller, and the standard deviation ratio is closer to 1.

Additionally, a quantitative metric, the Taylor Score “TS”, was developed to quantify
the correlation coefficient and standard deviation between the simulated and observed
fields in order to evaluate how well the model can be simulated [35]:

TS =
4(1 + R)4(

σf +
1

σf

)2
(1 + R0)

4
(1)
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where R is the correlation coefficient between the simulated and observed fields; R0 is the
greatest attainable correlation coefficient, i.e., the maximum of all the models; σf =

STDm
STDo

is
the ratio of the standard deviation of the simulated field (STDm) to that of the observed
field (STDo). The closer the TS is to 1 and the stronger a model’s simulation capacity, the
closer the simulated field is to the observed field.

Next, the interannual variability score (IVS) was employed to assess the model’s
capacity to simulate the interannual variability of regional precipitation in China:

IVS =

(
STDm

STDo
− STDo

STDm

)2
(2)

where STDm and STDo are the simulation and observation interannual standard deviations,
respectively. The IVS (interannual variability score) is a symmetrical variability statistic
that measures the similarity between simulations and observed interannual changes. The
closer the STDm and STDo are, the lower the IVS value, showing that the model replicates
interannual variation more accurately.

Lastly, the Taylor chart ranking of each model and the IVS value ranking is merged to
thoroughly sort all models to determine the ideal precipitation simulation mode for the
research area.

2.3.2. Statistical Downscaling Method

The downscaling method may translate large-scale climate data into regional-scale
climate data, thereby minimizing the simulation error of regional precipitation and en-
hancing the simulation effect of the model [36,37]. In this work, the cumulative probability
distribution function of the two variables, the observed historical value and the simulated
historical value of the model, is determined using a downscaling method based on the
cumulative probability function (CDF) [38].

Future data were revised using the equidistant cumulative probability function match-
ing method (EDCDFM) in this investigation. For a given percentile, it is assumed that the
difference between the pattern and the observed values during training also applies to
future periods, hence preserving the mapping connection of the corrective function [39].
Nevertheless, the contrasts between the future and historical CDFs are also considered.
Therefore, the method’s mathematical expression (3) is

˜xm−p.adjst = xm−p + F−1
o−c

(
Fm−p

(
xm−p

))
− F−1

m−c
(

Fm−p
(
xm−p

))
(3)

where x is a climate variable, F is the CDF of either the observations (o) or model (m) for a
historic training period or current climate (c) or future projection period (p).

2.3.3. Method for Generating Rainfall Sequences

Based on the optimal model and the CDF downscaling method in the region described
in the previous section, the 24 h daily rainfall correction factor for the study area was first
determined by combining the historical rainfall observations with the simulation results of
the historical rainfall from the model. Then, the anticipated outcomes of the design rainfall
with a 24 h ephemeral time were adjusted according to this correction factor to produce the
24 h rainfall for the associated future design return periods (2, 5, 10, and 50 years in this
paper). The 24 h rainfall was finally assigned according to the time allocation coefficients in
the hydrological manual of the study region, and the 24 h rainfall series of every 5 min step
was obtained as the input condition for the SWMM hydrological model in the area.

2.3.4. SWMM Model

In order to more accurately evaluate the effect of the existing urban drainage system
on waterlogging prevention and control in future scenarios, an urban hydrological model
based on SWMM software was developed for an area of Beijing, and a single-day rainfall
scenario was simulated for each condition. There are 788 catchment zones in the model.
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Principal land uses include primarily residential and commercial land. There are typically
three types of underlay surfaces: buildings, roads, and green spaces. Some areas include
traditional urban drainage facilities such as pipelines and nullahs, as well as low-impact
development source control facilities necessary for sponge city construction, such as rain-
water buckets, permeable pavements, and biological retention units. In this instance, the
input rain gauge data are derived from the three optimal models of 24 h rainfall sequences
in 5 min increments for the three previously described scenarios for SSP1–2.6, SSP2–4.5, and
SSP5–8.5, and the outputs are the model runoff conditions and node overflow conditions.

