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Abstract: When studying large multiparametric databases with very heterogeneous parameters
(microbiological, chemical, and physicochemical), covering a wide and heterogeneous area, the
probability of observing extreme values (Z-score > 2.5) is high. The information carried by these
few samples monopolizes a large part of the information conveyed by the entire database. The
study of the spatial structure of the data and the identification of the mechanisms responsible for the
water quality are then strongly degraded. Data transformation can be proposed to overcome these
problems. This study deals with a database of 8110 groundwater analyses (Occitanie region, France),
on which the bacteriological load was measured in Escherichia coli and Enterococci, in addition to
electrical conductivity, major ions, Mn, Fe, As and pH. Three modes of data conditioning were tested
and compared to the treatment with raw data. The results show that log transformation is the best
option, revealing a relationship between E. coli content and all the other parameters. By reducing the
impact of extreme values without eliminating them, it allowed a concentration of information on the
first factorial axes of the PCA, and consequently a better definition of the associated processes. The
spatial structure of the principal components and their cartographic representation is improved. The
conditioning of the data with the square root function led to an intermediate improvement between
the logarithmic transformation and the absence of conditioning. The application of these results
should allow a targeted, more efficient, and therefore, less expensive monitoring of water quality by
Regional Health Agencies.

Keywords: groundwater resource; groundwater management; large database; log-transformation;
Occitanie; France

1. Introduction

Groundwater is a major source of freshwater for the world’s population and is used for
domestic, agricultural and industrial purposes. About one-third of the world’s population,
mainly but not only in arid or semi-arid countries relies on groundwater for drinking
water [1]. However, this resource is threatened by various types of contamination, such as
pathogenic bacteria, toxic metals, hydrocarbons, organic contaminants, pesticides, nanopar-
ticles, microplastics and other emerging contaminants, which present a potential risk to
human health and ecological services [2]. Driven by the European Water Framework
Directive (WFD) in 2000 [3-5], many countries have made the effort to inventory the water
resource and monitor the quality of water intended for human consumption [6-14]. This
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directive has only reinforced an initiative that has been carried out for more than 30 years
in France, where the information is stored in a database called “Sise-Eaux”, managed by
the regional health agencies (https://data.eaufrance.fr/concept/sise-eaux, 20 January 2019
accessed on). The regular updating of this database has generated a volume of data that
now enables us to study and spatialize the processes behind the variability in water quality,
which offers the possibility of targeted, more effective and less costly management. In
this context, and although many parameters are regularly monitored, fecal contamination,
detected by the presence of fecal germs, particularly Escherichia Coli and Enterococcus,
constitutes the vast majority of cases of non-compliance with water intended for human
consumption [15-17]. This non-compliance with the drinking water standards, often due to
strong contamination, which is, however, rare and punctual, is reflected by extreme values
in the databases, i.e., nonnormal distribution. In Geoscience studies, the normality of the
distribution is sometimes verified for aspects related to the physics of the environment,
such as geophysical studies or spatial variations in water content, etc., but more rarely
for aspects of chemical quality [18,19], and even less so for the mechanisms responsible
for the bacteriological quality of water. The two latter cases present a large amplitude of
spatial variability, ranging from several hundred km (spatial variations linked to large
geological structures) to very local variations for certain processes affecting, for example,
nitrates with millimetric hot spots, or even smaller ones for the denitrification process. For
the wide regions, the diversity of environments and processes involved in groundwater
quality can lead to frequency distributions that are far from normal. Each environment
may or may not have a normal distribution, but when aggregated, the distribution in the
data set is likely to deviate from a normal distribution. The frequency distribution of water
characteristics can then be considered as the sum of distributions of different environments,
each with its own mean and standard deviation. For studies on a smaller spatial scale, such
as for groundwater bodies or up to medium size basins, the spatial variability is generally
limited [9,20-23]. The normality assumption is a prerequisite that does not provide a strong
constraint and has little impact on the estimation of uncertainties in the calculations, for
example for the mapping of environmental features. This point is usually only addressed by
geostatisticians [24]. The assumption of data normality is, therefore, a generally forgotten
aspect in the study of mechanisms responsible for the variability of water quality, but in
the presence of extreme values, these can mask certain processes, and therefore, alter the
analysis that is made of the database.

