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Abstract: A back-propagation neural network (BPNN) was used to model and optimize the process
of hydroxylamine (HA)-enhanced Fe2+ activating peroxymonosulfate (PMS). Using HA-enhanced
Fe2+ to activate PMS is a cost-effective method to degrade orange II (AO7). We investigated the
individual and interactive effects of the concentrations of Fe2+, HA, and PMS on the degradation of
AO7. The R2 of the BPNN model was 0.99852, and the data were distributed around y = x. Sensitivity
analysis showed that the relative importance of each factor was as follows: HA > Fe2+ > PMS. The
optimized results obtained by the genetic algorithm were as follows: the concentration of Fe2+ was
35.33 µmol·L−1, HA was 0.46 mmol·L−1, and PMS was 0.93 mmol·L−1. Experiments verified that
the AO7 degradation effect within 5 min was 95.7%, whereas the predicted value by the BPNN was
96.2%. The difference between predicted and experimental values is 0.5%. This study provides a new
tool (machine learning) to accurately predict the concentrations of HA, Fe2+, and PMS to degrade
AO7 under various conditions.

Keywords: advanced oxidation process; machine learning; BPNN; sensitivity analysis; genetic algorithm

1. Introduction

Azo dye orange yellow II (AO7), as a representative of dye wastewater, which is
discharged in large amounts into the environment, can cause adverse reactions, such as
skin allergy, dyspnea, and cancer, which seriously threaten human health [1–3]. Based on
traditional wastewater treatment technology [4], various methods have been developed to
degrade and mineralize AO7 in order to remove it from water. Among them, advanced
oxidation technology based on activated persulfate (PS) has been widely used [5,6]. Under
heat [7,8], alkali [9], UV [10], transition metal [11], electrochemical, and sonochemical [12,13]
action, among others, PS can generate sulfate radicals (SO4

·−). The oxidation capacity of
sulfate radicals (E0 = 2.5–3.1 V) is obviously higher than that of PS (S2O8

2: E0 = 2.1 V; HSO5:
E0 = 1.82 V) [14]. Compared with other activators, iron salts are widely used as transition
metal activators because of their abundance and low price, among which Fe2+ salts are
more common. However, in the process of Fe2+ activating PS, the generation of sulfate
radicals is affected by the slow regeneration of Fe2+ and the large amount of iron mud
generated in the reaction [15,16]. In recent years, studies on the technology of synergistic
HA enhancement of Fe2+ to activate PS have shown that HA can accelerate the production
of Fe2+, slow down the accumulation of iron mud [17–19], and improve the degradation
efficiency of pollutants in the system in a wider pH range [20,21].

The process of the Fe2+ activation of persulfate is very complex, and various influ-
encing factors and their interactions will change the degradation efficiency. At present,
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research on Fe2+-activated persulfate is mainly focused on Fe3+ reduction and recycling,
the reaction mechanism, and the efficiency of degrading pollutants. There are few studies
on Fe2+ activating persulfate by the machine learning method. An artificial neural network
(ANN) is a machine learning model constructed according to the basic principles of biologi-
cal neural networks that establishes a nonlinear mapping relationship of input and output
neurons through training samples [22]. ANNs have been widely applied in the pollutant
removal field for processes such as adsorption, catalytic degradation, and so on [23–25]. An
artificial neural model can directly predict the final state of the pollutant treatment system
and guide the process of wastewater treatment. By reducing the number of experiments,
processing costs can also be reduced by the use of ANN [26]. In addition, the influence
degree of input factors and their interactions on degradation efficiency can be determined
through the neural network model. Because of the complexity of advanced oxidation
technology, it is important to develop a model to analyze the process of synergistic Fe2+

to activate PMS. Establishing a neural network model of the process can provide valuable
guidance in order to improve the degradation effect and further understand the degree of
influence of each factor and their interactions on the pollutant degradation effect.

