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Abstract: The relative impacts of changes in the storage capacity of a reservoir are strongly influenced
by its hydrodynamics. This study focused mainly on predicting the flow velocities and assessing the
effectiveness of groynes as control mitigation structures in changes in the water depth and velocity
distributions in Ringlet Reservoir. Initially, the physical model of the Habu River (the main part
of Ringlet Reservoir) was fabricated, and flow velocities were measured. Then, a two-dimensional
HEC-RAS was adapted to numerically simulate the hydrodynamics of the annual recurrence intervals
of 1, 5, and 100 years in the Ringlet Reservoir. Experimental data acquired at the Hydraulic and
Instrumentation Laboratory of the National Water Research Institute of Malaysia (NAHRIM) was
used to calibrate and validate the numerical models. The comparison of simulation and experimental
results revealed that the water levels in all simulations were consistent. As for the velocity, the results
show a comparable trend but with a slight variation of results compared to the experiments due
to a few restrictions found in both simulations. These simulation results are deemed significant in
predicting future sediment transport control based on hydrodynamics in this reservoir and can be of
future reference.

Keywords: numerical modelling; physical modelling; Ringlet Reservoir; flow velocity; hydrodynamics;
HEC-RAS 2D

1. Introduction

Dams and reservoirs are essential for impounding or storing water for many uses,
such as flood control, water supply, hydropower, irrigation, navigation, and recreation. A
reservoir typically has two storage features. First, active storage, or the volume used for
storing water, generating power, supplying water, or as reserves for flood management;
and second, dead storage, which refers to the volume below the minimum operational
elevation [1]. There are different types of reservoirs; for instance, run-of-river type reser-
voirs. These reservoirs are commonly used for generating hydropower due to their small-
volume active and large-volume dead storage [2]. Worldwide, hydropower continues to be
the most significant renewable energy source for producing electricity [3]. It has generated
more energy than all other renewable sources, with 4418 TWh in 2020 [4].

The Ringlet Reservoir in Cameron Highlands, Malaysia, is an essential water source
for domestic, agricultural, and hydropower purposes. However, the increasing demand
for water supply and activities such as agriculture and logging have resulted in significant
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changes in the hydrodynamics of the reservoir. Sediment movement also leads to deposition
or erosion, and its movement is primarily influenced by flow velocity and direction. In
general, sediment deposition can reduce water storage capacity by up to 0.8%, resulting in
a shorter project life [5]. This situation makes it difficult for reservoirs to cater to the rising
need for water [6]. Another issue is sediment buildup around power plant gates, reducing
a dam’s ability to operate effectively.

Furthermore, a significant amount of sediment in the water intake might harm or
lessen the effectiveness of the hydro turbines and other electromechanical components [7,8].
Dredging activities have been carried out since the dam’s initial operation to provide ade-
quate reservoir storage volume. Unfortunately, the cost of dredging has risen dramatically
and is anticipated to increase even further as the rate of silt deposition rises [9]. While
the projected life for the Ringlet Reservoir in the Cameron Highlands is 80 years with a
gross storage of 6.7 million m3, after barely 35 years of operation, 52 percent of its storage
was already utilised, with 34 percent filled with sediment [10]. Hence, further research
and predictions are required for the continuous operation of the current power generation
plant. One of the solutions for this is to study the hydrodynamics of the flow velocity in
those reservoirs.

Flow velocity is a crucial parameter in understanding the behavior of fluids in reser-
voirs. Physical models and numerical simulations are two common methods used to
study flow velocity. Physical models involve constructing a scaled-down physical model
that mimics the behavior of the reservoir, while numerical simulations use mathematical
equations to simulate the behavior of the reservoir. Several studies have compared the
accuracy of physical models and numerical simulations in predicting reservoir flow velocity.
For example, a study by Kositgittiwong et al. found that physical models provided more
accurate predictions of flow velocity than numerical simulations due to the many uncer-
tainties in the real application [11]. However, a study by Zhang et al. found that numerical
simulations were more accurate than physical models in predicting flow velocity [12].
Research conducted by McCoy et al. used a physical model to investigate the effect of
groynes on flow velocities in a reservoir. The study found that installing groynes reduced
flow velocities and increased water retention time in the reservoir [13]. Numerical simula-
tions have also been used to predict flow velocities in reservoirs. Research conducted by
Liang et al. used a numerical simulation model to investigate the effect of groynes geometry
and arrangement on flow velocities, erosion, and sedimentation in reservoirs. The study
found that the installation of groynes led to a reduction in flow velocities, the formation
of vortices, and scouring, which was consistent with the findings from their laboratory
experiment [14].