The aim of this work is to compare different conditioning options for bacteriological
and physicochemical groundwater data, to assess the degree of agreement with a normal
distribution model, to evaluate the impact of extreme values on the multivariate processing
of the data, in particular by Principal Component Analysis, as well as on the study of the
spatial structure of the information. In order to ensure a large disparity of environments on
a regional scale, the region chosen for the study is the Occitanie region located in southern
France. This vast region has the particularity of being astride two large basins (Atlantic
and Mediterranean sides), two distinct climatic sectors (Oceanic and Mediterranean), and
presenting a varied lithology.

2. Materials and Methods
2.1. Study Area

The Occitanie region covers an area of 72,724 km? and has a population of 5.8 million
inhabitants. It is bounded to the south by the Mediterranean Sea and the Pyrenean ridgeline,
to the east by the Rhone valley, to the north by the Massif Central, and to the west, it
covers the upper and middle basin of the Garonne River. It thus straddles two major
climatic regions corresponding to its Atlantic side with an oceanic influence (Képpen Cfb,
Cwb, Cfc), while its eastern part has a Mediterranean climate (Koppen Csa, Csb). The
range of altitudes is very high, from 0 to 3300 m. The lithology is extremely variable,
with ancient crystalline basement formations in the Massif Central and the Pyrenees,
folded or unfolded sedimentary formations, and recent Languedocian coastal plains. This
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ensemble covers practically all geological periods with a variety of rocks, namely Cenozoic
detrital sedimentary rocks that extend from the Aquitaine basin to the Mediterranean basin,
Mesozoic carbonate sedimentary rocks in the Causses, the North Montpellier Garrigues,
the Corbieres and the Pyrenean foreland, and plutonic, volcanic and sedimentary rocks
of varying degrees of metamorphism representing the crystalline massifs (Massif Central,
Pyrenees and Montagne Noire).

2.2. Database

The data were extracted from the national SISE-EAUX database, managed by the Regional
Health Agencies since 1990, according to the procedure described by Tiouiouine et al. [25].
Due to the management of the database by the Regional Health Agencies, these extractions
are necessarily carried out according to the administrative division of the French regions,
and in the context of this work, on the whole of the Occitanie region. All analyses were
performed by laboratories with international accreditation and certification of analytical
quality. The extraction concerned the period of about 11 years, more precisely the data
acquired between 22 January 2007 and 18 December 2018. Only the analyses of raw water
were kept, i.e., before any treatment. For each water sample taken, several analysis reports
could have been realized, namely, complete with several hundreds of parameters, standard
with about 30 parameters, or a routine follow-up, with only about ten parameters. The
result is a matrix with some empty cells that need to be conditioned before processing.
After the manual correction of errors during data entry in the database and the elimination
of empty cells, a matrix consisting of 8110 observations and 15 parameters was used for this
study. These samples came from 1972 sampling points, i.e., an average of 4.1 samples for
each sampling point, and spread over 106 groundwater bodies delimited by the French Ge-
ological Survey (BRGM) in the BDLISA database (https://bdlisa.eaufrance.fr/, accessed on
7 February 2022). The selected parameters were Enterococci, E. coli, Electrical Conductivity,
Nat, Ca?t, Mg2+, Cl~, SO42~,HCO5;~,NO3~, Fe, Mn, As and the pH, which was added
after transformation into H* concentration to avoid mixing variables with logarithmic and
non-logarithmic units. The detection limit was applied to values below it. In this work,
which is based on correlations or frequency distributions, the choice of the unit of the
variables does not matter. The concentrations of major ions are in Mole L1 those of trace
elements are in mg L=}, and in units per 100 mL for the bacteriological variables.

All observations are georeferenced and their location is presented in Figure 1. The
difference in the density of groundwater collection points can be explained by several
factors. The karstic sectors such as the Causses du Quercy or Grands Causses in the
north-western and north-eastern parts of the region, respectively, have few boreholes due
to very deep aquifers and difficult access. On the other hand, the western part of the
Pyrenean sector should normally have a higher density of drilling, which is not the case.
In this mountainous area, there is a multiplicity of small water points, which are often
incompletely monitored, i.e., only a few parameters, and many of these water points were
thus eliminated during the cleaning of the database to eliminate empty cells. It is also
possible that the database extraction is incomplete, but we decided to process it anyway
because it represents a large amount of information.