However, the physical interpretation of the intermediate process of neural networks
has always been an unsolved “black box” problem. The Garson and PaD2 algorithms can
solve this problem to a certain extent and reveal the degree of influence of each factor on the
model response value. Therefore, in this study, the Garson and PaD2 algorithms combined
with ANN were applied to investigate the degradation of AO7 in the HA/Fe2+/PMS system
so that the key factors affecting degradation efficiency and the effect of the interaction of
various factors on degradation could be determined.

Based on the above research, in this study, ANN was used to fit the process of syn-
ergistic HA and Fe2+ to activate PMS for the degradation of AO7. The Garson and PaD2
algorithms were used to analyze the sensitivity of the neural network. A coupled intel-
ligent algorithm of the neural network and genetic algorithm was constructed, with the
genetic algorithm embedded into the neural network to optimize the extreme value, and
the optimal process conditions of the synergy of HA with Fe2+ to activate PMS for the
degradation of AO7 were obtained. The main contributions of this study are as follows:
First, we propose an approach to describe the relationship between influencing factors and
degradation efficiency by means of modeling. Second, we optimized the combination of
reaction conditions with the best degradation rate on the basis of modeling, which can
reduce the amount of trial and error. Third, we introduce the Garson and PaD2 algorithms
in machine learning theory, which can be used for sensitivity analysis of influencing factors
to obtain their importance ranking.

2. Materials and Methods
2.1. Reagents and Instruments

AO7 (C16H11N2NaO4S), hydroxylamine sulfate (H6N2O2·H2SO4), FeSO4·7H2O, potas-
sium bisulfate (KHSO5·0.5KHSO4·0.5K2SO4), ethanol (C2H5OH), and reagents were ana-
lytically pure, purchased from Aladdin Pharmaceuticals, Shanghai, China. All water used
in the experiment was ultra-pure water.

An ultraviolet–visible spectrophotometer (UV-3600, Shimadzu, Kyoto, Japan), temperature-
controlled magnetic stirrer with digital display (85-2 type, Jintan Dadi Automation Instrument,
Changzhou, China), and FA2004 electronic scale (FA2004, Sunny Hengping Instrument, Shang-
hai, China) were used.

2.2. Experimental Methods

All experiments were carried out in 250 mL beakers with constant stirring at 20 ± 1 ◦C.
Solutions of AO7, Fe2+, and HA were evenly mixed, and then the specified amount of PMS
was added to start the reaction. The initial volume of the mixture was kept at 50 mL. At the
fifth minute of reaction, 1 mL of reaction solution was extracted and quenched with 1 mL
of ethanol. The concentration of the solution was measured using a UV spectrophotometer.
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The experiments were carried out against the background pH of the mixed solution. All
experiments were repeated in triplicate. The methods of determining the concentrations of
AO7 and Fe2+ are described in previous studies [20,21]. Based on the results of the single-
factor experiment, the concentration range of each influencing factor was determined. The
initial concentration of AO7 was 100 mg/L, and the initial pH of the solution was 4.7. The
reaction time of all experiments was set at 5 min.

2.3. BP Neural Network Model

MATLAB R2016b software (MathWorks Inc., Natick, MA, USA) was used to establish
the BP neural network model. The BP neural network (BPNN) is a kind of multilayer
feed-forward neural network, and is one of the most widely used ANN models. It consists
of one input layer, one hidden layer, and one output layer [27]. In this study, a typical
3-layer BPNN was used [28]. The concentrations of HA, Fe2+, and PMS were the input
variables, and the degradation efficiency of AO7 was the output variable. Based on the
single-factor experiment, the experimental variables and coding levels were obtained, as
shown in Table 1 [20,21], and the Box–Behnken design (BBD) method was adopted to
design the experiment, as shown in Table 2. In order to avoid the impact of data dimension,
the data were processed without dimension. The Premnmx function in MATLAB was
used to normalize the data. The experimental data were randomly allocated according to
the following proportions: training set 70%, verification set 15%, and test set 15%. The
influence of different hidden layer node numbers, training function, and excitation function
on the BPNN was investigated by trial and error to determine the optimal structure of
the BPNN. The root mean square error (RMSE) was used as the performance evaluation
index for the neural network; the lower the RMSE value, the better the performance of the
neural network.

