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Abstract: Qilu Lake is one of the nine plateau lakes in Yunnan Province, China. In recent years, under
the influence of extreme climate and human activities, the area of Qilu Lake has shrunk significantly,
the water level has dropped, and the problem of water shortage has become increasingly serious.
Based on the Landsat and MODIS image data from 2000 to 2020, this study applied the ESTARFM
spatiotemporal fusion model to unify the data images used in the study to February, used three kinds
of water body indexes, selected the water body index most suitable for the study area to extract
relevant information, and analyzed the spatiotemporal change characteristics of Qilu Lake area in the
last 20 years. The results showed that: (1) Based on the ESTARFM model, the Landsat and MODIS
data on 18 January 2020, the Landsat and MODIS data on 9 May 2020, and the MODIS data on the
date to be predicted (February 13) were fused to obtain the Landsat image data of the predicted
date, which met the accuracy requirements; (2) Taking 2005 as an example, the NDWI, MNDWI,
and AWEIsh indexes were used to extract the water body with the precisions of 99.0%, 99.6% and
98.6%, respectively, and then the MNDWI water body index was selected to extract the lake area;
(3) In the past 20 years, the overall area of Qilu Lake has shown a downward trend, with the area
reduced by 0.7132 km2. From 2000 to 2010, the lake area was relatively stable, fluctuating up and
down around 36 km2. From 2010 to 2015, the lake area decreased sharply, with a change rate of−40%.
After 2015, the lake area gradually increased; (4) The spatial change of Qilu Lake area mainly occurred
in the southwest and west, which decreased by 0.44 km2 and 0.49 km2, respectively, and there were
small fluctuations in other directions. In the past two decades, the shape index of Qilu Lake has
shown a downward trend as a whole; the contour of the lake tends to be simplified, the contour is
complex and stable from 2000 to 2010, and the shape index decreases from 2.17 to 1.74 from 2010
to 2020; (5) The change in the Qilu Lake area is positively correlated with the change in the water
level. Polynomial models with different times were selected as the model for retrieving water level
elevation from the Qilu Lake water surface area, with a highest correlation coefficient of 0.9259. The
temporal and spatial changes of the Qilu Lake area in the last 20 years are the result of the joint
action of natural factors and socio-economic factors. According to the analysis, the annual average
temperature, annual precipitation, annual average sunshine hours, and population density are the
main driving forces leading to the change. In the future, the government and relevant researchers
should strengthen real-time monitoring and regular research, formulate and optimize emergency
plans to deal with changes in the ecological environment of lakes, and promote the sustainable
development of the ecological environment and social economy of the basin.
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1. Introduction

Lakes are an important part of the hydrosphere, as they represent the hub of interac-
tions between the biosphere, atmosphere, and lithosphere in regard to matter cycling and
energy transfer, and the contraction or expansion of lakes reflects the changes in the global
climate and environment [1]. The fifth assessment report by the IPCC (Intergovernmental
Panel on Climate Change) pointed out that, as land surface water reservoirs, lakes serve as
important indicators of regional responses to global climate change. Therefore, a timely
and accurate monitoring of changes in lake water resources has a significant importance
for understanding changes in climate and environmental conditions [2–4].

As an important part of the Yunnan Guizhou Plateau, Yunnan Province is located in
the southwest border of China and has many plateau lakes, including nine major plateau
lakes with an area of more than 30 km2. The drainage area of these nine plateau lakes is
about 8000 km2, accounting for 2% of the provincial area, and the lake capacity is nearly
30 billion m3 [5]. Plateau lakes not only play an important role in maintaining the quality
of Yunnan’s aquatic habitats but also play an indispensable role in promoting social and
economic development, especially in ecotourism. However, with the intensification of
climate change and human activities, the shrinkage of plateau lakes and the deterioration
of aquatic environment have attracted extensive attention from all sectors of society [6,7].
Qilu Lake is one of the nine plateau lakes with the fastest decline rate, the greatest reduction
in size, and the most serious extent of eutrophication in recent years. Qilu Lake basin,
which gathers more than 90% of the population of Tonghai County, is the most densely
populated and economically developed area in the county. In the past two decades, the
continuous drought in Yunnan Province, coupled with the continuous development of
the social economy in the basin, has greatly reduced the area of Qilu Lake. As a result,
the water level has gradually declined, and the shortage of water resources has become
increasingly serious. The basin is suffering from ecological pressure and risks caused by
the expansion of economic scale and land use [8,9].