The primary objective of this investigation is to determine the effect of hydrodynamics
on the flow regime of the reservoir by assessing the rates and directions of flow in Ringlet
Reservoir using a physical and 2D numerical model. The present work aims to characterise
the Ringlet reservoir’s velocity patterns for up to a 100-year return period through physical
and numerical modelling, the common practices used by several researchers [15–17]. First,
the influences of hydrodynamics on the flow pattern from the reservoir were investigated,
and a numerical simulation model was compared with physical observations better to
understand the flow pattern along the Ringlet Reservoir. The results of this physical model
were then compared with the numerical simulation to validate the accuracy of the sim-
ulation. The simulation used a 2D numerical model based on the Reynolds-Averaged
Navier-Stokes (RANS) equations. Finally, the numerical model was calibrated and vali-
dated using experimental data from the physical model. Further, this study examined the
construction of groynes or access rams to obtain the hydrodynamics for this prediction [18].

The results from the physical model and numerical simulation revealed that the flow
conditions in Habu (Ringlet Reservoir) are affected by various factors such as velocity,
bathymetry, and the presence of hydraulic structures. The findings also showed agreement
in the flow pattern between the physical and numerical models, indicating that the numeri-
cal model can predict future sediment transport patterns. Furthermore, the results showed
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agreements in the reservoirs’ flow pattern between the physical and numerical models. In
the meantime, the installation of groynes significantly affects the hydrodynamics of flows at
the installation area. Overall, the study provides valuable insights into the hydrodynamics
of Ringlet Reservoir, which can be used to predict future changes and implement effective
management strategies.

2. Methodology

The methodology adopted for numerical modelling of the physical model of Ringlet
Reservoir (Habu), located in Cameron Highland, Malaysia, was based on a four-step proce-
dure, as depicted in Figure 1. The first step was a desktop study, which involved gathering
relevant data about the reservoir, including aerial images, topography, and hydrology. The
second stage was the small-scaled model setup, which comprised two significant compo-
nents: experimental work and numerical model setup using HECRAS. The experimental
work involved the physical construction of a small-scale model of the Ringlet Reservoir.
In contrast, the numerical model setup involved using HECRAS software to simulate the
hydraulic behaviour and performance of the reservoir. The third step of the study was the
comparison of the physical and numerical models. This involved comparing the observed
data from the physical model with the results obtained from the HECRAS numerical model
setup. The final step involved the presentation of the results, a discussion of the findings,
and the study’s overall conclusions. Overall, this methodology incorporates physical
and numerical modelling that provides a robust approach to assessing the hydrodynamic
performance and prospects of the Ringlet Reservoir in Cameron Highland, Malaysia.
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2.1. Study Area

Ringlet Reservoir, in the central highlands of West Malaysia, approximately 160 km
north of Kuala Lumpur, is a part of the Cameron Highlands-Batang Padang hydroelectric
scheme. It comprises the Sultan Abu Bakar Dam, which was constructed in 1963. It was
initially estimated that the sediment loading to the reservoir was m3/annum [19]. Tenaga
National Berhad (TNB) is responsible for developing and operating most major hydropower
projects. At present, TNB is the main operator for three of the largest hydroelectric schemes
in Sungai Perak (1249.1 MW), Kenyir (665 MW), and Cameroon Highlands-Batang Padang
(622 MW) [20]. A map of Habu is depicted in Figure 2. The Ringlet Reservoir is located
within the Bertam catchment, with a combined area of 70.4 km2. The Bertam Catchment
is divided into six sub-catchments: Upper Bertam, Middle Bertam, Lower Bertam, Habu,
Ringlet, and Reservoir. Bertam River, Habu River, and Ringlet River are the principal rivers
supplying the Ringlet Reservoir. Teh et al. state that most sediment loaded into the Ringlet
Reservoir comes from the Habu end [21].
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Figure 2. Map area of Habu. Habu is part of the Ringlet Reservoir, Cameron Highland, Malaysia.
Hence, the name ‘Habu’ was used throughout.

An area of around 183 km2 comprises the upper watershed that feeds the Ringlet
Reservoir [22,23]. Electricity is generated from headwater from two main rivers, Sungai
Telom and Sungai Bertam. In this regard, even though the Ringlet reservoir had an initial
water storage capacity of 6.7 million m3, it has experienced a loss of operational volume
over the years because of accelerated sedimentation [19,24]. This phenomenon is caused
by millions of tons of additional sediment mobilized by rapid developments in the upper
catchments area. This situation has gradually decreased the reservoir’s capacity for hydro
generation and led to a higher risk of downstream flooding [25]. The higher sediment
deposition rate would significantly reduce the projected useful life of the reservoir [26].
Additionally, it has a negative impact on the dam’s stability and risks the ability to store
water for flood control [27,28].