2.3. Mathematical Tools

For each parameter, four types of data conditioning were compared, namely, the raw
data, a logarithmic transformation, a square root transformation, and a transformation
aiming to reinforce the role of the chemical profile independently of the dissolved load.
Previous work on a similar database in south-eastern France [25] has indeed highlighted a
variability of processes responsible for water quality that have been identified using the
water chemical profile. For this data conditioning, the bacteriological, minor elements and
nitrate data are unchanged, i.e., expressed in concentration, but the values of the major ion
variables have been divided by the electrical conductivity of the solutions, i.e., by a quantity
proportional to the sum of cations and/or anions. This procedure is roughly equivalent to
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replacing the major ion concentration with the anionic or the cationic profile. The objective
of this transformation further referred to as “chemical profile transformation”, is to temper
the role of the total concentration, which usually appears as the main factor of variability in
principal component analyses on hydrochemical databases [25-29].
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Figure 1. Location of the Occitanie region in southern France. Elevation and groundwater sampling
points and major subregions.

Multiple correlations were established between E. coli levels, as the explained variable,
and the other parameters, as explanatory variables, with the exception of Enterococcus.
The objective was to measure the degree of relationship between the bacteriological and
physicochemical characteristics according to the data conditioning mode. The results are
expressed as the percentage of variance explained (r?) by the multiple regression according
to the conditioning mode of the data.

A Principal Component Analysis (PCA) was performed in order to reduce the di-
mension of the data space by losing a minimum of the information contained in the
database [29]. The analysis was conducted using the correlation matrix. Under these
conditions, the factorial axes resulting from this analysis are orthogonal to each other and
thus carry information related to independent processes [25,27,30].

Quantile-quantile (QQ) plots were then constructed to visually compare the residuals
of each distribution to a normal distribution of the same mean and standard deviation [31].
The diagonal on these plots represents the normal character of the distribution. The closer
the points of the studied data distribution are to the diagonal, the closer the distribution is
to normality. In addition, we applied the Kolmogorov—-Smirnov normality test, which is
adapted to high-dimensional statistical distributions [32]. This test examines the largest
difference between the empirical cumulative distribution function and a specified normal
distribution, in this case, one with the same mean and standard deviation. To appreciate
the importance of the abnormal values we used the Z score defined by:

Z=Ix—-Ml/o, 1)
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where x is the measured value for a given parameter, M is the mean, and o is the
standard deviation. Z values greater than 2.5 and 10 are considered extreme and highly
extreme, respectively.

The principal components group together the independent variability factors, and
thus correspond to macro parameters that can be spatialized, in the same way as the other
parameters [30,33]. For data spatialization and cartographic representations, experimental
variograms were calculated and fitted to models by the least squares method. All the
variograms were calculated under the same conditions, i.e., with the same number of points
constituting the variograms, whatever the chosen data conditioning. It should be noted
that the samples were not collected on the same date, so the semi-variance includes both
temporal and spatial semi-variance.

3. Results
3.1. Extreme and Highly Extreme Values

For the bacteriological parameter E. coli, 55 samples had Z-score values greater than 2.5,
and 15 of them had values greater than 10, up to 42.5. After square root and log trans-
formation, the Z-score range decreased sharply with a maximum of 19 (7 samples with
Z-score > 10) and 3.8, respectively. Note, that for the parameter E. coli, using raw data,
square root- or Log-transformation, there were no extreme low values. All denoted high
bacterial contamination.

3.2. Multiple Regression

The explained variance (R?) by the multiple regression between E. coli levels and other
non-bacteriological parameters is presented in Table 1.

Table 1. Percentage of variance explained by multiple regression between the bacteriological parame-
ter E.Coli and the physicochemical parameters.

Data Conditioning R?
Raw data 0.0597
Chemical profile transformation 0.0746
Square root transformation 0.2582
Log-transformation 0.4943

With the raw data or the chemical profile transformation, a very weak correlation with
the E. coli content was observed, limited to 6% and 7.5% of explained variance, respectively.
On the other hand, using the square root transformation, a clearer correlation was detected
with a percentage of explained variance that amounted to 26%. Finally, this percentage
almost doubled with the log transformation of the data (49%). For the continuation of the
study, only three conditioning modes will be kept for comparison, namely, the raw data,
the square root transformation and the log transformation, since the enhancement of the
chemical profile does not bring any significant improvement compared to the raw data.

