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Abstract: The paper proposes a simple one-stage synthesis of organic-inorganic composite materials
based on oxide compounds of iron (III) and cobalt (II) with a developed surface. The process of
cobalt(II) ferrite (CoFe2O4) structure formation on the biochar surface was studied. As an organic
component, biochar was obtained from agricultural waste, including sunflower husks, rice husks, and
pea kernels. Composite materials cobalt ferrite/biochar were obtained for the first time using these
wastes. The obtained materials were characterized using X-ray phase analysis, fourier transform
infrared spectroscopy (FTIR), transmission electron microscopy, and N2 adsorption-desorption. A
mechanism for forming composite materials is proposed, including the stage of formation of chelate
complexes of transition element cations with citric acid on the biochar surface and their subsequent
thermal decomposition. High adsorption activity of the synthesized materials in the process of
removing chromium (VI) ions from aqueous solutions was established. The sunflower husk biochar
composite material based on CoFe2O4 has the highest adsorption capacity of 6.98 mg/g. The results
suggest that biochar composites based on CoFe2O4 have great potential for the practical industrial
wastewater treatment.

Keywords: Cobalt(II)-Iron(III) Oxy; spinel structure formation; carbon composite; synthesis; charac-
terization; chromium nanostructured materials

1. Introduction

Complex oxide compounds based on transition metals have been the object of many
years of intense study. This is due to the presence of a successful combination of a number
of important technical properties and the relative ease of manufacture. Cobalt(II) ferrite
(CoFe2O4) is obtained using various technological methods: solid-phase reaction [1], the
sol-gel method [2–4], hydrothermal synthesis [5,6], and pyrolysis of precipitated hydroxides
in an argon atmosphere [7]. To obtain efficient catalysts and adsorbents, it is necessary to
synthesize materials with a developed surface. As a rule, oxide compounds of transition
elements have a low specific surface area. To obtain new materials, the synthesis used,
using starch [8], graphene oxide [9], sewage treatment plant sludge [10], and cellulose [11]
as an organic carrier with a developed surface. Such compositions make it possible to obtain
materials with a double effect: a developed surface due to a particular organic substance and
magnetic or semiconductor properties due to an inorganic component [12–15]. With the use
of these materials, polluted industrial effluents are effectively cleaned from dyes [13,14,16],
heavy metals [8,17,18], pesticides [11,19], herbicides [20], and drug residues [21,22].

In recent years, more and more attention has been paid to waste processing by new
technological chains with the formation of demanded products. One of the options for
these wastes is the by-products of agricultural production—sunflower husks, rice husks,
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and peas. Biochars can be prepared from these materials, allowing practically waste-free
production. Numerous recent studies have been actively developing a process for using
residual biomass to obtain a potential sorbent for purifying water contaminated with
persistent pollutants.

It is known that biochar is obtainable from citrus peel [22], bamboo [16], melon peel [17]
and banana [21], corn stalk [23], coconut shell and watermelon peel [24], pollen [25], and
bark [18] pine, rice straw [20]. Biochar is an environmentally friendly and cost-effective
adsorbent with a high specific surface area and porous structure. However, it has a low
density and small particle size, which makes it difficult to remove them from the reaction
system after the reaction. In this regard, a promising area of research in world science is
the creation of organic-inorganic composite materials with the introduction of particles
suitable for magnetic separation into biochar. The ferrites of transition elements with a
spinel structure, with the general formula MeFe2O4 (Me = Mn, Zn, Co, Mg, Fe, Cu) exhibit
catalytic properties and exhibit adsorption activity. Among ferrites, the complex oxide of
iron (III)-cobalt (II) (CoFe2O4) is the preferred magnetic material since it is chemically and
thermally stable and has high mechanical strength [17]. Different scientific groups have
obtained composite organic-inorganic materials based on CoFe2O4 compounds and used for
a number of applications: biochar from orange peel is used for coagulation removal of fine
silver particles [22], from bamboo [16]—for removal of organic dye, from melon peel [17],
pine bark [18]—for sorption of Cu2+, Cd2+, Pb2+ cations, from corn stalk [23]—for removal
of lomefloxacin hydrochloride, from banana [21]—for removal of amoxicillin antibiotic,
from sewage treatment plants sludge [10], pine pollen [25]—for the decomposition of
bisphenol A.