In this case, the Morris screening method was used to analyze the sensitivity of the
model parameters. The Morris screening method is a widely used method for parameter
sensitivity analysis that evaluates the significance of parameters by systematically varying
their values in the model and observing changes in the corresponding simulation results.
The method, which is based on the randomization of sampling points and cumulative
effects, is better able to identify parameters that have a substantial effect on the model
output [40–42]. The formula is as follows.

ei = (y − y0)/∆i (4)

where ei is the Morris coefficient; y is the model output after a parameter change; y0 is the
model output before a parameter change; and ∆i is the rate of change of parameter i.

The modified Morris screening method employs a fixed parameter that is varied in
fixed stages. After multiple perturbations, the average rate of change in model results is
used to determine the parameter’s sensitivity. The following is the formula:

S = ∑n
i=1

(Yi+1 − Yi)/Y0

Pi+1 − Pi/100
/n (5)

where S represents the sensitivity, Yi represents the output of the ith run of the model, Yi+1
represents the output of the ith + 1 run of the model, Y0 represents the initial value of the
model, Pi is the percentage change of the parameters from the initial parameters during the
ith model run, Pi+1 is the percentage change of the parameters during the ith + 1 model
run, and n is the number of model runs.

3. Results and Discussion
3.1. Initial Evaluation of Precipitation Patterns

Aiming at the degree of deviation between the model historical observation rainfall
value and the model simulated rainfall value, Xiang Junwen, LIN Wenqing [26,43], and
others used the Taylor diagram method to evaluate the simulation performance of extreme
rainfall in China and the middle and high latitudes of Asia in multiple climate models of
the CMIP6 database. The results indicate that the model EC-Earth has the best simulation
performance. Zhou Tianjun and Wang Yu et al. [27,44] evaluated the simulation capability
of multiple CMIP6 models on China’s historical extreme precipitation and discovered that
GFDL-ESM4 and other models performed better. Hu Yiyang and Li Xiaolei et al. [45,46]
compared the historical measured values of precipitation from multiple models with the
model simulation values and discovered that the errors and precision of MPI-ESM1-2
models in China were relatively small and high. Only the high-resolution model of MPI-
ESM1 maintains a good rainfall simulation effect as the resolution increases.

In conclusion, the pertinent literature was compiled, and the selection was based on
various parameters, including the simulation of extreme precipitation, applicability to
the study area, precipitation patterns, and enhanced performance relative to CMIP5, as
indicated in Table 2 below.

As the first large sample dataset of GCMs (global climate models) in China, the
FGOALS-g3 model exhibits a high degree of adaptability to the region. The models
ACCESS-CM2, IPSL-CM6A-LR, MPI-ESM1-2-LR, and MPI-ESM1-2-HR have low error
rates when simulating historical precipitation in several regions of China. The simula-
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tion performance of the models GFDL-ESM4 and GFDL-CM4 is superior to that of the
comparable model in CMIP5. EC-Earth3, EC-Earth3-Veg, GFDL-ESM4, GFDL-CM4, and
MRI-ESM2-0 have better simulation capability for extreme rainfall. In conclusion, the perti-
nent literature was compiled to acquire the preliminary screening findings of the CMIP6
rainfall model in the Chinese context, and the model-specific information is presented in
Table 3 below.

Table 2. Evaluation of the estimated effect of the models in China.

Evaluation Factors Models

The model prediction ability on extreme rainfall EC-Earth3, EC-Earth3-Veg, GFDL-ESM4, GFDL-CM4,
and MRI-ESM2-0

The model simulation ability on future rainfall trend MPI-ESM1-2
The degree of model simulation performance improvement over CMIP5 GFDL-ESM4 and GFDL-CM4

The model adaptation to the region within China FGOALS-g3

The model resemblance to observed rainfall in China ACCESS-CM2, IPSL-CM6A-LR, MPI-ESM1-2-LR, and
MPI-ESM1-2-HR

Table 3. A description of the 10 CMIP6 precipitation patterns selected for this study.