The traditional surface monitoring of lakes takes a long time, consumes much energy,
and requires high monitoring accuracy. It is difficult to achieve effective and efficient
monitoring of a lake water area. With the development and application of remote sensing
(RS) and geographic information technology (GIS, GPS), some effective technical means can
be used to monitor the dynamic changes of lake waters in large space areas. For example,
satellite remote sensing images of resources and meteorology, etc., create conditions for
accurately investigating the hydrological characteristics of lakes and reservoirs, etc., with
their characteristics of periodicity, macrocosm, and efficiency, and have broad application
prospects. Compared with traditional ground monitoring, when the dynamic changes of
water areas are monitored, the use of long time series, multi-temporal, multi-band remote
sensing image data can quickly obtain macro water surface radiation information, which
has incomparable advantages. In recent years, a series of achievements have been made in
monitoring, extraction methods, and water quality index inversion, etc. [10–16]. At present,
the main remote sensing data used are multi-spectral data such as Sentinel, AHVRR, SPOT,
Landsat, ASTER, and resource satellites [17–19]. Landsat images are most widely used
because of their high spatial resolution (30 m), free access policy, and data records up to
more than 30 years [20,21].

As Yunnan has a distinct climate of dry and wet seasons, about 90% of the precip-
itation within a year is concentrated in the rainy season (May–October), while the total
precipitation in the dry season (November to April of the next year) only accounts for 10%
of the year. Therefore, when using remote sensing images to monitor Qilu Lake, the dry
season months with a relatively stable lake area and water level were selected. Most of
the previous studies selected remote sensing data from several months in the dry season,
but there are errors in different months due to cloud cover [9,22,23]. Therefore, if the used
image data are acquired in the same month, the above errors can be avoided. The ESTARFM
spatiotemporal data fusion model can provide a good solution to this problem, because
it can combine different satellite images with high spatial and temporal resolution [9,24].
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Therefore, based on the spatiotemporal fusion model, we simulated and acquired the
Landsat data that could not be obtained in 2020, so as to unify the image data time of this
experiment to February and ensure the accuracy of data analysis.

Common water extraction methods include the single band method, the spectral
relationship method, the water index method, the object-oriented method, the decision tree
method, the SVM method, the BP neural network based method, and the depth learning
based method, etc. The water index method is widely used because of its high accuracy
and low implementation cost. In 1996, Mcfeeters used specific bands of TM images to carry
out normalized difference calculation and constructed the normalized difference water
index NDWI [25]. In 2005, Xu improved the wavelength combination on the basis of the
NDWI index and built an improved normalized difference water body index MNDWI [26].
In 2009, Ma et al. compared the mixed water body index CIWI with common water body
information extraction methods [27]. In 2014, Feyisa et al. selected different water bodies
in different regions for repeated tests and proposed an automatic water body extraction
index (AWEI) that can be more accurately extracted. According to the shadow condition in
the study area, it distinguished the AWEIsh (shadowed) index and AWEInsh (unshaded
index) [28]. In order to find the most suitable method for water body extraction in the study
area, we compared the extraction effects of three water body indexes—NDWI, MNDWI and
AWEIsh—and selected the best water body index with which to extract the Qilu Lake area.
In addition, as another important hydrological feature of a lake, the change in water levels
is closely related to the spatial change of the lake area [29]. Therefore, the comprehensive
consideration of the relationship between lake area and water level can provide an in-depth
understanding of the change mechanism between lake area and other hydrological features
of the lake. In this regard, we used a linear model, an exponential model, a logarithmic
model and a polynomial model [30] of different times to build the relationship between
the Qilu Lake area and water levels between 2000 and 2020, and selected the one with the
highest accuracy among the four models for subsequent analysis. Compared with previous
studies, our innovations were: (1) using the spatiotemporal fusion model to unify the basic
data extracted from water bodies to the same month; (2) the early high-resolution images of
EO-1 were used to verify the extraction accuracy; (3) the relationship between lake area and
water level was established, and the internal change mechanism of hydrological elements
of Qilu Lake was explored so as to avoid a single discussion of lake area change.

In this study, our objectives were: (1) based on the spatiotemporal fusion model, the
MODIS and Landsat data fusion was used to obtain the missing image data in Febru-
ary 2020; (2) the image data from February 2000, 2005, 2010, 2015, and 2020 were used to
extract the water body and the most suitable water index was selected through accuracy
verification to extract the area of Qilu Lake, and the temporal and spatial variation charac-
teristics of the area of Qilu Lake were analyzed; (3) to explore the area water level change
relationship of Qilu Lake over the last 20 years.