One of the effective separation methods is solid-phase extraction. As its variation,
magnetic solid-phase extraction can be distinguished when the sorbent used can be sepa-
rated after the reaction by applying a constant magnetic field. This study aimed to develop
a simple method for obtaining organic-inorganic magnetically detachable composite mate-
rials based on oxide compounds of iron (III)-cobalt (II) and several biochars for removing
chromium compounds from aqueous solutions.

2. Materials and Methods
2.1. Materials

Starting materials—nitrates of cobalt (II) (Co(NO3)2·6H2O) and iron (III) Fe(NO3)3·9H2O
(the content of components not less than 99%), ammonia solution NH3·H2O 25% (wt.),
citric acid C6H8O7 (analytical grade) used. Distilled water was used to prepare solutions.
Rice and sunflower husks were obtained from private farmers in the South of Russia, pea
kernels were provided by Agrokholod company, Russia.

2.2. Pyrolysis of Biochars

The biomass of sunflower husks, rice husks, and pea kernels was washed with distilled
water to remove surface contaminants, then dried in oven at 100 ◦C until a stable weight
was reached. The resulting dry biomass was placed in a muffle furnace for pyrolysis
in a sealed metal vessel to exclude oxidation. The reaction was carried out stepwise at
temperatures of 100–700 ◦C, with a temperature change step of 200 ◦C. The total reaction
time was 2 h 45 min, holding time in intermediate phases 20 min, and holding time at final
temperature 45 min. The temperature rise rate was 11 ◦C/min. The resulting biochars were
stored in sealed containers for further use.

2.3. Synthesis of Composite Materials

Synthesis of the composite material was carried out in one stage with the formation of
an composition in situ. Cobalt(II) ferrite was formed on the biochar surface according to
the method developed by the authors and described in [26,27].

For the experiment, biochars prepared from sunflower husks, rice husks, and peas
were used. Then, with continuous stirring, 25 mmol of Co(NO3)2 and 50 mmol of Fe(NO3)3
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(in the form of solutions with a concentration of 1 mol/L) were simultaneously added. Then,
200 mmol of ammonia (in the form of a solution with a concentration of 25%) and 156 mmol
of citric acid (in the form of a solution with a concentration of 6.25 mol/L) were introduced.
The mixture was then heated until complete evaporation of the liquid. With further heating,
the process of intensive decomposition occurred, accompanied by the release of gaseous
substances and the glow of the reaction system. Heating was continued until the end of
the evolution of gaseous products of thermolysis of metal nitrates. The end of the reaction
was monitored visually. The resulting composite materials are designated as cobalt (II)
ferrite/Sunflower (FS), cobalt (II) ferrite/Rice (FR), and cobalt (II) ferrite/Peas (FP).

2.4. Characteristic

Various methods were used to characterize the obtained composite materials, includ-
ing X-ray diffraction (XRD), Fourier transforms infrared spectrometry (FTIR), transmission
electron microscopy (TEM), Brunauer-Emmett-Teller analysis (BET), thermogravimetric
analysis (TGA). The phase composition was studied on an ARL X’TRA X-ray diffractometer
(Thermo Scientific, United Kingdom) (monochromatized Cu-Kα radiation was used) by
point-by-point scanning (step 0.01◦, accumulation time at a point 2 s) in the range of 2θ
values from 15◦ to 70◦. The crystallite size along the line (400) was using the Scherrer
Equation (1) [28]:

D = 0.94λ/(B·cosθ), (1)

where D is the average crystal size, nm, λ is the X-ray wavelength, nm, B is the width of
the peak line at half its height, rad, cosθ is the value of the cosine of the angle for the peak.

The surface area was determined on a ChemiSorb 2750 V apparatus (Micromeritics,
Norcross, GA, USA). Nitrogen physical adsorption isotherms were obtained at 77 K. Prior
to measurement, the samples were degassed.

The FTIR absorption spectra of the samples were obtained on a Varian 640 IR-Fourier
spectrometer (Agilent Technologies, Santa Clara, CA, USA) using the method of frustrated
total internal reflection, the prism material was diamond.