2.2. Experimental Works
2.2.1. Physical Model Construction

Typically, physical models are used to investigate, evaluate, and formulate solutions
to various sedimentation issues in hydraulic structures like reservoirs [29,30]. A physical
hydraulic model is often a scaled-down version of the research site and was essential for
data calibration and validation of the HEC-RAS numerical model. The dynamic similarity
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makes it possible to scale results from model tests to predict corresponding results for the
full-scale prototype. The dynamic similarity makes it possible to scale results from model
tests to predict related results for the full-scale prototype. Dynamic similarities can be
found by comparing the ratios of various significant forces acting on the system. Because
gravitational force dominates fluid motion in free surface flow, Froude scaling was used.
Laboratory tests have been conducted in the Hydraulic and Instrumentation Laboratory,
National Water Research Institute of Malaysia (NAHRIM). A model of Habu River (also
known as Habu), a significant part of Ringlet Reservoir in the Cameron Highlands, was
constructed with a geometric scale of 1:30. The model was constructed using a fixed bed
setup; hence, no erosion or accretion occurred during the tests. The model’s bed was
levelled to its original or existing condition, equivalent to its prototype.

2.2.2. Model Surveying

The model’s bathymetry was determined using three-dimensional surveying tech-
niques (3D), Terrestrial Laser Scanning (TLS), and Digital Close-Range Photogrammetry
(DCRP). A medium-range GLS 2000 TLS model (Topcon, Livermore, CA, USA) was used
for the laser scanning research. The output of laser scanning is an array of points known as
a point cloud, a set of vertices defined in a 3D coordinate system (x, y, and z) capable of
reconstructing a highly detailed 3D physical model. The high-density point cloud from TLS
will support a numerical model as input parameters (base data). In the meantime, DCRP
was implemented to gather 3D information about features from two or more photos of the
same object. This technique was used to create accurate 2D orthophoto and 3D surface
models in the form of point cloud data using a sequence of overlapping digital photos
acquired by a drone. The drone (Phantom 4 Pro, DJI, Tokyo, Japan) flew manually along
the designated flight line approximately 5 m above the model. A series of digital images
were captured at intervals of three seconds to enable a 3D model and orthophoto of the
physical surface model to be generated.

2.2.3. Flow Measurements

Water was pumped through the inlet pipe upstream of Habu. The 350 SZ (EBARA,
Subang Jaya, Malaysia) external pumps, with a capacity of 1000 L/min and a head of 7 m,
were employed for this study. Water was poured until the model or waterway reached its
maximum level. The pump was then turned on until the specified flow rate for each test
was reached. Dynaflox Series DMTFP Portable Transit Time Ultrasonic Flow Meters (Emin
Group, Singapore) were put near the stabilizer tank to measure the inlet flow rate. Steady
flow conditions for all tests were established by manipulating the setting of the pump rate
to achieve the designated flow discharges, refer to Table 1. H1 and H2 denote Habu with
Existing condition and Groynes, respectively, while the last numerical value after the dash
symbol represents their respective ARIs.

Table 1. Test conditions for Habu (Ringlet River).

Location Conditions ARI (Year) Test Series
Flow Rate

Prototype
(m3/s)

Model
(l/s)

Habu

H1
Existing

1 H1-1 23.5 4.7
5 H1-5 34.5 7.0

100 H1-100 55.5 11.3

H2
with Groynes

1 H2-1 23.5 4.7
5 H2-5 34.5 7.0

100 H2-100 55.5 11.3
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Flow velocity is a crucial hydraulic and hydrological component utilised in the velocity–
area approach to evaluate discharge [31]. Flow velocities were measured using a 1D AEM
electromagnetic current meter (ECM). With a minimum depth of 3 cm and a range of 0 to
5 m/s, this ECM can precisely detect water speeds in shallow water storage. The flow was
measured at the observation point located at every CH, marked with black dots in Figure 3.
An average of five readings were measured for every point at roughly 0.5 of the depth.
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(c,d) live images of the constructed physical models of (a,b).

Groynes were constructed after completing the measurements for the existing condi-
tion. Figure 3b shows the arrangement of eight groynes with a width-to-length ratio, w/l,
approximately equal to 0.1. The groynes were constructed approximately perpendicular to the
channel. These impermeable groynes are designed to be non-submerged [32–34]. Therefore,
the groynes were approximately built perpendicular to the channel. The same procedures
used during the existing condition were repeated for mitigation (with groynes condition).