2. Materials and Methods
2.1. Study Area

Qilu Lake (102◦33′48”~102◦52′36” E, 24◦4′36”~24◦14′2” N) is located in Tonghai
County, Yuxi City, Yunnan Province, China, with an altitude of about 1796.62 m. It is
one of the nine plateau lakes in Yunnan Province (Figure 1), serves as an important water
resource in Tonghai County, and has many functions such as industrial and agricultural
production water, regulation and storage, flood prevention, tourism, shipping, aquaculture,
and climate regulation, etc. [23,31]. Qilu Lake is a closed fault sink lake of catchment runoff
type, belonging to the Xijiang River system of the Pearl River basin. The long axis of the
lake is east–west. The ancient Qilu Lake occupies the whole Tonghai Basin, and the lake
surface elevation reaches 2000 m above sea level. However, after a long history of evolution,
its water level drops and the lake surface gradually shrinks. Qilu Lake basin belongs to the
humid plateau monsoon climate zone in the middle subtropical zone. The average annual
rainfall in the county is 898 mm, of which the rainy season is from May to October, mainly
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supplied by precipitation. The drainage basin is mainly composed of mountains and dam
areas. The dam area is the main production area of grain and cash crops in the county, and
is also the main residential area of Tonghai County. It is one of the most densely populated
drainage basins among the nine lakes in Yunnan [32–36].
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2.2. Data Source and Preprocessing
2.2.1. Data

The Landsat remote sensing image data used in the study were downloaded from the
geospatial data cloud (http://www.gscloud.cn/, accessed on 2 May 2022) and the MODIS
data were downloaded from USGS (http://glovis.usgs.gov/, accessed on 7 May 2022).
See Table 1 for details. In order to reduce the error caused by seasonal difference, the
imaging time of image data in each year used in the study was February. Specifically,
except for 2020, the other four images were Landsat data from February of that year and,
due to the lack of applicable Landsat data in February 2020, we used Landsat and MODIS
data from 18 January 2020, Landsat and MODIS data from May 9, and MODIS data from
13 February 2020. They were fused using the ESTARFM model to obtain the Landsat data
as of February 13 of that year, thus filling the data gap for 2020.

Table 1. Remote sensing images used in this study.

Year Imaging Date Satellite Sensors Spatial Resolution Cloudiness

2000 12/2 Landsat 4–5 TM 30 m 0.02
2005 25/2 Landsat 4–5 TM 30 m 0
2010 7/2 Landsat 4–5 TM 30 m 0.02
2015 21/2 Landsat 8 OLI_TIRS 30 m 0.04

2020
18/1 Landsat 8–9 OLI_TIRS 30 m 0.03
9/5 Landsat 8–9 OLI_TIRS 30 m 5.9
13/2 MYD09GA 500 m

The water level data were the daily measured data of five years in the study period,
which were from the Yunnan Hydrology and Water Resources Yuxi Branch. The meteo-
rological data came from Tonghai Meteorological Station, nearest to Qilu Lake, including

http://www.gscloud.cn/
http://glovis.usgs.gov/
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monthly temperature, precipitation, evaporation, and sunshine hours. Social and economic
data, such as population and GDP, were collected from the Tonghai County National Eco-
nomic and Social Development Statistics Bulletin, the Yunnan Provincial Statistics Yearbook,
and the China County Statistics Yearbook.

2.2.2. Preprocessing of Remote Sensing Data

The ENVI software was used to preprocess the remote sensing image. The Landsat
data preprocessing process was as follows: first, radiometric calibration was carried out,
then the FLAASH module was used for atmospheric correction and, finally, the image was
appropriately trimmed after geometric correction so that the study area was clearly visible
for subsequent operations. The preprocessing of MODIS data was as follows: firstly, MRT
was used to re-project the data to the UTM-WGS84 coordinate system and convert it to
GeoTIFF format. At the same time, the nearest neighbor method was used to resample to
30 m spatial resolution. Finally, after accurate registration with Landsat data, the same area
was trimmed as the input data of ESTARFM model [24].

2.3. Methods
2.3.1. ESTARFM Spatiotemporal Data Fusion Algorithm

The STARFM model is based on window technology, which comprehensively consid-
ers the spatial distance, spectral difference, and time difference between the target cell and
the neighboring cell, which greatly improves the fusion accuracy, but the model still has
many limitations [24]. The ESTARFM spatiotemporal fusion model is an improvement of
the STARFM model. The principle is to consider the similarity of pixel space and spectrum
in the same area at the same time. According to at least two pairs of high and low resolution
images before and after the prediction date and a low resolution image on the prediction
date, the weight and conversion coefficients between corresponding pixels were used to
simulate the high spatiotemporal resolution data of the prediction date [37]. ESTARFM
adjusted the weighting method. By introducing a conversion coefficient, it improved the
prediction accuracy of regions with complex surface conditions and large differences in
spatial properties. At the same time, not only the temporal and spatial differences between
pixels but also the spectral differences are fully considered in the fusion process. It is one
of the most widely used spatiotemporal fusion models with high fusion accuracy [38–40].
This study used Landsat 8 OLI_TIRS data and MYD09GA product data in two periods
(18 January 2020 and 9 May 2020), as well as MYD09GA product data in the period to be
predicted (13 February 2020), and simulated the Landsat data with a spatial resolution of
30 m in the period to be predicted [41,42]. The simulation process principle is shown in
Figure 2.