The samples were prepared by pressing with potassium bromide (1% (wt.)). A Tecnai
G12 BioTwins transmission electron microscope (FEI, Philips, Czech Republic) in bright
field mode was used at an accelerating voltage of 100 kV to provide the TEM images.

2.5. Study of Adsorption Activity

The adsorption activity of the synthesized materials was studied on a model solution
of potassium dichromate with a concentration of 5 mmol/L. In this case, 5 mL of the initial
potassium dichromate solution was passed through a reaction column containing 2 cm3

of the adsorbent. Next, 5 mL of deionized water was passed through the column, and the
content of dichromate ions in the washing solution was determined. The determination
was carried out by the intrinsic color of the solution by the photocolorimetric method using
a KFK-2-UHL 4.2 device (Yurga, Russia) with a wavelength of 364 nm. The degree of
purification (N) was calculated by the Equation (2):

N = n·216/m0 (2)

where n is the amount of desorbed Cr2O7
2− ions, mol; 216 g/mol is the molar mass of

dichromate ions; m0 is the mass of the used composite, g.

2.6. Recycling

At the end of the experiment, the adsorbent was washed three times with distilled
water, dried at room temperature, and the adsorption activity was re-examined. The
composite was separated using a permanent magnet, and reused.
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3. Results
3.1. Study of the Structure and Morphological Features of Samples

In all cases, the synthesized material had a porous structure. X-ray diffraction patterns
of the synthesized samples of composite materials are shown in Figure 1. The X-ray patterns
show spectra characterizing the phase of the cubic spinel CoFe2O4.

Water 2023, 14, x FOR PEER REVIEW 4 of 13 
 

 

2.6. Recycling 
At the end of the experiment, the adsorbent was washed three times with distilled 

water, dried at room temperature, and the adsorption activity was re-examined. The com-
posite was separated using a permanent magnet, and reused. 

3. Results 
3.1. Study of the Structure and Morphological Features of Samples 

In all cases, the synthesized material had a porous structure. X-ray diffraction pat-
terns of the synthesized samples of composite materials are shown in Figure 1. The X-ray 
patterns show spectra characterizing the phase of the cubic spinel CoFe2O4.  

 
Figure 1. X-ray pattern of samples of composite materials (designated as cobalt (II) ferrite/Sunflower 
(FS), cobalt (II) ferrite/Rice (FR), and cobalt (II) ferrite/Peas (FP)). 

For iron (III)-cobalt (II) oxide compounds of the CoFe2O4 type, the structure can be 
described as a cubic close-packed lattice of oxygen ions, in which there are octahedral 
(denoted B) and tetrahedral (denoted A) voids (Figure 2). The degree of inversion of cobalt 
ferrite was determined using the calibration curve method [29]. Since the radius of the 
Co2+ ion (0.078) is larger than that of the Fe3+ ion (0.067), the cobalt ion, taking the place of 
the iron ion in the B-sublattice, pushes the surrounding O2- anions apart, which leads to 
an increase in the lattice constant. In this regard, the lattice parameter has higher values 
for the reversed spinel. One of the ways to control the degree of conversion is the synthesis 
method. Thus, cobalt (II) ferrite obtained by the mechanochemical method at different 
annealing temperatures has different values of the lattice parameter [29]. The normal spi-
nel structure is formed at low temperature annealing and is characterized by the value of 
the lattice parameter a = 0.8288 nm, reversed—at a higher annealing temperature, a = 
0.8377 nm. The calculated values of the parameters of cobalt (II) ferrite samples synthe-
sized in this study have intermediate values, according to the graph λ(a), the degree of 
reversibility can be determined. The calculated values of the lattice parameters and re-
versibility are given in Table 1. 

Figure 1. X-ray pattern of samples of composite materials (designated as cobalt (II) ferrite/Sunflower
(FS), cobalt (II) ferrite/Rice (FR), and cobalt (II) ferrite/Peas (FP)).