Table 1. Experimental variables and coding levels.

Factors
Levels

−1 0 +1

Concentration of Fe2+ (µmol·L−1) 10 25 40
Concentration of HA (mmol·L−1) 0.1 0.3 0.5
Concentration of PMS (mmol·L−1) 0.5 0.75 1

Table 2. Experimental scheme and predicted BPNN values.

Runs Fe2+

(µmol·L−1)
HA

(mmol·L−1)
PMS

(mmol·L−1)

RAO7 (%)

Actual Predicted

1 40 0.1 0.75 66.9 66.9
2 10 0.5 0.75 73.8 73.8
3 25 0.3 0.75 86.1 86.1
4 25 0.3 0.75 86.1 86.1
5 10 0.3 1 58.7 58.7
6 40 0.5 0.75 94.9 94.9
7 25 0.3 0.75 85.7 86.1
8 10 0.3 0.5 69.5 69.5
9 25 0.5 1 91.8 91.8
10 25 0.5 0.5 83.5 83.5
11 40 0.3 1 92.8 92.8
12 25 0.1 0.5 63.7 63.7
13 25 0.3 0.75 86.4 86.1
14 10 0.1 0.75 43.1 44.9
15 25 0.3 0.75 85.7 86.1
16 40 0.3 0.5 80.5 80.5
17 25 0.1 1 55.1 56.4
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2.4. Garson and PaD2 Algorithms

Sensitivity analysis assumes that the model is of the form y = f (x1, x2, · · · , xn) (where
xi is the ith factor value of the model), and it determines the degree of influence of each factor
on the response value of the model when the range changes. The sensitivity coefficient
represents the factor’s influence degree. The larger the sensitivity coefficient, the greater
the influence of the factor on the response value of the model. Based on different analysis
objects, sensitivity analysis can be divided into local and global sensitivity analysis. Local
sensitivity analysis examines the influence of a single factor on the response value of the
model, while global sensitivity analysis examines the impact of multiple factors on the
response value of the model at the same time, as well as the impact of the interaction
between factors [29]. The Garson algorithm is a local sensitivity analysis method based on
the connection weights of a neural network. Through the connection weights, the degree
of influence of a single factor on the response value of the model is calculated [30]. The
PaD2 algorithm is used to analyze the influence of the interaction of two factors on the
response value of the model. It is assumed that the topological relationship of the BPNN
is M-N-1, and the network output form is y = f (x1, x2, · · · , xn). By solving the second
partial derivative of the equation, the degree of influence of the interaction between the two
factors on the response value of the model can be analyzed [31]. In this study, the Garson
algorithm (Equation (1)) was used to analyze local sensitivity, and the PaD2 algorithm
(Equation (2)) was used to analyze global sensitivity.

Garsonik =
∑N

j=1
|wij||vjk|
∑M

r=1|wrj|

∑M
i=1 ∑N

j=1
|wij||vjk|
∑M

r=1|wrj|

(1)

Here, Garsonik is the sensitivity coefficient of the ith input variable to the kth output
variable, M is the number of neurons in the input layer, N is the number of hidden layer
neurons, L is the number of neurons in the output layer, wij is the weight of the connection
between the ith neuron in the input layer and the jth neuron in the hidden layer, and vjk is
the weight of the connection between the jth neuron of the hidden layer and the kth neuron
of the output layer.

dt
ik = f ′

(
nett)[ f ′

(
nett) N

∑
j=1

wijvj f ′
(

nett
j

) N

∑
j=1

wkjvj f ′
(

nett
j

)
+

N

∑
j=1

wijwkjvj f ′′
(

nett
j

)]
(2)