Serial Number Model Organizations and Nations Resolution

1 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization,
Canberra, Australia 192 × 144

2 MPI-ESM1-2-LR Max Planck Institute for Meteorology, Hamburg, Germany 192 × 96
3 EC-Earth3 EC-Earth Consortium, European Community 512 × 256
4 EC-Earth3-Veg EC-Earth Consortium, European Community 512 × 256
5 FGOALS-g3 Chinese Academy of Sciences, Beijing, China 180 × 80

6 GFDL-CM4 National Oceanic and Atmospheric Administration, Geophysical
Fluid Dynamics Laboratory, Princeton, USA 288 × 180

7 GFDL-ESM4 National Oceanic and Atmospheric Administration, Geophysical
Fluid Dynamics Laboratory, Princeton, USA 288 × 180

8 IPSL-CM6A-LR Institute Pierre Simon Laplace, Paris, France 144 × 143
9 MPI-ESM1-2-HR Max Planck Institute for Meteorology, Hamburg, Germany 384 × 192

10 MRI-ESM2-0 Meteorological Research Institute, Ibaraki, Japan 320 × 160

3.2. Comparison of Models

Initially, each model’s historical monthly precipitation data was evaluated using box
plots. Figure 2 below shows the results of the box plot analysis.

In the historical monthly rainfall data, there were large anomalies in both the measured
and predicted values of each model, indicating that extreme rainfall events were frequent. In
the simulation of the anomalies, i.e., extreme rainfall, the simulated values of GFDL-ESM4,
EC-Earth3, and MPI-ESM1-2-HR were the best. The fluctuation range of the simulated
values of GFDL-CM4 and GFDL-ESM4 is in good agreement with the measured fluctuation
range. With the exception of MPI-ESM1-2-LR, the mean values of the simulated values and
measured values for each model are near to 35 mm, with GFDL- ESM4, EC-Earth3, and
GFDL-CM4 being the closest models. Except for models MPI-ESM1-2-LR and MPI-ESM1-2-
HR, the mean values of the simulated historical rainfall values are lower than the mean
values of the measured values, indicating that the simulated rainfall data of the models are
generally lower than the measured data.

Using the simulated and observed monthly precipitation data for each model from
1994 to 2014, a Taylor diagram depicting the link between multi-year monthly precipitation
and the observed values for each model was then generated, As shown in Figure 3 below.

The results of the Taylor diagram indicate that the simulation results of the CMIP6
model for monthly rainfall are superior to those of the wet and dry seasons. For monthly
rainfall, the RMSEs of simulation versus observation are all within 1, indicating that the
simulation results are in some agreement with the observation results, but there are still
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errors. The ratio of standard deviation between most models and observations is close to 1,
revealing that the amplitude of the rainfall variation simulated by the models is comparable
to that observed and that the discrepancies across the models are minimal. Additionally,
the pattern distribution on the Taylor diagram is more concentrated, indicating a degree
of pattern constancy. The correlation coefficients of the models ranged from 0.25 to 0.6,
with MPI-ESM1-2-HR achieving the highest value of 0.6, indicating that the model has a
strong ability to simulate rainfall. Taking into account the three indicators of correlation
coefficient, standard deviation, and root mean square error, MPI-ESM1-2-HR, EC-Earth3,
and GFDL-ESM4 performed the best, and these three models have the greatest ability
to simulate rainfall. The outcomes of these three models’ simulations are closer to the
observed results, and their simulation capacities are greater.
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Figure 2. Box plots of simulated and measured historical monthly rainfall values for each model.

Finally, the Taylor score (TS) and the interannual variability score (IVS) were de-
termined for each model according to the necessary equations, and the best-performing
rainfall model was synthesized by rating them independently.

According to Table 4 above, the top-performing models in terms of interannual vari-
ability score are FGOALS-g3, GFDL-ESM4, and MPI-ESM1-2-HR, while the top-ranked
models in terms of the Taylor score are EC-Earth3, GFDL-ESM4, and MPI-ESM1-2-HR.
GFDL-ESM4, MPI-ESM1-2-HR, and EC-Earth3 are the final selection of the best-performing
models overall in the research area when the two comparators are combined.