The model first used the weight function for convolution to obtain the central pixel
value, as shown in Formula (1):

L(xw/2, yw/2, B) = L(xw/2, yw/2, t0, B) +
N

∑
i=1

Wi ×Vi × (M(xi, yi, tp, B)−M(xi, yi, t0, B)). (1)

In the formula, L represents the Landsat image, M represents the MODIS image, w
represents the size of the calculation window, t0 and tp represent the two moments of image
acquisition, B represents the image band, N represents the number of similar pixels of
the central prediction pixel, Wi is the weight of the ith similar pixel, Vi is the conversion
coefficient of the ith similar pixel, and (xi, yi) is the location of the ith similar pixel [24].

The reflectivity of the Landsat image at tp time was predicted according to the Landsat
and MODIS images of phase 1 (time m: 18/1/2020) and the MODIS images of phase 2
(time tp: 13/2/2020), recorded as Lm (xw/2, yw/2, tp, B). Then, the Landsat and MODIS of
time phase 3 (n time: 9/5/2020) and the MODIS of time phase 2 (tp time) were used to
predict the reflectivity of the Landsat image at tp time, which was recorded as Ln(xw/2,
yw/2, tp, B). The more accurate reflectivity of the Landsat image at tp time was obtained
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through the weighted combination of the two time phase prediction results, as shown in
Formula (2):

L(xw/2, yw/2, tp, B) = Tm × Lm(xw/2, yw/2, t0, B) + Tn × Ln(xw/2, yw/2, tp, B) (2)

where L(xw/2, yw/2, tp, B) is the fusion result of the center pixel at tp time and Tm and Tn are
the weight coefficients of the prediction result images at two times [40,43].
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2.3.2. Extracting Lake Area by Water Body Index Method

The water body index method takes the strong reflection band and the weak reflection
band as the numerator and denominator, respectively, constructs the model through band
ratio operation, and extracts the water body information with a certain threshold value.
This method highlights the characteristics of the water body and is easy to use. It is the
most commonly used method for extracting water body information at present. NDWI,
MNDWI, and AWEIsh are the most commonly used water indexes. The calculation formula
is as follows [10,11]:

MNDWI =
Green−MIR
Green + MIR

(3)

NDWI =
Green− NIR
Green + NIR

(4)
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AWEIsh = Blue + 2.5Green− 1.5(NIR + SWIR1)− 0.25SWIR2 (5)

where Green, Blue, NIR, MIR, SWIR1, and SWIR2 bands are the reflectivity of bands 2, 1,
4, 5, and 7, respectively, in TM/ETM+images, while in OLI_, the TIRS image shows the
reflectivity of bands 3, 2, 5, 6, and 7.

These three water index methods have different advantages and disadvantages in
terms of the effect of water extraction in different regions. The NDWI index method can
inhibit the interference of vegetation and soil information to a certain extent and better
identify the differences between water bodies and other features, but the extraction results
may contain a little land or mis-mention some ice and snow information. The MNDWI
index method can effectively distinguish building and soil information; the water extraction
effect, especially, is better in urban areas but there is a risk of mis-mentioning ice and snow
information. The AWEIsh index method can effectively distinguish dark surface cells, such
as water cells and terrain shadows, and can be applied to unshadowed areas, but it is
greatly disturbed by ice and snow. Therefore, through the comparison of actual effects, we
selected and adopted one of the water index methods with the best extraction effect for the
water body of Qilu Lake [24,44–46].

2.3.3. A Model for Retrieving Water Level from Lake Area

In this study, the area data of Qilu Lake in 2000, 2005, 2010, 2015, and 2020 and the
measured water level elevation data of corresponding dates obtained through calculation
were used as the data for the inversion model. The linear model, exponential model,
logarithmic model, and polynomial models of different degrees were used to establish
multiple regression models and the correlation coefficient R2 was used to measure the
degree of correlation of model fitting. The larger the correlation coefficient, the better the
model fitting performance [30].