Here, dik
t is the sensitivity coefficient of factors xi and xk of the tth sample to response

value y, N is the number of hidden layer neurons, wij is the weight of the connection
between the ith neuron in the input layer and the jth neuron in the hidden layer, wkj is the
weight of the connection between the kth neuron in the input layer and the jth neuron in the
hidden layer, vj is the weight of the connection between the jth neuron in the hidden layer
and the neuron in the output layer, f ′(nett) is the first partial derivative of the excitation
function of the neurons in the output layer, f ′(netj

t) is the first partial derivative of the
excitation function of the hidden layer neuron, and f ”(netj

t) is the second partial derivative
of the excitation function of the hidden layer neuron.

The overall sensitivity coefficient of xi and xk to response value y is shown in Equation (3):

Sdik =
m

∑
i=1

(
dt

ik
)2 (3)

where Sdik is the overall sensitivity coefficient of xi and xk to the response value y and m is
the total number of samples.
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3. Results and Discussion
3.1. Determination of the BPNN Structure

The number of hidden layer neurons affects the accuracy of the BPNN by affecting the
convergence performance of the error function. The number of hidden layer neurons is
estimated to be in the range of 3–12 according to empirical Equation (4) [32]. The number
of hidden layer neurons was determined by trial and error, and the result is shown in
Figure 1a.

N =
√

A + B + C (4)
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Figure 1. (a) Influence of number of hidden layer neurons and excitation function; (b) training
function on performance of BPNN.

Here, N is the number of hidden layer neurons, A is the number of neurons in the
input layer, B is the number of neurons in the output layer, and C is a positive integer
between 1 and 10.

The excitation function of the hidden layer in the BPNN generally selects an S-type
function, which is divided into a logarithmic function (logsig) and a hyperbolic tangent
function (tansig), and the excitation function of the output layer is generally selected as
a linear function (purelin). In this study, we investigated the effects of the combination
of two excitation functions (logsig + purelin and tansig + purelin) on the performance of
the BPNN. The result is displayed in Figure 1a. We compared the effects of 11 training
functions, including the gradient descent algorithm (traingd), elastic BP algorithm (trainrp),
and the Levenberg–Marquardt algorithm (trainlm), on the performance of the BPNN. The
results are shown in Figure 1b.

Through analysis and comparison, the topology structure of the BPNN finally adopted
in this study was 3-11-1. The excitation functions used in the hidden and output layers
were tansig and purelin functions, respectively, and the training function was trainlm. The
optimal BPNN structure is shown in Figure 2.

3.2. Performance Evaluation of the BPNN

Figure 3 shows the performance curve of the BPNN. The smaller the MSE value,
the higher the accuracy of the BPNN in data prediction. As can be seen in Figure 3, the
error of the verification set decreased with the decrease in error of the training set, but
did not increase. At the fifth iteration of the BPNN, the error of verification set reached
the minimum value of 0.0025177, indicating that there was no overfitting in the BPNN
training process. After three iterations, the error of the test set remained stable and was
lower than that of the verification set, indicating that the established BPNN model had
good generalization ability.
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Figure 3. Performance curve of BPNN.

Figure 4 shows the linear fitting diagram of the BPNN. The larger the value of
R2, the better the BPNN fits. The R2 of the training set is 0.99985, indicating that the
model can explain 99.985% of the response value changes. The R2 of the verification
set is 0.99628, that of the test set is 0.99660, and that of all sets is 0.99852. The data are
distributed near the line y = x, indicating that the error between measured and predicted
value is small. The BP neural network has good predictive ability and a nonlinear
mapping relationship.
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The final result of the trained BPNN’s predicted values is given in Table 2, and the
model training result is shown in Figure 5.
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togram of residuals.

It can be seen from Figure 5a that the error between the predicted and measured
values was very small. In addition, it can be seen in Figure 5b that the error was mainly
concentrated near the zero point. The above results show that the predicted values of the
model based on the BPNN are in good agreement with the measured values, verifying the
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reliability and accuracy of the selected BPNN model. The results indicate a good fit of the
BPNN model for the process of synergistic hydroxylamine with Fe2+ to activate PMS.