Water 2023, 15, 2045 10 of 23Water 2023, 15, x FOR PEER REVIEW 10 of 25 
 

 

 
(a) (b) 

Figure 3. Taylor plot comparing monthly (a) and rainy season (b) precipitation with observed data 
in Beijing simulated by ten CMIP6 models. 

The results of the Taylor diagram indicate that the simulation results of the CMIP6 
model for monthly rainfall are superior to those of the wet and dry seasons. For monthly 
rainfall, the RMSEs of simulation versus observation are all within 1, indicating that the 
simulation results are in some agreement with the observation results, but there are still 
errors. The ratio of standard deviation between most models and observations is close to 
1, revealing that the amplitude of the rainfall variation simulated by the models is compa-
rable to that observed and that the discrepancies across the models are minimal. Addi-
tionally, the pattern distribution on the Taylor diagram is more concentrated, indicating a 
degree of pattern constancy. The correlation coefficients of the models ranged from 0.25 
to 0.6, with MPI-ESM1-2-HR achieving the highest value of 0.6, indicating that the model 
has a strong ability to simulate rainfall. Taking into account the three indicators of corre-
lation coefficient, standard deviation, and root mean square error, MPI-ESM1-2-HR, EC-
Earth3, and GFDL-ESM4 performed the best, and these three models have the greatest 
ability to simulate rainfall. The outcomes of these three models’ simulations are closer to 
the observed results, and their simulation capacities are greater. 

Finally, the Taylor score (TS) and the interannual variability score (IVS) were deter-
mined for each model according to the necessary equations, and the best-performing rain-
fall model was synthesized by rating them independently. 

According to Table 4 above, the top-performing models in terms of interannual vari-
ability score are FGOALS-g3, GFDL-ESM4, and MPI-ESM1-2-HR, while the top-ranked 
models in terms of the Taylor score are EC-Earth3, GFDL-ESM4, and MPI-ESM1-2-HR. 
GFDL-ESM4, MPI-ESM1-2-HR, and EC-Earth3 are the final selection of the best-perform-
ing models overall in the research area when the two comparators are combined. 

  

Figure 3. Taylor plot comparing monthly (a) and rainy season (b) precipitation with observed data in
Beijing simulated by ten CMIP6 models.

Table 4. Overall ranking for each model.

Model Name TS TS Ranking IVS IVS Ranking Overall Ranking

MRI-ESM2-0 0.387 9/10 0.584 10/10 10/10
ACCESS-CM2 0.601 4/10 0.190 5/10 5/10
EC-Earth-Veg 0.361 10/10 0.339 7/10 9/10
FGOALS-g3 0.560 5/10 0.019 3/10 4/10
GFDL-CM4 0.529 6/10 0.389 9/10 7/10

IPSL-CM6A-LR 0.520 7/10 0.244 6/10 6/10
MPI-ESM1-2-LR 0.421 8/10 0.365 8/10 8/10

GFDL-ESM4 0.641 3/10 0.003 1/10 2/10
EC-Earth3 0.741 2/10 0.038 4/10 3/10

MPI-ESM1-2-HR 0.917 1/10 0.003 2/10 1/10

3.3. SWMM Model Validation and Sensitivity Analysis

There are both deterministic and uncertain parameters in the SWMM model. De-
terministic parameters are primarily physical parameters. They can be derived via field
measurements or by utilizing the spatial processing function of ArcGIS. Accurate values
for uncertainty parameters are often not available due to a variety of conditions, such
as the manning coefficient of impervious area and the manning coefficient of pervious
area, the depth of depression storage on the impervious area and the depth of depression
storage on pervious area, the maximum infiltration rate, the minimum infiltration rate, and
the decay constant. When determining the initial values of the uncertainty parameters,
reference can be made to the SWMM model application manual, outdoor drainage design
standards, and recommendations from the relevant literature. Table 5 details the SWMM
model uncertainty parameters for this investigation.

The SWMM model incorporates continuity errors for surface runoff and flow rate.
In general, if these errors fall within a range of less than 10%, the results of the model
simulation can be considered reasonable, indicating the model’s validity. Using the Chicago
Rainfall Model calibration parameters, the SWMM calculations are acceptable if the cal-
culated precipitation export flows are within 20% of the design flows and the relative
deviations are less than 20%.