3. Results
3.1. ESTARFM Spatio-Temporal Fusion Results and Evaluation

The two groups of Landsat and MYD09GA data for 18 January and 9 May 2020, as
well as the MYD09GA data for the prediction period of 13 February 2020, were used as
the initial data of the ESTARFM model to obtain the Landsat data on February 13 after
fusion. In Figure 3, phases 1, 2, and 3 show the comparison of MODIS and Landsat images
in the Qilu Lake area on January 18, February 13, and May 9, respectively, and the upper
and lower phases represent MODIS and Landsat image data, respectively. We found
from “Phase2 (13/2): Fusion results” that the Landsat images obtained after fusion on
February 13 (prediction date) are very similar to the real Landsat data from other periods
(January 18 and May 9), and the fusion effect is in line with expectations. The spatial
resolution was successfully improved from 500 m to 30 m and the spectral information
was well preserved. Since the cloud amount of Landsat remote sensing images in 2020
is generally high, and there are few images with qualified definition, it is impossible to
obtain other predicted images on the same day of February 13, so the Landsat image on
January 18 of the same year was selected as the test data for the precision verification
of fusion results. The specific step was to randomly generate 10,000 verification points
with uniform distribution in the fusion area and the average correlation coefficient of the
two images was 0.7525 after calculation, which shows that the fusion result based on the
ESTARFM model is reliable.
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3.2. Precision Validation of the Water Extraction Method

Since the cloud amount of Landsat TM image data in 2005 was 0, the data quality
was the highest, and remote sensing images involved in water extraction were mainly
obtained from TM sensors. Therefore, we selected 2005 data as an example with which
to verify the extraction accuracy of three water body index methods (NDWI, MNDWI,
AWEIsh). The extraction results are shown in Figure 4. Through visual inspection, it was
found that the NDWI index was relatively fuzzy in the identification of the boundary part
of Qilu Lake, and there were many burrs in the water boundary, and the extraction results
of the AWEIsh index included the dried up part of the original lake area and the fish ponds
around the lake. After comparative analysis, it was found that MNDWI index was more
effective in extracting the water area of Qilu Lake. This result is the same as the research
findings of Xiaojun Wu et al. [23]. For more accurate accuracy verification, we used the
EO-1 Advanced Land Imager (ALI) image from 3 March 2005 as the verification data, which
had a spatial resolution of 10 m and a 5-day difference between the imaging time and the
Landsat data based on water extraction (25 February 2005), resulting in minimal error. The
specific operation was as follows: 500 water sample points were randomly generated in
the extraction results and superimposed on the pretreated EO-1 ALI image, the accuracy
verification was carried out by visual interpretation, and the lake extraction accuracy of
these three water body indices in 2005 was 98.0%, 99.2% and 98.4%, respectively, which
once again verifies the results of visual judgment. Therefore, the MNDWI water index
extraction method was adopted in the subsequent lake area statistics.
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3.3. Spatio-Temporal Change of the Lake Area

The MNDWI water index method was used to extract the water body of the five-stage
Landsat image, and the optimal segmentation threshold for lake extraction was determined
by combining the Otsu algorithm and the debris was combined or rejected. The Otsu [47]
method is an adaptive threshold method that helps eliminate errors caused by erroneous
splitting between water and non-water areas caused by artificial thresholds. The extraction
results are shown in Figure 5 and the lake area was counted for each year (Table 2). The
extraction results are shown in Figure 5.
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Table 2. Area change in Qilu Lake.

Year Lake Area/km2 Rate of Change/%

2000 36.85 /
2005 35.48 −3.73%
2010 36.14 1.86%
2015 21.67 −40.04%
2020 34.47 59.07%

3.3.1. Area Size Changes

From 2000 to 2020, the area of Qilu Lake showed a downward trend of fluctuation,
with an overall reduction of 0.71 km2, which can be divided into three stages: (1) from 2000
to 2010, the area of the lake was relatively stable, fluctuating around 36 km2; (2) from 2010
to 2015 or so, the lakes have been reduced in a large scale, with a change rate of −40%;
(3) after about 2015, the lake gradually expanded and the area rebounded (Table 2).

