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Abstract: This study was undertaken with the primary objective of modeling grain velocity based
on experimental data obtained under the controlled conditions of a laboratory using a rectangular
hydraulic tilting channel. Soft computing approaches, i.e., support vector machine (SVM), artificial
neural network (ANN), and multiple linear regression (MLR), were applied to simulate grain ve-
locity using four input variables; shear velocity, exposed area to base area ratio (EATBAR), relative
depth, and sediment particle weight. Quantitative performance evaluation of predicted values was
performed with the help of three different standard statistical indices, such as the root mean square
error (RMSE), Pearson’s correlation coefficient (PCC), and Wilmot index (WI). The results during the
testing phase revealed that the SVM model has RMSE (m/s), PCC, and WI values obtained as 0.1195,
0.8877, and 0.7243, respectively, providing more accurate predictions than the MLR and ANN models
during the testing phase.

Keywords: grain velocity; sediment transportation; shear velocity; ANN; SVM

1. Introduction

In rivers, sediment grain velocity measurement is generally required to assess sediment
load, river geometry, flood control, and long-term morphology evolution. A large number of
variables govern the sediment movement process. Thus, its physical measurements under
actual field conditions become difficult. Alternatively, experiments are conducted under
controlled laboratory conditions to observe the sediment particle movement phenomenon
and record data to develop mathematical models for sediment grain velocity. Consequently,
experiments were conducted in this study considering a single grain moving near the
channel bed due to sliding. These experiments indicated that sediment transport is an
incredibly complicated mechanism. It may not be possible to describe it using simple
deterministic models. The predictive precision is always doubtful, with predictive errors
in several realistic cases being unacceptably high, as is investigated and reported [1–4].
Therefore, to model sediment grain velocity, the application of new modeling approaches
such as machine learning (ML) soft computing techniques have arisen to establish models
that rely on experience and data [5,6]. This has opened up new modeling possibilities,
mainly when the information available is insufficient to devise a relevant mathematical
structure, or there is too little data to calibrate an acceptable model.

Novak and Nalluri [7] examined the incipient motion in fixed, flat, rough beds with
roughness elements smaller than the particle size for single and clustered particles. Van
Rijn [2] and Karimaee Tabarestani and Zarrati [8] have carried out such regression experi-
ments ostensibly involving the fluid viscous effects on the bedload grain flow in the bed.
Papanicolaou et al. [9] estimated the bedload using the idea of particle velocity. Julien and
Bounvilay [10] investigated the effect of particles of different sizes with different densities
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on reach-average bedload particle velocity for smooth and rough surfaces. The impact of
the roughness of the bed on the bedload sediment grain velocity was reported by Cheng
and Emadzadeh [11]. Frey [12] worked on the fluid velocity of particles and examined the
concentration-depth profiles for bedload transport on a high slope at the particle scale. All
this research focused on the effects on sediment motion considering the characteristics of
channel bed and sediment particles properties.

Further, machine learning (ML) is often considered a replacement or augmentation
to the more conventional physical process simulation approach in nearly all research
branches. ML uses modeling approaches and techniques such as ANN, SVM, fuzzy logic,
decision-tree processes, and improved computing techniques [13–17]. In recent times,
several research departments have been influenced by the artificial neural networks (ANN)
approach. The ANN method is quickly gaining traction as a useful tool for delivering effec-
tive details on the usage in design and management operations for hydraulic, hydrological,
and environment fields [18–22]. ML has been efficient for application in the hydrological
processes field, e.g., water system management, water quality evaluations, stage-discharge
relations, and meteorological data estimations. These implementations, however, demon-
strate that ML does not produce new process information. Instead, it uses existing process
knowledge to pick the input and output variables, accompanied by sophisticated regression
techniques, to the best match for the calculated results. Bhattacharya et al. [23] evaluated
sediment transport modeling using ML models such as ANN and model trees. These
models used calculated data to model the bedload estimate and total load transport. ANN
and regression models to estimate the incipient flow velocity at sediment deposition in
the rectangular channel were developed by Sheikh Khozani et al. [24]. Combining the
available data from each cross-section created a generalized regression model. Based on
the performance assessment, they found ANN models superior to regression models. Mehr
and Safari [25] applied soft computing techniques to obtain correct sewer designs via parti-
cle Froude number estimates in sewer pipes, including multi genetic programming, gene
expression, and multilayer perceptron. Montes et al. [26] have predicted bedload sediment
transportation in sewage pipes of noncoherent material using polynomial regression, which
describes multiple objective genetic algorithms. In forecasting incipient sediment move-
ment in sewers using artificial neural networks, Wan Mohtar et al. [27] found the impact
of bed deposits. Thus, many researchers have shown that the ML approach establishes
relationships and is applicable for estimating sediment grain particle motion using various
channel and particle characteristics.