In this investigation, the SWMM model’s continuity error was evaluated. The results
indicate that the surface runoff error is −0.01% and that the flow rate error is −0.94%, both
of which are less than 10%, indicating that the model is accurate. Moreover, the model’s
relative deviation is within 20%, indicating that the calculated results are reasonable.
As a result, the model can be applied to the analysis of urban storm extreme weather
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scenarios in order to provide accurate information regarding the performance of urban
drainage systems.

Table 5. Model hydrological parameter setting.

Parameter Name Physical Significance Values

N-Imperv Manning coefficient of impervious area 0.011
N-Perv Manning coefficient of previous area 0.23

Dstore-Imperv Depth of depression storage on impervious area/mm 3
Dstore-Perv Depth of depression storage on previous area/mm 4.5

Decay Constant Decay constant/1·h−1 5
Max.Infil.Rate Maximum infiltration rate/mm·h−1 85
Min.Infil.Rate Minimum infiltration rate/mm·h−1 20
%zero-imperv Percent of impervious area with no depression storage/% 30

Manning’s Roughness Manning’s Roughness 0.013

Next, the total runoff sensitivity of each parameter in the SWMM hydrological module
was calculated using a sensitivity formula based on a modified Morris screening method to
obtain the sensitivity of each parameter (Table 6).

Table 6. Sensitivity analysis results of hydrology and hydraulic parameters.

Parameter Name Sensitivity Values

N-Imperv −0.363
N-Perv 0.322

Dstore-Imperv −3.570
Dstore-Perv 0.228

Decay Constant 0.000
Max.Infil.Rate 0.000
Min.Infil.Rate 0.000
%zero-imperv 1.286

Manning’s Roughness −1.770

As demonstrated by the simulation results, the parameters that are most sensitive to
runoff are destore-imperv, conduit roughness, and %zero-imperv, in that order.

3.4. Rainfall Forecasts under Future Scenarios
3.4.1. Annual Rainfall

Under different scenarios, the predicted results of each model have certain differences,
so it is necessary to analyze under the uncertain conditions of the forecast. This is essential
for setting standards for climate-resilient rainwater drainage systems in the future context
of climate change. This study examines the interannual variance of Beijing’s total yearly
precipitation and creates a map of this variation.

In terms of total annual precipitation for the period 2020–2050, the three future precip-
itation models are inconsistent. However, they are not below their historical averages. This
suggests that there may be more rainy days or an increase in the average daily precipitation.
The annual total rainfall that approaches or exceeds the historical maximum (about 800 mm)
happens most frequently in the SSP1–2.6 scenario, and two, three, and four times in the
forecast findings of GFDL-ESM4, MPI-ESM1–2-HR, and EC-Earth3, respectively.

As shown in Figure 4, the uncertainty in the predicted future annual total rainfall
increases, and the variability in the characteristics with historical rainfall is reflected in the
significant increase in interannual extremes, with the highest annual rainfall of more than
1200 mm and the lowest annual rainfall of less than 200 mm predicted by EC-Earth3 under
the SSP2–4.5 scenario for the future period.
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During the historical period of 1994–2014, the maximum daily precipitation observed
was 160.274 mm. However, in all three models, it is predicted that future precipitation
events exceeding the historical maximum daily precipitation will occur by the year 2050.
Specifically, the EC-Earth3 model predicts the occurrence of the largest daily precipitation
event under the SSP5–8.5 scenario, with a 24 h precipitation amount of 225.77 mm.

Figure 6 demonstrates the number of events that exceeded the historical maximum
daily precipitation:
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In the statistical analysis of the number of extreme rainfall events exceeding the
maximum historical daily rainfall in three scenarios for each model, it was found that the
EC-Earth3 model simulated the most extreme rainfall events, reaching up to two events
in the SSP5–8.5 scenario. Meanwhile, the MPI-ESM1-2-HR model simulated the fewest
extreme rainfall events, with only one event in the SSP2–4.5 scenario. Overall, it is predicted
that one to two extreme rainfall events will exceed the maximum historical daily rainfall in
the next 30 years.