For iron (III)-cobalt (II) oxide compounds of the CoFe2O4 type, the structure can be
described as a cubic close-packed lattice of oxygen ions, in which there are octahedral
(denoted B) and tetrahedral (denoted A) voids (Figure 2). The degree of inversion of cobalt
ferrite was determined using the calibration curve method [29]. Since the radius of the Co2+

ion (0.078) is larger than that of the Fe3+ ion (0.067), the cobalt ion, taking the place of the
iron ion in the B-sublattice, pushes the surrounding O2− anions apart, which leads to an
increase in the lattice constant. In this regard, the lattice parameter has higher values for
the reversed spinel. One of the ways to control the degree of conversion is the synthesis
method. Thus, cobalt (II) ferrite obtained by the mechanochemical method at different
annealing temperatures has different values of the lattice parameter [29]. The normal spinel
structure is formed at low temperature annealing and is characterized by the value of the
lattice parameter a = 0.8288 nm, reversed—at a higher annealing temperature, a = 0.8377 nm.
The calculated values of the parameters of cobalt (II) ferrite samples synthesized in this
study have intermediate values, according to the graph λ(a), the degree of reversibility can
be determined. The calculated values of the lattice parameters and reversibility are given
in Table 1.

Cobalt(II) ferrite in composites with biochars from sunflower and rice refers to practically
inverted spinels (the reversal parameter is 0.9 and 0.85, respectively). On the contrary, in a
composite with peas, it is close to normal spinels (reversal parameter 0.1). The values of the
average crystallite size (calculated by the Scherrer method) are given in Table 1. According
to the obtained results, the synthesized cobalt (II) ferrite/rice composite has the smallest
crystallite size, followed by the composite with sunflower biochar and, finally, pea biochar.

The TEM images in Figure 3 of the synthesized composites show regular octahedral
crystals typical of CoFe2O4. The particle size distribution shows that the rice composite is
almost monodisperse with a particle size of 50–100 nm, for the sunflower composite, the



Water 2023, 15, 93 5 of 11

main particle size falls within the same range; for the pea composite, the particles are larger,
300–400 nm.
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Table 1. Characterization of synthesized composite materials.

Sample a, nm Reversibility
Parameter λ Spinel Formula D, nm SBET,

m2·g−1

FS 0.8376 0.9 (Co0.1Fe0.9)[Co0.9Fe1.1]O4 121 83.2
FR 0.8370 0.85 (Co0.15Fe0.85)[Co0.85Fe1.15]O4 104 87.1
FP 0.8297 0.1 (Co0.9Fe0.1)[Co0.1Fe1.9]O4 208 115.9
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Figure 3. TEM images of synthesized composite materials: (a,d) is FS, (b,e) is FR, and (c,f) is FP.

The photographs clearly show the hexagonal structures of spinels formed on the
surface of the sorbents. It is also seen that spinels attach to certain places of the sorbent and
separate the layers, partially overlapping the surface of the coals.

Data on the structure of the material were supplemented by the results of FTIR
spectroscopy (Figure 4). For all synthesized materials, the presence of peaks in the region of
3380–3440 cm−1 was noted, which are associated with vibrations of the –OH group [30,31].
The peak in the region of 1616–1710 cm−1 is attributed to vibrations of the C–C group [31,32].
In the region of 1000–1200 cm−1, an intense band of C–O stretching vibrations is visible [30].
A small peak at about 810 cm−1 indicates C–H deformation [30].
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Figure 4. FTIR spectra for the synthesized composite materials (a) with detailing of the oscillation
region for the oxide component (b).

According to the results of thermographic analysis, for all samples there is a sharp
change in mass in the region of 400–550 ◦C (Figure 5). In the same region, according
to the data of differential scanning calorimetry, an exothermic effect was noted. These
experimental data may be associated with the decomposition of the organic component of
composite materials. For all samples, the decomposition start temperature is 350 ◦C. The
decomposition end temperature increases from FS (570) through FR (580) to FP (650). The
thermal effects for FS and FR are close in value (the area under the peak of the thermal
effect is 848 and 944 relatively for composites units). For the FP sample, the thermal effect
is more significant (on 26–34%) and more strongly affected in the temperature range. This
may be due to the nature of the organic component of the composite: pea biochar is denser
and has the highest bulk density (0.132 g/mL for FS, 0.215 g/mL for FR, 0.294 g/mL
for FP). By the value of the residual mass, one can judge the ratio of the organic and
oxide components in the composite material. The TGA data obtained indicate that the FR
composite contains the largest amount of the inorganic component. This may be due to the
shape of biochar particles; transition metal ions are more easily fixed on the surface of such
particles, followed by oxy-spinel formation.
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3.2. Study of Adsorption Activity

The synthesized composite materials were tested in the process of sorption of Cr2O7
2−

ions from an aqueous solution. The experimental data are given in Table 2.