We used the quadrant orientation analysis method in geometry for reference to analyze
the spatial change trend of the lake area from eight directions: east, northeast, north,
northwest, west, southwest, south, and southeast (Figures 6 and 7, Table 3). On the
whole, from 2000 to 2020, the spatial changes of Qilu Lake in all directions showed the
characteristics of reduction, especially in the southwest and west, with the area reduced by
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0.44 and 0.49 km2, respectively. The second largest reductions were in the north and south.
In these two directions, the area of Qilu Lake has shrunk by 0.29 and 0.22 km2. However,
the area in other directions decreased slightly, and the northwest direction only decreased
by 0.09 km2. Compared with other years, the lake profile in 2015 decreased by 200 m in
this direction. From the stage of lake spatial change, except for 2015, the lake contours in
other years are roughly consistent with a small change range. From 2000 to 2010, the area
of lakes changed steadily. In the early stage, it was mainly reduced, while in the later stage,
it was mainly expanded. From 2010 to 2015, Qilu Lake contracted sharply, with a shrinking
area of 7.36 km2 in the southwest, accounting for 1/4 of the total area, and a shrinking area
of 3.2 km2 in the west. From 2015 to 2020, Qilu Lake will gradually expand, and its area
will return to the state close to that before 2015. Its expansion direction is consistent with
the reduction direction of the previous stage, mainly reflected in the southwest and west
directions. The lake area will increase by 6.82 km2 and 2.8 km2, respectively.
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Table 3. Area change of Qilu Lake in different directions during different periods.

Direction 2000–2005 2005–2010 2010–2015 2015–2020 2000–2020

North −0.02 −0.02 −0.42 0.17 −0.29
Northeast −0.20 0.12 −0.86 0.77 −0.17

East −0.06 0.03 −0.57 0.49 −0.11
Southeast −0.03 0.01 −0.61 0.52 −0.11

South −0.05 0 −1.28 1.11 −0.22
Southwest −0.19 0.29 −7.36 6.82 −0.44

West −0.18 0.09 −3.20 2.80 −0.49
Northwest 0 −0.01 −0.20 0.12 −0.09

3.3.2. Lake Contour Changes

In order to visualize the characteristics of lake contour changes, we used the landscape
shape index (LSI) to measure the shape changes of the contour of Qilu Lake from 2000 to
2020. The landscape shape index indicates the ratio of the circumference of a plaque to the
circumference of an equal area and is an important indicator for quantifying the complexity
of the landscape shape; the larger the value, the more complex the landscape shape and
vice versa—the smoother and simpler the shape, when its value is 1, the landscape is
round [22,48]. The results show (Figure 8) that the shape index of Qilu Lake has generally
shown a downward trend in the past two decades and its changes mainly include two
stages: the shape index in the previous stage (2000–2010) is not less than 2.10, which
roughly maintains a stable level, first falling and then rising, and the lake contour at this
stage maintains the original complexity and is less disturbed by the outside world. In the
later stage (2010–2020), the shape index gradually decreased from 2.17 to 1.74, for which
the index fell the most from 2010 to 2015, and the lake contour tended to be flat, which was
due to the increasingly severe human disturbances such as road damming, water release,
and construction of scenic spots around Qilu Lake at this stage, coupled with the uneven
distribution of rainwater in the river basin, resulting in low regularity of lake contour
changes [22]. There is a certain degree of positive correlation between lake contour and
area size change.
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3.3.3. The Geometric Center of the Lake Changes

Spatial variations in lake area inevitably lead to the migration of the geometric center
of the lake (Figure 9). Using the Calculate Geometry function of GIS to obtain the geometric
center coordinate position of the lake, we found that the geometric center of Qilu Lake
did not change significantly from 2000 to 2010, but its position shifted significantly to
the northeast in 2015, with a migration distance of 1173 m, and the geometric center
returned to the vicinity of the center in 2005 in 2020. On the whole, the change in the
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geometric center position of Qilu Lake from 2000 to 2020 mainly occurred in the southwest–
northeast direction.
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3.4. The Relationship between Lake Area and Water Level

In order to maintain data consistency and reduce errors, we selected the water
level data in February of each year corresponding to the remote sensing data used for
area extraction to analyze the water level change and its relationship with area change
(Figures 10 and 11). From 2000 to 2020, the water level of Qilu Lake showed a decreasing
trend and its change was roughly divided into two stages: from 2000 to 2015, the water
level of the lake gradually decreased, with the largest drop from 2010 to 2015 reaching
1.01 m. According to the linear regression analysis (Figure 11), we found that the water level
change of Qilu Lake was positively related to the area change. Except for small fluctuations,
the characteristics of the change trend were generally consistent.

The area of Qilu Lake in 2000, 2005, 2010, and 2015 and the corresponding water level
data were taken as the data for the inversion model. The linear model, exponential model,
logarithmic model, and polynomial model of different times were selected to establish
multiple area water level regression models, and the correlation degree of model fitting
was measured by the correlation coefficient R2. The larger the correlation coefficient, the
better the model fitting performance [30]. The R2 of the linear model, exponential model,
logarithmic model, and polynomial model with different degrees were 0.8995, 0.9039,
0.8815, and 0.9259, respectively. Finally, the polynomial models of different degrees with
the highest correlation coefficient were selected as the models for retrieving the lake water
level elevation from the water surface area of Qilu Lake. The results are as follows:

H = 0.02S2 − 1.07S + 1808.20

where H is the water level elevation of Qilu Lake and S is the water surface area of Qilu
Lake in the corresponding year.