The statistics for the quantity of future rainstorm events are depicted in Figure 7:
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According to the classification of rainfall levels, rainfall exceeding 100 mm per day is
considered heavy rain. Historical rainfall data shows that there were three heavy rainfall
events during the period of 1994–2014. However, future simulation data indicate a sig-
nificant increase in heavy rainfall events in both the EC-Earth3 and GFDL-ESM4 models,
particularly the EC-Earth3 model, which predicts 14 heavy rainfall events in the SSP2–4.5
scenario. The simulation results of the MPI-ESM1-2-HR model also indicate that heavy
rainfall events will continue to occur in the future but with a lower frequency than historical
rainfall. These differences suggest that the prediction of future rainfall may be subject to
many uncertainties.

This prediction indicates that there may be more extreme rainfall events in the fu-
ture, which could negatively impact the ecological environment, urban infrastructure, and
human society. Therefore, measures should be taken to address climate change, includ-
ing reducing greenhouse gas emissions, strengthening natural disaster prevention and
adaptation, etc.

3.4.2. Daily Rainfall

On the basis of the results of the three climate models selected in the previous section
and the revised results of the downscaling under the three emission scenarios, nine different
sets of 24 h rainfall series were generated in Beijing urban areas using the distribution
coefficients of the rainfall time series as input conditions for the hydrological model of the
region. As illustrated in Figure 8 below.
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Compared to the total daily rainfall of the status quo, the three predicted results of
future models for a 2-year rainfall of 24 h duration have a total rainfall of approximately
125–170 mm, while the uncertainty is greater for a 50-year rainfall with a total rainfall of
approximately 270–380 mm. Consequently, rainfall uncertainty grows as the return period
increases. In contrast, the effect of emission scenarios on total precipitation is less than the
return period.

The models GFDL-ESM4 and EC-Earth3 both predict higher future rainfall than the
status quo total daily rainfall, with the amount of growth being approximately 40%. The
model MPI-ESM1-2-HR predicts a lower trend for total future daily rainfall than GFDL-
ESM4 and EC-Earth3. Nonetheless, the predicted values for the SSP2–4.5 and SSP5–8.5
scenarios are still close to the status quo and slightly lower. However, the predicted
values for the SSP2–4.5 and SSP5–8.5 scenarios are still close to and slightly higher than
the status quo values, indicating that the predicted total daily precipitation under future
climate change conditions is generally higher than the status quo; i.e., there will be more
precipitation in the future.

In general, the results of the experiments on future rainfall fit well with previous
studies. For instance, Wu Jian et al. [47] predicted future precipitation in the Yangtze
River basin in China and determined that future precipitation and temperature in the
Yangtze River basin will be higher than in historical periods under all scenarios. Xiang
Junwen et al. [26] modeled future precipitation in major regions of China and demonstrated
that annual and extreme precipitation in future periods in China will increase significantly.
The rate of annual and extreme precipitation increases progressively as the scenario evolves.

3.5. Estimation of Waterlogging Situation under Future Scenarios
3.5.1. Simulation of Surface Runoff under Future Scenarios

Three scenarios with varied discharges of SSP126, SSP245, and SSP585 result in runoff
quantities that are distinct among the three models for the same return period. As shown
in Figure 9, GFDL-ESM4 generates more runoff with an increasing discharge without
significant changes in total rainfall, with an increase of approximately 1%. Model EC-
Earth3 generates approximately 1% less runoff with increasing discharge in sequence for
the SSP126, SSP245, and SSP585. Finally, MPI-ESM1-2-HR generates approximately 1% less
runoff with increasing discharge in sequence from scenario SSP126 to SSP245.
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Figure 9. Total precipitation for the three models under the three conditions.