Table 2. Adsorption properties of composite materials.

Sample Sample Weight, g n, µmol N, mg·g−1

FS 0.263 8.50 6.98
FR 0.430 9.75 4.90
FP 0.588 3.32 1.22

According to the results obtained, the composite based on cobalt (II) ferrite and
sunflower biochar (FS) has the highest sorption capacity. Its sorption capacity exceeded the
similar values for the FR and FP composites by 29.8 and 82.5%, respectively.

4. Discussion

The distribution of cations over the A- and B-positions may vary. There are two
extreme cases of such a distribution—normal and inverted spinels. In normal spinel, Co2+

cations are inside the tetrahedron, and Fe3+ ions are inside the octahedron (Figure 2). The
formula can be written as (Co)[Fe2]O4. In the inverted structure, half of the Fe3+ ions are
located at A sites, half at B sites, and Co2+ ions occupy B sites (Figure 2); the formula can
be written as (Fe)[CoFe]O4 [33]. In real oxide spinels, the distribution of cations is of an
intermediate nature and is determined by the reversal parameter λ (it shows the number of
Co2+ cations occupying B sites).

In terms of specific surface area (Table 1), the composite with peas has the highest
value, followed by composites with rice and sunflower. The correlation between the values
of the specific surface area of the synthesized composites and the value of the inversion
parameter should be noted: the higher the degree of inversion of the oxy-spinel based on
CoFe2O4, the lower the specific surface area of the composite. In addition, the values of
the specific surface area for FS and FR differ slightly (by a value of about 4.5%), and with
the value for FP the difference becomes more significant (up to 28%). A similar effect can
be noted for the values of the inversion parameter: for FS and FR the difference is about
5.5%, and the value for FP increases to 80%. This experimental fact may be related to the
nature of the surface of biochars: in the case of sunflower and rice, the particles have an
elongated shape, while in peas, it is close to round. Under these conditions, the sorption of
intermediate synthesis products on the biochar surface probably occurs differently, which
leads to differences in the structural features of the oxide component of the composite.

The process of formation of cobalt (II) ferrite can be represented as consisting of a
number of stages. The cations of transition elements in solution, formed as a result of the
dissociation of the initial salts according to Equations (3) and (4).

Co(NO3)2 = Co2+ + 2NO3 (3)

Fe(NO3)3 = Fe3+ + 3NO3 (4)

They are sorbed by the biochar surface. In the presence of an ammonia solution,
precipitates of the hydroxides of the form of the corresponding metal (Equations (5) and (6)):

Co2+ + 2OH− = Co(OH)2 (5)

Fe3+ + 3OH− = Fe(OH)3 (6)

When citric acid is introduced into the reaction system, the formation of citrates is
possible according to the reactions (Equations (7) and (8)):

Co(OH)2 + C6H8O7 = Co(C6H6O7) + 2H2O (7)
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Fe(OH)3 + C6H8O7 = Fe(C6H5O7) + 3H2O (8)

Followed by the formation of chelate complexes having a bulk structure (Figure 6):
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In the process of thermolysis, the complexes are decomposed with the formation
of a dispersed powder of spinel with the composition CoFe2O4. In this case, the effect
of inheritance of the precursor shape is observed. A similar phenomenon was observed
earlier [34,35], under interaction of ethylene glycol with iron and cobalt oxalates when
heated in air. The authors found that the heat treatment of mixtures of oxalate powders
with ethylene glycol leads to the formation of new compounds (solvates), in the structure
of which the positions of water molecules are occupied by ethylene glycol molecules.
The crystals of the formed solvates have an extended shape, which is transferred to the
thermolysis products.