3.3. Sensitivity Analysis of the BPNN

The weight and threshold values are listed in Table 3.

Table 3. Weights and thresholds of BPNN.

Hidden Layer Neuron
Weight between Input and Hidden Layers Threshold of

Hidden Layer
Weight between Hidden

and Output Layers
Threshold of
Output LayerFe2+ HA PMS

1 2.8783 −0.7327 −1.1964 −3.0276 −0.1574

−0.2901

2 −2.1334 −2.3543 −0.2061 2.3871 −0.0495
3 −1.8180 2.3485 −0.3131 2.0163 −0.1829
4 −0.1180 2.9386 −0.7082 1.4494 0.5138
5 −2.9141 −0.9853 0.4082 0.6374 −0.0003
6 1.6788 1.6654 2.0006 0.1730 0.2882
7 −1.1376 −2.5627 −1.2200 −0.8487 0.0315
8 3.0577 0.2525 −0.3583 1.2881 0.2380
9 −0.7018 2.0271 −2.2731 −1.8713 −0.0537

10 1.0895 0.7200 −2.6689 2.7863 0.3428
11 −2.4593 −1.3092 −1.6007 −2.9865 0.0662

According to the Garson algorithm, based on neural network weights, the order
of influence of each factor on the degradation of AO7 is as follows: concentration of
HA (39.6%) > Fe2+ (32.4%) > PMS (28%). According to the PaD2 algorithm, the order of
influence of the interaction of two factors on the degradation effect is as follows: concen-
tration of Fe2+ and PMS (7.54) > concentration of HA and PMS (5.97) > concentration of
Fe2+ and HA (2.21).

3.4. Influence of Concentrations of Fe2+, HA, and PMS on Degradation of AO7

According to the BPNN model, the nonlinear mapping relationship between the
concentrations of Fe2+, HA, and PMS and the degradation of AO7 were obtained. Origin
2018 software was used to make a three-dimensional surface map, and the results are
shown in Figure 6. Each surface map shows the interaction of only two factors on the
response value of the model, with the other factors remaining at the central level.
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According to Figure 6a,b, increasing the concentration of HA can improve the degra-
dation of AO7. A sufficient amount of HA can rapidly reduce the Fe3+ to Fe2+, so that there
will be a sufficient amount of Fe2+ in the system to activate PMS and produce SO4

•− to
degrade AO7 [33]. Similarly, it can be seen from Figure 6a,c that the efficiency of degrading
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AO7 increased with increased concentration of Fe2+. Increasing the concentration of Fe2+

can activate PMS to produce more SO4
•−, thus improving the degradation effect.

It can also be seen from Figure 6b that when the concentration of HA is low, increasing
the concentration of PMS would reduce the degradation of AO7. In the reaction system, the
excessive PMS would compete with the target pollutant and react with SO4

•−, reducing
the amount of SO4

•− in the system [34,35], and thus reducing the degradation effect. When
the concentration of HA is high, increasing the concentration of PMS could improve the
degradation of AO7. These results further show that there was an obvious interaction
between the concentrations of HA and PMS.

The chemical reaction of PMS and SO4
•− is shown in Equation (5):

HSO5
− + SO4

•−→SO4
2− + SO5

•− + H+ (5)

According to Figure 6c, when the concentration of Fe2+ is low, increasing the concentra-
tion of PMS would reduce the degradation of AO7. When the concentration of Fe2+ is high,
increasing the concentration of PMS would improve the degradation effect. These results
further show that the interaction between the concentration of Fe2+ and the concentration
of PMS was significant.