Figure 10 depicts the peak runoff for each catchment sub-area at various return periods
and under various scenarios. It can be seen that the areas of high peak runoff in the region
are concentrated in a few catchment sub-areas, whereas peak runoff is negligible for the
majority of catchment sub-areas. In general, the peak runoff increases dramatically with
the return period, with the 50-year return period in the highest peak catchment areas being
around twice as high as the 2-year return period. In certain regions with low peaks, the
multipliers are greater. This means that in future climate scenarios, runoff volumes from
heavy and even extreme rainfall will have much higher peaks, and economic and safety
costs resulting from waterlogging will increase exponentially.
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Those catchment sub-areas with low peak flows may be more vulnerable to severe
and intense rainfall because they cannot handle significant volumes of runoff in a relatively
short period of time. Thus, urban planning and construction should take into account the
peak and return periods of runoff from these various places, and steps should be taken to
decrease the risk of flooding. Green infrastructure, for instance, can be utilized to increase
the infiltration capacity of surface water and lower the rate of runoff, and approaches
such as green roofs on buildings and rainwater collecting systems can be employed to
reduce runoff generation. In addition, plans for disaster prevention and control, as well
as contingency plans, can be prepared in order to respond swiftly and minimize damage
in the event of flooding. Future climate scenarios will raise the risk of internal flooding,
necessitating a variety of preventative measures to maintain the safe and sustainable
development of metropolitan areas.

3.5.2. Simulation of Node Overflows in Future Scenarios

Using the SSP2–4.5 scenario as an example, the historical measured data under the
four return periods of 50 years, 10 years, 5 years, and 2 years were calculated and analyzed
to produce a line graph of the rainfall trend. The line graphs, Figure 11, show that the
rainfall trends for the four return periods are similar, with a tiny peak of around 5 mm
4–5 h following the beginning of the rainfall, followed by a high of approximately 20 mm
after 1020 min.
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At 2 yr and 5 yr return periods, the simulated data of all three models are lower than
the measured historical data, with significant variances at higher precipitation levels, when
the model GFDL-ESM4 is closest to the historical data. When the return period is raised
to 50 years, the simulated precipitation values of MPI-ESM1-2-HR are most similar to
actual values.

According to the “Outdoor Drainage Design Standard” (GB 50014-2021), the standard
design return period for rainwater drains in large urban areas is between three and five
years. In this study, the 24 h rainfall process is simulated with a 5-year return period, and it
is known from the analysis of a single rainfall event that the peak rainfall occurs at 17:00
and the overflow occurs at 17:05, which is when the most severe overflow is observed at
the single-day node. Figure 12 below illustrates the node overflows for each scenario.

The interface of the SWMM model for nodal overflows at 17:05 is depicted in Figure 12a,
with white nodes indicating no overflows and red nodes showing overflows for which
severity increases as the color intensity increases. Thirteen nodes overflow under the future
emission scenarios of SSP1–2.6 compared to the status quo, of which seven nodes overflow
due to future climate change, which would not overflow under the status quo, and are
therefore referred to as potential overflow points (red circles in Figure 12b), representing
approximately 1.5% of all nodes in the study area.
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Figure 12c,d illustrate that the SSP2–4.5 and SSP5–8.5 scenarios generate 13 and
14 potential overflow sites, with a probability of 2.7% and 2.9% of potential overflow
points, respectively. As the climate scenario worsens, it is evident that nodal overflows
will become increasingly severe. This condition can have severe effects on the urban
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environment, such as generating flooding, polluting water sources, and disrupting traffic
operations. Consequently, appropriate efforts must be made to improve the management
and maintenance of urban drainage systems to increase their ability to withstand extreme
climate scenarios.

The overall examination of the three models demonstrates that the effect of increasing
scenario emissions on nodal overflows is less than that of the return period. The effect
of scenario emissions on overflow start time, overflow duration, and overflow volume is
more stable for both GFDL-ESM4 and EC-Earth3. For GFDL-ESM4, an increase in scenario
emissions worsens the degree of node overflow, i.e., earlier overflow start times, increased
overflow duration, and increased overflow volume, whereas, for EC-Earth3, the effect
slows down. The MPI-ESM1-2-HR model is unstable in relation to overflows caused by
higher scenario emissions, exhibiting a tendency to increase and subsequently drop.