3.3. PCA Using the 3 Data Conditioning Modes

The results of the PCAs conducted with the three different modes of data conditioning
are summarized in Table 2.
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Table 2. Variance explained by the main factorial axes (PCs) for 3 data-conditioning mode.

Explained Variance

Raw Data Square Root Transf. Log Transf.
PC1 28.59 34.25 33.49
pPC2 13.09 16.68 21.21
PC3 11.1 9.14 9.45
PC4 7.29 8.32 7.37
Sum 60.07 68.39 71.52

3.3.1. Significance of the First Four Principal Components

Whatever the data conditioning procedure, the significance of the factorial axes was
more or less the same, without any major difference (Figure 2): the first factorial axis
reflected the water mineral load, with electrical conductivity and major elements on the
positive side, and less soluble minor elements on the negative one. The second factorial
axis conveyed the fecal bacterial load positively correlated to Fe and Mn metals. For the
log conditioning, the pH had a significant effect on this second axis, which is not the case
for the analysis with the raw data. The third factorial axis showed an opposition between
samples with a Na-CI chemical profile on the one hand and a Ca-HCO3 profile on the other.
Finally, the fourth factorial axis reflected arsenic contents in all cases.
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Figure 2. Distribution of the variables in the main factorial plans.

3.3.2. Distribution of Water Samples in Factorial Score Plots

The distribution of samples in the PC1/PC2 and PC3/PC4 factorial plans were plotted
for the three modes of data conditioning in Figure 3. The difference in the distribution of
the scatterplots was notable. In the case of raw data, a small number of extreme values
monopolized most of the information and thus the variance, regardless of the origin of the
variability, i.e., dissolved load, bacterial load, or other parameters. It resulted in factorial
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Raw data

plans with large areas without observations, bounded only by a few rare points, while
almost all the observations of the database (more than 7000) were grouped in a small
central area. On the other hand, after the logarithmic transformation or to a lesser extent
the square root transformation, the extreme values played a much more moderate role and
the observations were spread over the factorial planes, which allowed us to better visualize
the diversity of the information contained in the database.

Square root transf. Log transf.
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Figure 3. Distribution of the observation in the factorial plans PC1-PC2 and PC3-PC4 for raw data,
square root transformation and log transformation.

3.3.3. Inertia of the Principal Components

The cumulative inertia of the principal components is presented in Table 3 up to PC7
and can be compared in Figure 4 for the three modes of data conditioning. With the raw
data, we observe that the first PC accounted for only 28% of the variance, while it accounted
for 33 and 34% for the log- or Square root-transformed data, respectively. There was thus a
significant gap between the different modes of data conditioning. If we consider the four
main factorial axes, the gap appeared to be even larger, going from 60% with the raw data
to 71.5% with a logarithmic transformation of the data, with the square root transformation
giving an intermediate result (68.4%).
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Table 3. Table of variances for PC 1 to PC7 and 3 conditioning modes.

PC1 PC2 PC3 PC4 PC5 PCo6 PC7
Eigenvalue 4.29 1.96 1.67 1.09 1.03 1 0.96
Raw data Variability (%) 28.59 13.09 11.10 7.29 6.85 6.65 6.38
Cumulative % 28.59 41.68 52.78 60.07 66.92 73.58 79.95
Eigenvalue 5.14 2.50 1.37 1.25 0.87 0.75 0.72
Squ. root data Variability (%) 34.25 16.68 9.14 8.32 5.83 5.02 4.79
Cumulative % 34.25 50.94 60.07 68.39 74.22 79.24 84.03
Eigenvalue 5.02 3.18 1.42 1.11 0.79 0.62 0.59
Log. data Variability (%) 33.5 21.21 9.45 7.37 5.25 4.16 3.93
Cumulative % 33.5 54.71 64.16 71.53 76.78 80.93 84.86
40 100
35 90
W raw
§ 30 — Wsquare 80
g 25 M log 70
>
B 20 60
=
3 15 50
3
< 10 40
30 —
T T

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10PC11PC12PC13PC14PC15 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

(a) (b)

Figure 4. Variance (a) and cumulative variance (b) explained by the principal components using raw
data, square root and logarithm transformation.