2.3. Numerical Model (HEC-RAS)
2.3.1. Model Setup

HEC-RAS software was used to model the flow of water in this project. The 2D
Shallow Water Equations (SWE) are the basis for hydrodynamic two-dimensional (2D)
models in HEC-RAS. The SWE is found by integrating the Reynolds-averaged Navier-
Stokes equations over the flow depth [35]. In this integration process, a hydrostatic pressure
distribution is assumed. The 2D finite volume method is used for the solution of the SWE,
allowing greater stability (due to shock capturing capability) and accuracy compared to
the finite element or finite difference-based method. Two types of models are available
in HEC-RAS 2D, the full SWE and the Diffusion Wave Approximation (DWA). The DWA
model was used as an initial condition for the SWE model to provide stability for the
unsteady model. The point cloud taken from the 3D scanning of the model was processed
into Digital Elevation Model (DEM) and exported as a GeoTIFF file format. This was then
imported into HEC-RAS as terrain for the simulation model.

In all cases, an initial water level was prescribed. This means at the start of the
simulation. The domain contains water at a certain level. This initial condition proved
more effective than starting the simulation with the domain completely dry. Boundary
conditions were imposed at the inlet and outlet of the computational domain. The inlet
is located at the upstream part of the domain, while the outlet is located precisely on the
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check dam. A constant flow rate based on the Annual Recurrence Interval (ARI) of 1-, 5-
and 100 years was prescribed at the inlet. At the outlet, a constant water level was used.
The level was initially assumed as no water level data was observed during the experiment.
The value was then changed until the water level just upstream of the outlet matched the
experimental observation. This is one of the calibration steps used to set the current value
for the unknown boundary conditions.

2.3.2. Convergence Study and Model Calibration

A computational mesh was generated for the domain of interest. Three mesh sizes
of 7680, 30,065, and 185,338 were used for 15 cm, 10 cm, and 5 cm, respectively. The
water surface elevation and velocity plots at CH500 for different mesh sizes were plotted
and compared. Although the coarse mesh can provide an equally accurate result, for the
simulation that follows, a mesh size of 5 cm is used throughout. Constant flow rates were
imposed at the inlet, while constant water levels were used at the outlet. An adaptive
time step was used in the simulation with a minimum and maximum Courant number
between 1 and 3. Two of Manning’s values of 0.0025 and 0.01 were used for calibration.
The Manning value was selected based on the closest agreement of water level and velocity
between simulation and experimental results. The simulation period for all cases is 30 min.

2.3.3. Model Simulation

The wetted boundary of the model is considered through the Manning coefficient.
Because the shallow water equation assumes averaged vertical velocity, the effect of the
boundary layer cannot be modelled directly. The influence of the boundary layer due to
surface roughness is represented as additional source terms. This source term includes,
amongst others, the Manning coefficient. For the current work, it is assumed that the bed
is quite rough. A different value for Manning was tested. The best Manning value was
selected based on the closest agreement for water level and velocity between simulation and
experimental results. A Manning value of 0.0025 was used throughout the simulation. With
the mesh generated and the initial and boundary conditions imposed, the hydrodynamics
of the model was simulated for 15 computational minutes based on a steady state obtained
during the preliminary study. The 2D HEC-RAS model used in the current work solves the
unsteady SWE. HEC-RAS uses an explicit formulation for the solution of the SWE. Due
to the explicit formulation, the time step needed to keep the solution stable needs to be
smaller than the critical time step calculated by the Courant number [36]. Two schemes
for time marching are available in HEC-RAS: fixed and adaptive time stepping. Initially,
the fixed time step was used. However, as the mesh size decreased, the time step selected
violated the critical time step and resulted in an unreliable solution. The adaptive time step
was then selected. The use of adaptive time-stepping requires the setting of a minimum
and maximum Courant number. The minimum and maximum Courant numbers 1 and 3
were selected for all simulations. The selection was based on the best practices outlined in
the HEC-RAS manual [37].

3. Results and Discussions
3.1. Physical Model

Flow velocity measurements in Habu were plotted as velocity points for the existing
and mitigation (groynes). Velocity points are illustrated in Figure 4 for existing conditions
and mitigation (groynes), while Figure 5 shows the scatter plot comparisons between
different ARIs for both conditions. The original velocity points are used to show the
distribution of data points on the model and to demonstrate the accuracy of the gridding
methods used for an accurate comparison with the simulation.
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Figure 4. Velocity points at Habu during; existing condition: (a) 1-year, (b) 5-years and (c) 100-years
ARI, Groynes condition: (d) 1-year, (e) 5-years and (f) 100-years ARI, respectively. Display vectors
were present with the vector arrow tail at the data location.