The simulation findings for the three modes indicate that GFDL-ESM4 and EC-Earth3
are relatively similar, with an overflow volume difference of less than 1 × 105 ltr for the
same scenario and return period. MPI-ESM1-2-HR exhibits a lower amount of overflow in
the case region than GFDL-ESM4 and EC-Earth3, and there are instances in which GFDL-
ESM4 and EC-Earth3 exhibit overflow but MPI-ESM1-2-HR does not for the identical return
period and emission scenario.

In general, node overflows are greater in future scenarios than in present ones, and
the more severe the scenario emissions, the greater the node overflows will be. This
suggests that urban rainfall under future climate change conditions will result in more
nodal overflows and that the corresponding level of urban waterlogging will also increase.
This is consistent with the findings of previous researchers, such as K. X. Yang [14], who
predicted that flooding in Haining, China, would be worse than the status quo over the
next decade using the LULC prediction model, and X. T. Wang [48], who discovered that
the depth of flooding in Shanghai is anticipated to increase as the return period increases.
In addition, the growth in node overflows suggests that the present gray stormwater
infrastructure is unable to battle future climate change rainfall scenarios and that design
standards must be upgraded to some extent, such as by increasing the diameter and depth
of stormwater pipes or by the introduction of green infrastructures.

4. Conclusions

This paper evaluates the performance of ten CMIP6 models in reproducing observed
rainfall in Beijing from 1994 to 2014, including total annual rainfall and rainfall in the wet
season, in order to determine the model with the best performance. Under the SSP1–2.6,
SSP2–4.5, and SSP5–8.5 scenarios, the GFDL-ESM4, MPI-ESM1-2-HR, and EC-Earth3 mod-
els were used to estimate precipitation for the next 50 years in the research area, as well as
generate predictions for the accompanying waterlogging scenarios. The key findings are
as follows:

(1) In the model rainfall prediction findings for an urban region in Beijing, compared to
historical observations, the CMIP6 models fared better for monthly rainfall predic-
tions than for wet rainfall projections, showing that wet season rainfall predictions
are uncertain. EC-Earth3, GFDL-ESM4, and MPI-ESM1-2-HR perform best in the
study area for the combined 1994–2014 monthly and wet season rainfall projections.
Regarding future precipitation forecasts, all three models indicate that greater precipi-
tation will be produced under various future climate scenarios (SSP1–2.6, SSP2–4.5,
and SSP5–8.5).

(2) Among the three screened models, EC-Earth3 and GFDL-ESM4 have higher predic-
tions of total annual and daily rainfall than MPI-ESM1-2-HR, while EC-Earth3 also
predicts more runoff and overflow nodes. This shows that MPI-ESM1-2-HR may
underestimate precipitation indicators such as runoff and overflow when predicting
future precipitation.

(3) Regarding the prediction of future waterlogging situations, all three models forecast
higher runoff and larger runoff peaks in the future, along with an increase in rainfall
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unpredictability. Future climate change will also result in the emergence of potential
overflow nodes, which will account for 1.5%, 2.7%, and 2.9% of the total nodes in the
case area under the three groups of scenarios with a 5-year return period, SSP1–2.6,
SSP2–4.5, and SSP5–8.5, respectively, indicating that future precipitation under current
climatic conditions could lead to the formation of undetected waterlogging points in
the city, resulting in more severe waterlogging.

(4) The results of future rainfall predictions differ somewhat from the characteristics of his-
torical rainfall. Due to this discrepancy, the effectiveness of stormwater drainage sys-
tems may be diminished in the future. To be able to improve climate change resilience,
city management should strengthen the review and improvement of stormwater
drainage systems, such as increasing drainage capacity, optimizing drainage net-
works, and improving flow control measures; promote the planning and development
of gray–green–blue infrastructure, integrating gray infrastructure (e.g., drainage pipes
and treatment facilities), green infrastructure (e.g., rain gardens and wetlands), and
blue infrastructure (e.g., reservoirs and cisterns) in planning and development; and
develop climate change adaptation strategies, including establishing sustainable
water management plans, promoting low-impact development and rainwater har-
vesting, and promoting ecological restoration and nature conservation. By taking
these measures, the city’s climate change resilience will be improved, and the future
effectiveness of the stormwater drainage system will be ensured.
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