3.4. Frequency Distribution

The Q-Q plots are shown in Figure 5 for some key parameters, namely EC representing
mineralization, E. coli, sensitive to bacteriological contamination, Fe sensitive to redox
processes and As concentration. The frequency distribution differs somewhat depending
on the parameter. For the different bacteriological and physicochemical parameters, the
Kolmogorov-Smirnov normality tests indicate a non-normal distribution, which can be
visualized on the Q-Qplot (Figure 5). There is an important dissymmetry linked to the
existence of some high values. The logarithmic transformation leads to a change in scale,
compacting the axes for the extreme values and dilating the axes for the low values. The
distribution then approached a normal distribution, although the normality test was still
negative for all parameters. The square root transformation also resulted in a similar
contraction of the high values and dilation of the low values but gave intermediate results
between using the raw data and the log transformation.

3.5. Variograms and Mapping

The variograms for the macroparameters (PC1 to PC4) and for the three modes of
data conditioning are presented in Figure 6. All experimental variograms were fitted by
spherical models whose characteristics are summarized in Table 4. These fitted models
were applied to draw up the distribution maps of the PCs over the entire Occitanie region.
Whatever the parameters, the variograms calculated on the log-transformed data showed
little irregularity unlike the variograms calculated on the raw data. Again, the square
root transformation was intermediate between the raw data and the log-transformed
data. The reduced sill/Nugget ratio increased between raw data (8.4 and 3.3), square
root transformation (10.8 and 4.3) and Log-transformation (11.6 and 6.1) for PC1 and PC2
respectively, while this was not true for the following PCs.



Water 2023, 15, 84

9o0f 16

Raw data
8000
7000 |
6000 |
5000 1
4000 +

3000 +

Quantile - E.C.

2000 +

72000 +
62000 T
52000 -
42000 +

32000 +

Quantile - E. coli

22000 + e
12000 + o

i @ o O
2000 L \ ' +

$ 12000 32000 52000 72000

(d)

240000 +

190000 +

140000 + e

Quantile - Fe

42t

32 +

22 + e

Quantile - As

Square root transf.

%0 |
70 +
o ©O
90
240 |
190
140 1
90
00
40+ @ @
-60 '}O'I 40 140 240
" 60
(e)
470 +
a7 +
270 |
170 +
ol
i :
D 170 370
(h)
5 T ll’llll
o
- ! 2 7
e 31

Log transf.

M
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for raw, square root- and log-transformed data.
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Figure 6. Experimental variograms and fitted spherical models for PC1 to PC4 (distance in m).

The mode of data conditioning generated significant differences on the maps obtained
by kriging (Figure 7). In particular, when using the raw data, the few extreme values
induced large homogeneous color ranges that prevented distinguishing the nuances of
local variability, except by arbitrarily modifying the color scales. With the transformation of
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the data, by logarithm and to a lesser extent by square root, these drawbacks disappeared
and the spatial variabilities were revealed, both local and regional.

Differences were not observed for all parameters. For example, for electrical con-
ductivity and major ions, we noted the absence of extreme values. Thus, the distribution
maps of PC1 and PC3 mainly influenced by these parameters showed a well-distributed
scale between the minimum and maximum values. These two PCs are also characterized
by a long range in the variograms due to the influence of lithology. The conditioning of
the data only moderately alters the appearance of the maps. This was not the case for
bacteriological parameters or minor elements, mainly represented by PC2, nor even for
nitrogenous pollution represented by PC4, and for which the extreme values shifted the
scale towards the high values, the lowest color range covering most of the area. There
is also a much shorter range in these PCs due to the local influence of processes on trace
elements or nitrogenous forms. The log transformation allows a better distribution of colors
and reveals the local or regional character of the pollution.

Raw data Square root transf. Log transf.

450000 500000 550000 600000 650000 700000 750000 800000

450000 500000 550000 600000 650000 700000 750000 800000 450000 500000 550000 600000 650000 700000 750000 800000

Figure 7. Distribution of the first four factorial axes over the Occitanie region using raw data, square
root transformation and log transformation of the data.
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Table 4. Characteristics of the spherical models fitted on the experimental variograms.
Raw Data Square Root Transf. Log Transf.