The water level elevation of Qilu Lake in 2020 predicted by the inversion model was
1795.10 m, with an error of only 0.01 m from the measured value of the hydrological station
at the corresponding time, and the prediction accuracy was close to 100%. Therefore, the
inversion model established in this study can accurately predict the corresponding water
level elevation data using the lake area data, so as to establish the digital model relationship
between area and water level.
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3.5. Drivers of Lake Area Change

With the intensification of global warming, different regions of the world are expe-
riencing more extreme weather events and drought has become one of the major threats.
Between 2009 and 2014, continuous drought occurred in Southwest China in general, and
in Yunnan specifically, resulting in a serious shortage of water resources in most lakes in
Yunnan. The water volume of lakes could not meet the normal requirement for evaporation
and human demands and the water level of several plateau lakes dropped to the lowest
level in nearly 30 years. Although the meteorological data show that the precipitation
increased between 2014 and 2015, the Qilu Lake surface remains shrinking, which indicates
that the factors causing the reduction in lake area and water level include both natural
factors and socio-economic factors. Due to the occurrence of severe drought, Qilu Lake
dried up over a large area. Villagers around the basin reclaimed the land from the dried
part of the lake and thus accelerated the reduction of Qilu Lake [9]. In addition, the Qilu
Lake basin is densely populated, the urbanization process is accelerating, the area of hu-
man interference is expanding, and the whole lake is surrounded by artificial dikes and
reclamation, resulting in the complete destruction of the natural land water transition zone
by hardened facilities and reclaimed farmland, reducing the area and volume of the lake
basin. The construction of large-scale projects, especially the Pan Asian Railway Tunnel
Project, has damaged the balance of groundwater resources in the southwest of the sea; it
also aggravated the drought crisis of Qilu Lake [9,23].

After 2015, the dry weather in the Qilu Lake basin has eased and the sharp reduction
of its area has also been highly valued by the government. At present, Tonghai County
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implements the “lake revolution” and makes every effort to harness Qilu Lake to save water
and reduce emissions at the source, to replace the water supply in the basin, to complete
the Dalongtan water diversion project, and to replenish Qilu Lake. Until 2020, the Qilu
Lake area gradually expanded and was recovered to its original state.

In order to better quantify the driving factors of the changes in Qilu Lake area in
the last 20 years, we selected four natural factors, namely annual average temperature,
annual precipitation, annual average sunshine hours, and annual average evaporation,
and five socio-economic factors, namely population, GDP, gross industrial output value,
gross agricultural output value, and crop planting area for analysis. Through the analysis
of grey correlation degree [49], it was found that, on the whole, the influence of natural
factors on the changes in Qilu Lake area is greater than that of social and economic factors
(Table 4). The order of correlation degree of natural factors is: annual average tempera-
ture > annual average sunshine hours > annual precipitation > annual evaporation. The
order of correlation degree of social and economic factors is: population > crop planting
area > total industrial output value > GDP > total agricultural output value. In general, the
annual average temperature, annual precipitation, annual average sunshine hours, and
population have the greatest impact on the change in the Qilu Lake area. According to the
linear analysis results (Figure 12), it can be seen that the annual average temperature (b),
annual average sunshine hours (c) and population density (d) are negatively correlated
with the lake area, and the population density and annual average temperature are more
significant. Annual precipitation was slightly positively correlated with the lake area (a).

Table 4. Grey correlation between lake area and driving forces in Qilu Lake.

Natural Factors Grey Correlation Degree Socio economic Factors Grey Correlation Degree

Annual average temperature 0.9729 population 0.9593
Annual precipitation 0.9578 GDP 0.6817

Annual average sunshine hours 0.9710 Total industrial output value 0.7206
Annual average evaporation 0.9416 Total agricultural output value 0.6297

Crop sown area 0.8660
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The stepwise regression analysis method [50,51] was used to screen out the main
driving factors affecting the water level changes in Qilu Lake, including the gross industrial
output value (p = 0.001) and the planting area of crops (p = 0.004). Based on this, a multiple
regression model between these two driving factors and the water level of the lake was
established. The mathematical expression of this model is:

W = 1796.07− 1.53× 10−6X1 + 4.50× 10−5X2

where W is the lake water level elevation and X1 and X2 represent the two driving factors
of gross industrial output value and crop planting area, respectively. Through the above
analysis, it can be seen that the area of Qilu Lake is mainly affected by natural factors such
as annual average temperature and annual average sunshine hours, and the main driving
force of water level change is socio-economic factors. This can help explain the difference
in the development trend of lake area and water level between 2005 and 2010. At this stage,
the total industrial output value and agricultural planting area of Tonghai County doubled
and the lake water level dropped significantly. During this period, the annual average
temperature and other natural factors did not change significantly, and the lake area did
not change significantly due to the impact of the experimental extraction time scale.