Generally, the local velocity in the reservoir or channel varies with its location. The
velocity is lower near the boundary (side). It was found that as the flow rate, Q increased,
the velocity also increased for all tests in both existing and mitigation conditions. This
indicated that the velocities in the reservoir increased when the water depths and flow
rates increased. The summary of flow velocities at Habu for existing and during mitigation
(groynes) is summarized in Table 2.
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Figure 5. Velocity distribution comparisons between different ARIs (1-year, 5-years, and 100-years)
for (a) existing conditions and (b) with Groynes.

Table 2. Summary of velocities measured at Habu.

Condition ARI (Years) Flow Rate, Q (L/s) Umin (m/s) Umax (m/s) Uave (m/s)

H1
Existing

1 4.7 0.062 0.622 0.180
5 7.0 0.044 0.793 0.181

100 11.3 0.021 0.899 0.188

H2
Groynes

1 4.7 0.038 0.608 0.161
5 7.0 0.034 0.729 0.195

100 11.3 0.026 0.874 0.248

Most of the flow in Habu takes place in the middle of the channel for both existing and
mitigation conditions. The highest velocity occurred at CH850, right after the first check
dam in Habu for existing and mitigation conditions. The velocity decreases after CH650
downstream in Habu for existing conditions. Meanwhile, the velocity decreases after CH600
downstream in Habu for mitigation conditions. This indicates the influence of groynes to
reduce the flow velocity in the area close to their location and focus or concentrate the flow
velocity in the middle of the channel [38]. Therefore, the second groyne effectively conveys
the flow to the middle of the channel. Based on the experimental results, the flow velocity
patterns for all return periods tested are the same; the only difference is the magnitude of
the velocity. This can also be observed by the existence of groynes in the channel. Groynes
also changes the pattern of the velocity, with lower velocity observed on the side of the
channel and higher velocity being more concentrated in the middle of the channel.

3.2. HEC-RAS
3.2.1. Convergence Study

This section discusses the convergence study for simulations with different mesh
sizes. The convergence study aims to determine the best mesh size that needs to be used
to minimise computational expenses and, at the same time, ensure that the solution is
not sensitive to the changes in mesh size (mesh independent solution) [13]. Therefore, a
convergence study was carried out for these mesh sizes. Figure 6a–c compares mesh sizes
used throughout the simulation.
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Figure 6. Mesh with sizes of (a) 15 cm, (b) 10 cm and (c) 5 cm.

It should be noted that the solution produced by the DWA might be different from
SWE depending on the corresponding Reynold number, with higher values representing
turbulence flow. As DWA neglect the nonlinear effect caused by the convective acceleration,
the effect of turbulence on the flow cannot be accounted for. For the case considered here,
the result is mostly turbulence. The use of SWE is more appropriate and was used for this
study. A cross-section at CH500 was chosen for the water surface elevation and velocity
evaluation. To simplify the analysis of the result, only the DWA model was considered.
Figure 7a shows the cross sections in which the values for the water surface elevation (WSE)
and velocity were evaluated. Figure 7b–d shows the plot of WSE along the centre line of
Habu for different mesh sizes. From the figure, it is shown that the WSE is almost identical
for all mesh cases. From the figure, it can be concluded that even with the coarsest mesh
used here (15 cm), HEC-RAS can provide accurate prediction for the WSE.
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Figure 7. (a) River centreline (blue line) and CH (red line) for Habu. WSE plot along the Habu end
centreline for different mesh sizes (b) centreline, (c) CH700, (d) CH500.
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The velocities along CH700 and CH500 are presented in Figure 8. The result shows
that mesh convergence is also achieved for velocity. Although the coarse mesh can provide
an equally accurate result, for the simulation that follows, a mesh size of 5 cm was used
throughout. It should be noted that the solution produced by the DWA might be different
from the SWE depending on the corresponding Reynolds number, with a higher value
representing turbulence flow [39]. As DWA ignores the nonlinear effect caused by the
convective acceleration, the impact of turbulence on the flow cannot be accounted for. For
the case considered here, where the result is mostly turbulence, the use of SWE is more
appropriate and was used for this study. The DWA method was adopted just to simplify
the comparison of the convergence study.
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Figure 8. Sensitivity plot of velocity along Habu (a) CH700, (b) CH500 for different mesh sizes. The
insets show the enlarged curves to aid comparisons.