According to many observations, the region of 250–600 cm−1, oscillations of the oxide
component of the composite material appear [30,32,35] (Figure 4). It is customary to
attribute the highest-valence cation vibration to the most intense spectral band [36]. In
this regard, it can be assumed that a clear peak in the 580–600 cm−1 corresponds to the
vibrations of the trivalent iron cation in the A-positions. The line in the region 450–470 cm−1

characterizes the vibrations of the divalent cobalt cation in the B positions. This band is not
typical for the FP composite, which has an almost normal spinel structure. The peak, at
380–410 cm−1, can be attributed to Fe3+ vibrations in the B positions. Peaks in the lowest
frequency region 220–250 cm−1 can be associated with the manifestation of vibrations of
Co2+ cations in A-positions. For an almost normal spinel structure of the FP composite,
this peak is intense; for FS and FR, in which the cobalt (II) ferrite has an inverted spinel
structure, these peaks have a significantly lower intensity. It is known [37] that the structure
of inverted spinel is characterized by diffuse peaks, their splitting, and the presence of
shoulders. If we compare the spectra for FP and FS and FR, it can be noted that are three
distinguished peaks for FP. In the case of FS and FR, additional elements are visible in
the form of splitting of peaks, and the presence of a plateau, which confirms the earlier
assumption about a high degree of inversion of cobalt (II) ferrite in FS and FR composites.

The results obtained are comparable with the literature data on the sorption of Cr2O7
2−

(Table 2). Thus, in the study [38] a result of 8–18 mg/g was achieved depending on the
reaction conditions, in the study [39] a result of 2 mg/g was reported. However, the
complexity and duration of the synthesis of the sorbent (33 and 48 h) in these studies and
the need to use precursors harmful (dimethylformamide, toxic aniline was used) to health
should be noted. Compared with similar compounds [38,39], the proposed method for
synthesizing composites from production waste is fast, does not require the use of complex
equipment, proceeds in one stage. Composites exhibit increased adsorption activity and
can be separated from the reaction system using a simple permanent magnet.
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Thus, the composite materials proposed by us have an undoubted advantage in the
simplicity of synthesis and the absence of the need to use precursors hazardous to health
while exhibiting significant adsorption activity in the process of removing chromium
compounds from an aqueous solution.

The increased adsorption activity of synthesized composites may be associated with
the production of bifunctional materials having a developed surface due to the presence of
a biochar in the composition, and a functional group due to the presence of an inorganic
spinel phase. The presence of cobalt (II) ferrite on the surface of the biochar leads to the
formation of active centers and an increase in the sorption strength of chromium ions.

A noteworthy experimental fact is an observed increase in adsorption activity with an
increase in the reversal parameter of the oxide component of the composite. This experi-
mental fact requires further verification. After the completion of the reaction, adsorption
active materials were re-examined. The samples withstood five successive cycles of use
without loss of activity (Figure 7).
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5. Conclusions

A simple one-stage method for obtaining a number of organic-inorganic composite
materials based on oxide compounds of iron (III)-cobalt (II) is proposed. This method,
unlike analogs, allows the synthesis of composite materials with the formation of an oxide
component on the surface of the biochar in situ, which significantly reduces the complexity
of the process. Using thismethod, cobalt (II) oxy-ferrites were obtained on the surface of
biochars prepared from agricultural waste: sunflower husks, rice husks, and peas.

It was found that the synthesized materials have high specific surface area values of
83–116 m2/g, and are suitable for use in the process of adsorption of pollutants from an
aqueous solution.

It is shown that the oxide material is formed on the biochar surface in the form of
octahedral crystals and corresponds to the structure of the cubic spinel CoFe2O4. The
calculated values of the reversal parameter showed that cobalt (II) ferrite has the structure
of a partially inverted spinel with a reversal parameter of 0.1–0.9.

The mechanism of sample formation is discussed, including the stage of formation
of chelate complexes of transition element cations with citric acid and their subsequent
thermal decomposition.

The adsorption activity of the synthesized composite materials was established in the
process of removing chromium ions from an aqueous solution. The composite material
showed the most pronounced adsorption activity with biochar from sunflower husks; for
it, the adsorption capacity was 6.98 mg/g. The results can be used to obtain materials
suitable for industrial wastewater treatment processes using chromium compounds in
production cycles.
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