4. Discussion

So far, the research period for the monitoring of the area of Qilu Lake has mainly
focused on before 2015, and time series studies after that are relatively lacking. In this
paper, it was found that Qilu Lake suffered severe shrinkage from 2010 to 2015 through
water extraction, which is consistent with the relevant research results. However, due
to the selection of image data and the different methods of water extraction, there are
different degrees of discrepancy between the data results obtained by each study [22,23,52].
Our extraction results are most consistent with the research results of Tao Wang [22] et al.;
the difference in lake area data in 2000, 2005, 2010, and 2015 is less than 0.1%, and the
common point is that the water extraction method we adopted is MNDWI. It can be seen
that the selection of water extraction methods has a key impact on the data accuracy of the
extracted results, and the accuracy verification of the lake extraction results has become a
necessary link to ensure the credibility and scientificity of the research results. In previous
studies, when selecting the water index extracted from lakes, only visual comparison or
direct continuation of the results of predecessors were used, which made the selection
of water extraction methods unscientific. Therefore, in order to overcome this problem,
this paper used hyperspectral data images (EO-1 Advanced Land Imager) from the same
time period to verify the accuracy of water extraction results. Launched by NASA on
21 November 2000, EO-1 was one of the first available high-resolution satellite images due
to its spatial resolution of 10 m, and its sensor ALI is considered NASA’s alternative data
for Landsat TM and Landsat ETM+.

Sentinel series data have become emerging hot data in recent years due to their high
resolution, wide global coverage, large amount of available data, fixed revisit cycle, and free
policy [53]. However, due to their late emission time, the high-quality image imaging time
available is only after 2017, so they are not suitable for long-time monitoring research. On
the other hand, affected by the availability of image data and corresponding hydrological
and socio-economic data of the river basin, this paper selected five representative and equal
time intervals in the past 20 years to carry out long-time monitoring research on the area of
Qilu Lake, but this inevitably has the problems of incomplete years and insufficient data.
Therefore, in the next step of our research, we will use the Sentinel series of image data to
fill the gap in the year caused by the lack of Landsat data, and conduct a short-term specific
study of lake changes in the past five years.

This study used the method of time–space fusion and the image data used were all
taken from February in the dry season, so the calculation error was controlled from the
data source level, making up for the lack of uniformity in the months of data extraction
for the Qilu Lake water body [9,23,29]. Yunnan Province, where Qilu Lake basin is located,
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has typical dry and wet seasons in its climate. However, due to the limitation of data
and workload, and considering the representativeness of the research year, this study
did not carry out specific calculations and analysis for each year and its dry and wet
seasons in the research period. In the next step, the GEE (Google Earth Engine) remote
sensing big data platform can be used to help process a large number of remote sensing
images with a long time series. In fact, the emergence of this platform provides technical
support for researchers to carry out long-term monitoring of resource and environmental
elements at the global or regional scales, such as large-scale mangrove distribution, land
cover mapping, impervious surface extraction, lake water monitoring, etc. [52,54–57]. In
addition, optical remote sensing data are generally vulnerable to cloud and rain weather.
For example, in this study, the optical remote sensing image of a certain year had a high
cloud amount affected by weather, and there were few images that met the use conditions.
Microwave remote sensing data can supplement the data to a certain extent, but there are
still differences in imaging and spatial and temporal resolution between microwave remote
sensing data and optical data, so we need to conduct further data collection, analysis, and
other processing and joint application research [29]. In recent years, the overall situation of
Qilu Lake has not been stable and it is particularly vulnerable to meteorological factors and
human activities. Although, with the efforts of the government and all sectors of society, the
area of Qilu Lake has been restored and the quality of its ecological environment has been
improved to some extent, the lake may change significantly in the future due to extreme
weather. Therefore, relevant departments and researchers need to constantly strengthen
the management of the lake’s shoreline, perform real-time monitoring, regular research, set
and update emergency plans, and carry out governance work reasonably. At the same time,
it is also necessary to pay real-time attention to the changes in lake water quality, to protect
lake water resources according to law, and to ensure the ecological health of lake water so
as to effectively prevent the shrinkage of lake size and ultimately achieve the sustainable
development of water resources [58,59].
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