3.2.2. Model Calibration

Calibration is finding the most appropriate parameter that must be included in the
model to produce results representing the physical condition. For hydraulic modelling
involving SWE, an important calibration factor that needs to be determined is the Manning
coefficient. Manning’s coefficients represent the influence the bottom roughness has on the
solution. As the physical model involves a bottom boundary that is relatively smooth, the
influence Manning has on the solution might not be that critical. Therefore, two Manning
values were used for calibration: 0.0025 for a smooth surface and 0.01 for a slightly rough
one. Normal concrete has a roughness of 0.01. A smaller value increases velocity but
reduces water surface elevation, while a larger value has the opposite effect. However,
since the physical model’s surface is assumed to be uniformly smooth, a single Manning
value was used for the entire domain.
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Figure 9a shows the observation points from the experimental work. The point is
located along the channel’s CH. The red dots are the points where a comparison between
simulation and experimental observation is carried out. To determine the influence of
Manning on the result, a comparison is carried out for the water depth and velocity at
the observation points. In addition, a comparison was made between DWA and SWE, the
former assuming negligible flow acceleration while the latter includes the full nonlinear
solution. Please note that the calibration should only be carried out for the 100-year ARI
scenario, as this represents the worst-case scenario and provides the largest velocity changes
compared to the rest of the scenarios.
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Figure 9. (a) Observation points from experimental work. Red dots denote the location of sampling
used for comparison between experiment and simulation, while green dots denote the additional
experimental sampling locations. Water depth and velocity comparison for DWA (b), (c) and SWE
(d), (e) between experimental observation and simulation results.

Figure 9b,d show the comparison of the water depth between experimental observation
and simulation for DWA and SWE, respectively. The plot shows that the water depth can be
predicted accurately by both DWA and SWE. A closer inspection shows that SWE provides
overall better accuracy than DWA, except for CH850, due to the presence of the check
dam where the turbulence and hydraulic jump occurred. The experimental and simulation
values differed by 25–65%. The differences between the Manning results were quite small
for this comparison. Figure 9c,e compares the velocity at the observation points between
experimental and simulation results for DWA and SWE, respectively. For this comparison,
much larger differences can be seen. For DWA, the velocity predicted by the simulation
model is consistently lower than those obtained from the experiment, with the result from
Manning varying slightly. However, for the SWE, the result shows better prediction by the
simulation model, with a closer agreement for the Manning value of 0.0025 compared to
0.01. Apart from CH800 and CH850, the Manning value of 0.0025 shows good agreement
with the observed data.

It is important to note that to compare the velocity of the simulated model against
the physical model, the velocity for SWE is taken as the average velocity over some time.
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This is because the simulation does not reach a true steady state globally [40]. The velocity
fluctuation is presented in Figure 10a,b. At CH750 in Figure 10a, where the channel is
relatively narrow, the flow is predominantly one-dimensional. The velocity at the centre
of the channel fluctuates rapidly at the beginning of the simulation but stabilizes over
time. However, at CH500, where the channel is wider, the flow becomes two-dimensional,
and vortices form as the simulation progresses. As the vortices develop, the velocity
taken at the middle of the cross-section fluctuates, as shown in Figure 10b. The velocity
fluctuation becomes less pronounced once the vortices are fully formed. To compare with
the experimental data, the velocity magnitude is the average over a period during which
the vortices have fully formed. The root mean square of velocity fluctuation is small.
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Figure 10. Velocity time history at (a) CH750, (b) CH500 for simulation with different Manning’s values.

A comparison with observation data for the Habu catchment with groynes installed
has also been carried out. Figure 11a shows the location of the groynes along the Habu
catchment. Figure 11b,c shows the water depth and velocity comparison between the
experiment and simulation result at the observation location. The result shows good
agreement for the water depth and a slight variation for the velocity. These small variations
were due to uncertainties in model parameters. The numerical model relies on specific
input parameters, such as friction coefficients or roughness values, which may be uncertain
or difficult to estimate accurately and may not perfectly capture the exact physics of the
flow in the physical system. However, comparing both chosen Manning values shows a
small influence of the value on the hydrodynamics of the flow.