Nugget 0.5 0.5 0.5

PC1 Range 54,000 70,000 80,000
Reduced sill 4.2 5.4 5.8
Nugget 0.3 0.75 0.8

PC2 Range 43,000 350,000 300,000
Reduced sill 1 3.2 4.9
Nugget 0.3 0.3 0.35

PC3 Range 35,000 52,000 55,000
Reduced sill 12 1.33 13
Nugget 0.45 0.7 0.68

PC4 Range 30,000 55,000 53,000
Reduced sill 0.7 0.49 0.38

4. Discussion
4.1. Need to Work on Transformed Data

The choice of transforming the data before studying the frequency distribution may
face different difficulties. One of these is reported by O’Hara and Kotze [34] and concerns
the fact that in many cases there are zero values. However, for the concentration of dissolved
elements, an element always exists at least in trace amounts, and therefore, the value of zero
is very implausible. With zero values, the logarithmic transformation is impossible because
log (0) does not exist. To get around this problem, we made two choices when preparing
the database: On the one hand, observations with missing values were eliminated from
the processed database, and on the other hand, the detection limit replaced the values that
were below it. Indeed, some analytical laboratories report a value below the detection
limit, and others assign a value of 0, but in reality, the only certainty is that the value is
between 0 and the detection limit. Feng et al. [35] mentioned that if the original data follow
a log-normal or approximately normal distribution, then the log-transformed data follow
a normal or approximately normal distribution and the log transformation removes or
reduces the skewness. The data from many studies, however, do not approximate the
lognormal distribution and applying this transformation does not reduce the skewness of
the distribution. One of the key criteria is skewness, which is related, for example, to the
existence of extremely high or extremely low values relative to the mean in a data set. The
larger the database (several thousand or tens of thousands of observations), i.e., covering a
longer period of time or a larger and heterogeneous region, the more likely it is to contain
extreme values, thus generating a skewed distribution. It also appears that the use of PCA
without prior data conditioning is not an alternative to data conditioning. Indeed, since
the PCs are a linear combination of the original parameters they maintain the problems
associated with the presence of extreme values and a highly skewed frequency distribution
of the data.

Given this observation, what are the options for ensuring that the information carried
by these extreme values does not mask a large part of the information contained in the
database? The first phase would, therefore, be a diagnostic phase aiming at identifying
whether these extreme values are high or low. In the case of high values, the corresponding
observations can be eliminated, resulting in a net loss of information in the database.
However, this information, although atypical, is often local, with a high impact on a
small number of observations, but probably interesting, and is an integral part of the
analyzed database. Another solution is to limit the extreme values, which generally
concern only one or two parameters (most often bacteriological parameters or metals) out
of a few dozen observations. The loss of information is less. The third option is a data
transformation, which must have the following properties. This transformation must be
continuous, dilate the gaps between the weak values, and contract those between the strong
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values in order to make the distribution more symmetrical and thus rebalance the weight
of useful information. Several possibilities exist. The first is to apply an inverse function
(1/x), which results in reversing the order of the data but is only applicable when the
extremes correspond to strong values, without values close to zero. A second option is a
transformation by the square root or any other power between 0 and 1. This transformation
will have the effect of dilating the weak values and contracting the strong values but may
be insufficient, or less efficient than a logarithmic transformation, as we observed on the
Occitanie dataset. Note, that for inverse or log transformations there is the problem of
undefined null values, a point we discussed above.

4.2. Impact on Process Analysis

The main difference between PCA on raw data and transformed data, and in particular
on log-transformed data, is that the effect of extreme values is reduced. The dispersion of
the observations is thus distributed in the first score plots of the PCA, making it possible
to better represent the significance of the factorial axes, without the interfering effect of a
small number of samples. This results in better visualization and efficiency of the analysis,
which is measured, on the Occitanie database treated in this work, by the percentage of
variance explained by the first four factorial axes, increasing from 60 to 71.5%. With or
without transformation of the data, the first score plot PC1-PC2, which carries about half of
the information, reflects the same realities (minerality and fecal contamination of the water),
the same processes, but in a much more efficient way with log conditioning. Similarly,
for the third and fourth PCs, the significance of the axes (chemical profile and nitrogen
pollution, respectively) is more or less the same whether the data are in log or not, but the
information is more condensed and efficient. As these axes act as macro-parameters, they
reflect associated processes that are more clearly defined.