3.5. Optimization of Process Parameters

The genetic algorithm is a method of seeking the optimal solution by simulating
biological evolution in nature. It is widely used to solve complex global optimization
problems and is highly robust [36,37]. Using a neural network to fit an uncertain nonlinear
function and embedding it into the genetic algorithm to form a hybrid intelligent algorithm
has been successfully applied to combinatorial optimization in the environmental field.
The extreme value optimization process of the genetic algorithm embedded with BPNN is
shown in Figure 7.
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For the best degradation of AO7, global optimization of the genetic algorithm was
carried out, and the optimized conditions are shown in Table 4.
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Table 4. Optimized conditions and actual degradation rates.

No. Optimized Conditions Predicted
Degradation Rate

Actual
Degradation Rate Mean; Error

1 Fe2+: 35.33 µmol·L−1,
HA: 0.46 mmol·L−1,
PMS: 0.93 mmol·L−1

96.2%
96.0%

95.7%; −0.5%2 95.4%
3 95.6%

The optimized reaction conditions in Table 4 are different from the central point
conditions in Table 2, and the removal rate after optimization is larger than the single-factor
experimental results, which shows that the modeling and optimization in this study were
necessary. The verification experiments showed that the degradation rate of AO7 was
95.7%, which was only 0.5% lower than the model’s predicted value of 96.2%. The results
show that the optimal combination of concentrations of Fe2+, HA, and PMS can be obtained
by combining BPNN with the genetic algorithm. Using this combination, the ideal AO7
degradation rate can be obtained, and the error is small. Therefore, BPNN combined with
the genetic algorithm can be used to optimize the parameters of AO7 degradation in the
HA/Fe2+/PMS system.

4. Conclusions

In this study, we used a BP neural network model to improve the degradation rate of
AO7 using the HA/Fe2+/PS advanced oxidation system. At the beginning of the study,
we obtained the level of each reaction condition based on the results of a single-factor
experiment, and we designed the experimental scheme according to the Box–Behnken
design. Then we obtained the degradation rate of AO7 according to each experimental
scheme, trained the BP neural network, and established the neural network model. In order
to obtain the sensitivity of each reaction condition to the degradation rate, Garson and
PaD2 algorithms were innovatively introduced, showing the novelty of this study. Finally,
we carried out three verification experiments based on the optimized reaction conditions.
The experimental results show the advantages of modeling and optimization in this study.
The conclusions are as follows:

(1) The final BPNN topology was 3-11-1. The excitation functions used in the hidden
and output layers were tansig and purelin, respectively, and the training function
was trainlm. The R2 of the established BPNN model was 0.99852, and the data were
distributed near the line y = x. The results show that the predicted value based on the
BP neural network model was in good agreement with the measured value, and that
there was a good fit of the model for the process of synergistic hydroxylamine with
Fe2+ to activate PMS.

(2) Using the Garson and PaD2 algorithms based on the neural network weights,
the order of influence of factors and factor pairs on the degradation of AO7 was
calculated as follows: concentration of HA > Fe2+ > PMS, and concentrations of
Fe2+ and PMS > concentrations of HA and PMS > concentrations of Fe2+ and HA.

(3) The optimization result obtained by the genetic algorithm was as follows: the con-
centration of Fe2+ was 35.33 µmol·L−1, HA was 0.46 mmol·L−1, and PMS was
0.93 mmol·L−1. According to the verification experiment, the degradation of AO7
was 95.7%, which was only 0.5% lower than the model’s predicted value, 96.2%.

The above results show that the BP neural network can indeed improve the degra-
dation rate of AOP systems, and the modeling results are reasonable, and can be used
as a reference in the research of other AOP systems. However, this study also has some
limitations, which should be considered in future studies. Whether the conclusions of this
study are applicable to pollution other than AO7 is unknown, and other types of pollutants
need to be explored. Other AOP systems are not reflected in this study, and more systems
should be studied. Although the Garson and PaD2 algorithms are introduced in this study
to obtain some useful conclusions about parameter sensitivity, the constructed BP neural
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network is still a black box lacking interpretability, which is also part of the next step of
research to focus on.
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