3.3. Simulation
3.3.1. Habu Existing Conditions

This section presents the simulation results and analysis for Habu without the groynes
and focuses on the hydrodynamics of the flow. At the start of each simulation, a fixed
water level was set for the entire domain. The simulation period for all cases was 30 min.
Figure 12a shows a plot of the water surface elevation (WSE) along the Habu centreline.
Although the WSE in all cases does not vary significantly along the channel, the corre-
sponding water depth is not constant due to the undulating bathymetry. Figure 12b–d
displays the simulated water depth at the end of the simulation for 1-year, 5-years, and
100-years ARI. The figures reveal that the water depth throughout the domain varies
significantly at several locations due to variations in the bathymetry. These variations,
coupled with differences in the channel width, are expected to lead to a spatially varying
velocity distribution.
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Figure 11. (a) Location of the groynes along Habu catchment and experimental sampling locations.
Red dots denote the location of sampling used for comparison between the experiment and simulation,
while green dots denote the additional experimental sampling locations. (b) water depth (c) velocity
comparison between experimental observation and simulation results (SWE) for a model with
groynes installed.
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Figure 12. (a) Water Surface Elevation (WSE) along the Habu centreline. Simulated water depth at
the end of the simulation for (b) 1 year (c) 5 years, and (d) 100 years ARI.
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The velocity magnitude for different ARI at time steps of 10 min, 20 min, and 30 min is
presented in Figure 13. In all cases, the highest velocity can be observed at the upstream end
of the channel. At this upstream part, the channel is narrow, with a very steep bottom. This
combination forces the water to flow at a relatively high velocity within this constricted area.
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Figure 13. Velocity magnitude at a time step, t = 10, 20 and 30 min, for 1-year, 5-years and 100-years
ARI. The arrow represents the flow direction of the water and is applied to all cases.
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For 100 years of ARI, a comparison with the experiment shows that the simulated
velocity is underpredicted. At CH 850, experimental observation recorded a value of
around 0.9 m/s, whereas simulation predicted a value of about 0.37 m/s. The differences
can be attributed to how the inlet boundary is applied. Due to stability problems at the
upstream check dam, where rapid wetting and drying occur, the inlet has been moved to
just after the check dam. This reduces the high velocity due to free fall. Unfortunately, a
velocity boundary condition cannot be specified in HEC-RAS, as only flow rate is allowed;
hence, the velocity at the boundary is calculated from the flow rate. As the water enters a
broader part of the channel, the variation of the velocity magnitude becomes increasingly
large. Flow recirculation or rollers can be observed as the channel enlarges. The same
roller-like flow patterns were observed in the physical model; see Video S1. This was due
to a turbulent flow at the inlet area. Turbulence occurs when the flow of water becomes
irregular, forming vortices and eddies that cause the water to roll. This rolling motion
can also be caused by the irregular surface beneath the water. The velocity reduces in
the downstream direction due to a downstream check dam. The particle tracing plots in
Figure 14a–c show that the flow is highly unsteady, especially at the start of the simulation.
By observing the evolution of the magnitude of the velocity at increasing time steps, one
can observe significant changes in the velocity distribution. At time step t = 5 min, the
high-velocity region impinges on the left side of the channel. However, as time progresses,
this pattern changes. At the next step, t = 20 min onward, the high-velocity region after the
expansion changes sides, impinging to the right. This change is caused by the formation of
vortices at around CH 450. As the simulation reaches a steady state, the velocity shows an
identical pattern for all ARI cases.
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Figure 14. Particle tracing at time step, t = 30 min, for (a) 1-year, (b) 5 years and (c) 100-years ARI.
The arrow represents the flow direction of the water and is applied to all cases.

Figure 15a–c displays the cross-sectional velocity profiles for CH650, CH500, and
CH350. These plots compare the velocity across the chainage at t = 30 min (steady state)
for different ARI cases. The distance between banks is measured from left to right when
looking downstream. It should be noted that the plots only show the magnitude of the
velocity and do not consider its direction. With higher ARI, the inflow increases, resulting
in an increase in velocity magnitude for all cases. The velocity profiles at CH650 and CH500
reveal that the right side has a higher velocity than the left. This observed velocity profile
may be explained by the eddy that forms on the left side of the channel around CH650 and
CH500, as shown in Figure 14. As this eddy forms due to low-velocity flow, a high-pressure
region is developed, which pushes the high-velocity flow to the right. At CH350, the eddy



Water 2023, 15, 1883 17 of 22

forms on the right side and pushes the flow to the right, creating a high-velocity region, as
shown in Figure 15c.
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Figure 15. Velocity comparison between 1-year, 5-years and 100-years ARI during steady-state
conditions at (a) CH650, (b) CH500 and (c) CH350.

The differences in the flow profile across the domain have large implications for
sediment transport dynamics. The movement of sediment is highly dependent on the
hydrodynamics of the flow. For example, the formation of vortices can entrain sediment
and force it to settle.