The importance of data conditioning on the percentage of variance explained is in
line with that of comparisons on distributions and their deviation from the normal distri-
bution. However, two points should be kept in mind. (1) In the case of data from very
different natural environments, as is the case with water quality data acquired on a regional
scale, in various geological, climatic and land use contexts, the distribution cannot be
truly normal because it is composed of the superposition of distributions of data from
different environments, each with its own distribution. For illustration, if we look at the EC
parameter in the Occitanie region, the range is between 20 and 50 uS cm ! for mountainous
crystalline basement areas, 250 and 500 pS cm ™! for karst environments, and 800 and
1000 uS cm~! within coastal plains. In this case, the log transformation can be very useful
to simply approximate the set of values to a normal distribution. (2) Although the deviation
from a normal distribution is troublesome, the consequences are less severe than for the
calculation of principal components. Indeed, in the processing of large databases such as
SISE-EAUX [25], dimensional reduction is an essential step for the synthetic mapping of
groundwater quality data at the regional scale. It is part of a proven procedure for grouping
groundwater bodies that are similarly more or less vulnerable to contamination via similar
mechanisms [29]. The more information the main factorial axes convey, the more efficient
the dimensional reduction, and the better the clustering of groundwater body families and
consequently the analysis of the mechanisms responsible for the variability of the chemical
composition of the water within each groundwater body family. Log transformation of
data is, therefore, necessary for large databases that are likely to have extreme values,
not for approximation to a normal distribution, but for a better dimensional reduction in
the data hyperspace and clustering of groundwater bodies, which will facilitate analysis
of the processes responsible for quality variability. The advances of this study carried
out on Occitanie are currently being introduced in other French administrative regions
(Provence-Alpes-Coéte d’Azur, Bourgogne-Franche Comté, Auvergne-Rhone-Alpes, etc.) as
well as in the territory of Corsica. Taking into account the extreme values in the databases,
but attenuating their weight, allows a better vision of the spatial and temporal variability,
leading to a better grouping of groundwater bodies intended for human consumption.
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Quality monitoring and surveillance by health agencies can thus be optimized, resulting in
lower costs. Subject to the existence of similar databases in other European countries, the
procedure could be applied there.

Although correlation is not proof of causality, the multiple correlations illustrate
that the way in which the data are conditioned can reveal a correlation between fecal
contamination and all the other parameters. The calculation of the RZ? (Table 1) quantifies
this correlation and illustrates that Log conditioning is the most efficient. The square root
conditioning reveals this correlation, but compared to the Log conditioning, it explains only
half of the variance (26% vs. 49%). Such a proportion in the explained variance highlights
that the extreme values monopolize a large part of the useful information conveyed by
the factorial axes, masking the influence of the bulk of the database, which is revealed by
the Log transformation. We also notice that the few samples with extreme values do not
follow the same correlations between parameters as the majority of the other observations
in the database. Indeed, if these correlations had been similar, the logarithmic or square
root transformation would decrease their coordinates on the principal components, but
would not change the percentage of variance explained. The increase in explained variance,
therefore, reflects a reduction in statistical background noise [30] and an improvement
in the definition of principal components for the majority of observations. We can also
note an effect on the mapping of the main PCs. If the reduced sill/Nugget ratio increases
between the raw data, square root and log transformation, this reflects that the essential
and structured information is concentrated on the first factorial axes. In other words, with
the log transformation, useful and spatially well-structured information is concentrated
in the first axes while unstructured variability is redistributed to the following PCs. With
the raw data, the unhelpful and spatially ill-structured information already contaminates
the first factorial axes. Thus, the information contained in the extracted database is better
structured in terms of variance distribution but also in terms of spatial distribution after
log transformation rather than using the raw data without conditioning.

5. Conclusions

In large-dimension multiparametric databases on the quality of water intended for
human consumption, the risk of the appearance of extreme values is high, especially for
metals and bacteriological parameters. A few water analyses concentrate most of the
information, which disturbs the study of the rest of the information. To this effect, the Log
transformation appears to be the best option allowing (1) to reduce, without eliminating or
limiting them, the influence of extreme values which otherwise have an important impact
on the global variance, even if they are few in number; (2) to highlight certain correlations
between bacteriological and physicochemical parameters; (3) to significantly increase the
readability of the factorial axes as well as the identification and the cartographic representa-
tion of the associated processes responsible for the variance within the database. Taking
these results into account will improve the grouping of groundwater bodies according to
physicochemical and bacteriological water characteristics, an aspect that will be addressed
in future work for the Occitanie region, but also at other scales throughout the Rhone basin.
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