3.3.2. Habu with Groynes Installed

This section presents the results and analysis of the simulation of different ARI events
with groynes installed. Figure 16a–c shows the plot of water depth at the end of the
simulation for all cases. Despite the presence of the groynes, no appreciable difference in
the water depth can be observed compared to the existing condition. With the installation
of the groynes, the “unsteadiness” of the flow pattern has somehow been suppressed.
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Figure 16. Water depth at Habu with groynes installed for (a) 1 year (b) 5 years, and (c) 100 years ARI.

This is evidenced by the velocity magnitude plot at time t = 10 min, t = 20 min, and
t = 30 min, given in Figure 17. The plot shows almost identical patterns for all cases and
time steps. High-magnitude velocities can be observed to flow at the centreline of the
channel. In addition, vortices can be observed forming on the front side of the groynes
(looking downstream). These vortices have a lower velocity than the main flow and could
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be significant in trapping sediment. The number of vortices has also increased as compared
to the existing condition.
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Figure 17. Velocity magnitude comparison between 1-year, 5-years and 100-years ARI for Habu with
groynes installed at a time step, t = 10, 20 and 30 min. The arrow represents the flow direction of the
water and is applied to all cases.
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The particle tracing plot in Figure 18 shows the dominant flow pattern and the vortices
generated. The effect of groynes on the flow pattern and hydrodynamics of water can
vary depending on the groynes’ size, shape, and placement. When water flows towards
the groyne, it is forced to slow down and divert around the structure. This creates eddies
and vortices on the downstream side of the groyne, resulting in areas of slower-moving
water that will lead to sediment deposition. On the upstream side of the groyne, water
accelerates and creates faster-moving currents. This can cause erosion at the base of the
groyne and create a scour hole. The placement of groynes can also affect the flow pattern
and hydrodynamics of water. Too many groynes placed too closely together can disrupt
the natural flow of water and create potential stagnant areas, e.g., around the CH600, while
too few groynes can lead to increased erosion, e.g., in the area between the CH600 and the
CH400. The optimal placement and number of groynes to minimise the impact on the flow
pattern and hydrodynamics must be determined to mitigate erosion effectively.
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Figure 18. Particle tracing comparison between (a) 1-year (b) 5-years, and (c) 100-years ARI for Habu
with groynes installed. The arrow represents the flow direction of the water and is applied to all cases.

A comparison between velocity along CH600, CH500, and CH400 between the existing
condition and with groynes installed is presented in Figure 19. These plots show the
difference in magnitude and location of the dominant flow. At CH600 to CH500, the
high-velocity magnitude is located on the opposing side of the channel for cases with and
without groynes. The location change is caused by installing groynes at the upstream part
of the channel. Furthermore, the magnitude of the dominant velocity at the upstream
part (CH600 and CH500) is reduced with the installation of groynes and increases at the
downstream part (CH400). In this scenario, the existence of groynes can change the flow
pattern. To trap sediment, groynes can be built to generate flow that directs sediment to a
specific area within the domain [41]. The ability of a numerical model to predict sediment
transport and migration in Ringlet Reservoir will be explored and discussed in our future
study using Flow-3D software that solves tougher free-surface flow problems.
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Figure 19. Velocity comparison between existing condition (black line) and groynes installed (red
line) at CH 600 (a–c), CH 500 (d–f), CH400 (g–i) for 1-year, 5-years and 100-years ARI.

4. Conclusions

Flow velocity measurements in Habu (Ringlet Reservoir) were plotted in velocity
points for existing and mitigation (groynes) conditions. Based on the experimental results,
the flow velocity patterns for all return period tested is very similar but with different
magnitude of velocities. This also can be observed in the existence of groynes in the channel.
Groynes also change the pattern of the velocity. Lower velocity was observed on the side
of the channel, and higher velocity was more concentrated in the middle. An unsteady
shallow water module in HEC-RAS has been used to investigate the flow hydrodynamic of
the problem. Comparison with experimental results shows that HEC-RAS can provide an
excellent prediction for the water surface elevation but falls slightly off when predicting
the velocity. The unsteady shallow water equation allows HEC-RAS to simulate complex
flow phenomena involving highly energetic free surface turbulence flow. The output can
provide further insight into the flow behaviour, which provide essential information for
the experimental work and future flow predictions. Detailed flow information such as
velocity and free surface flow provided in this study will give valuable information that
can be used to design better mitigation options. Understanding flow characteristics in
reservoirs is crucial for designing effective mitigation options because it helps identify
potential risks and predict behavior. For example, knowledge of flow characteristics can
help determine the likelihood of sedimentation or erosion and design appropriate measures
to prevent them.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15101883/s1, Video S1: Physical observation of vortex formation
using dye tracer.
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