In comparison, the support vector machine (SVM) is very recent. It has shown sub-
stantial success in studying the classification and regression process [28–31]. One of the
early attempts was made by Einstein [32], who suggested that the average bedload velocity
was commensurate with the grain’s shear velocity. Fernandez Luque and Van Beek [33],
Abbott et al. [34], and Bridge and Dominic [35] have separately formulated their formula
since the measured velocity of grain tends to be linear to dependence on the shear velocity
of the sheet. After reviewing the available literature, it was found that significantly little
work has been reported to predict grain velocity using soft computing techniques consider-
ing EATBAR, relative depth, weight, and shear velocity as input variables. Due to larger
particles, sediment movement in steeply sloping gravel-bottomed streams occurs mainly
by surface creep in mountainous areas. The flow of sediment particles is influenced by
many factors, including discharge, channel bottom slope, specific weight, and the shape
and size of the sediment particle. Natural streams contain sediment particles of irregular
shape, not spherical or cubical shape. The ratio of exposed area to the base area of flow
(EATBAR) and relative depth, i.e., the ratio of flow and particle height, will play an es-
sential role in their movement. These parameters change with a change in the sediment
particle’s orientation (i.e., placement position) over the channel bed and slope, eventually
deciding their movement rate. This study has been carried out with the main objectives
being the (a) investigation of the grain velocity for different weights of sediment particles
by conducting laboratory experiments on the different slopes under varying discharges
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in a rectangular channel, (b) modeling of the grain velocity with selected input variables
using different data-driven techniques, and (c) to assess the effectiveness of the developed
models. The objectives are novel, and the research has not been carried out earlier. The
paper is organized as follows: Section 2 includes explanations of the data-driven models as
well as a brief overview of the experimental setup, data observations, and methodology
adopted for the study; the main findings and outcomes are discussed in Section 3; last,
concluding reflections are addressed in Section 4.

2. Materials and Methods
2.1. Experimental Setup and Data Observation

The experiments were carried out in a rectangular channel with a length of 7 m,
a width of 0.30 m, and a depth of 0.60 m using three different sediment particles with
(2 × 2 × 3) cm, (2 × 2 × 4) cm, and (3 × 3 × 4) cm. Figure 1 shows the experimental setup,
with its different components used for conducting experiments. The particles were cast
with cement mortar to model sediment grains of different sizes. The water was delivered
by a centrifugal pump downstream of the flume and received from a water storage tank.
Regulatory valves were placed on the flume’s water supply line-controlled discharge. A
water flow meter was used to monitor the flow discharge. Flow depth was measured using
a sophisticated point gauge mounted on the trolley for movement throughout the length of
the flume. The flume channel was adjusted to the required bed slope with the help of the
hydraulic screw jack provided in the mechanism.

Figure 1. Experimental setup of the hydraulic flume; schematic presentation (top part) and lab view
(lower part).

A total of 108 experiments were conducted to determine grain velocity for three
particle sizes, six discharges, and six-channel bed slopes. Experiments used six different
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discharges consisting of (12.8, 17.6, 23.2, 25.9, 29.6, and 33.6) L/s/m, while the channel
bed slope changed from 1% to 4%. To achieve a fully developed flow, a grain particle of a
specific size was put in a suitable position on the bed at 3.5 m from the flume’s upstream
end. Attention was paid to avoiding turbulence and ensuring a steady flow along the
channel’s length. A fixed span of 2.7 m length in the flume was considered for the particle’s
movement. For every combination of experimental variables, flow depth, discharge, grain
velocity, and the time took was recorded. Three times were, three replications performed to
ensure precision in the observations.

2.1.1. Methodology

The present study focuses on establishing mathematical models using data-driven
techniques to estimate single grain velocity based on the data generated using laboratory
experiments. As discussed above, the experimental work was carried out in a rectangular
hydraulic flume. Experimentally investigating single grain velocity in a rectangular channel
flume was estimated and compared with different data-driven techniques, namely, support
vector machine (SVM), artificial neural network (ANN), and multilinear regression (MLR)
models. The developed models were evaluated using different performance indicators such
as Pearson correlation coefficient (PCC), root mean square error (RMSE), Wilmot index,
line diagram, scatter diagram, and Taylor diagram. Figure 2 describes the methodology
used to estimate a single grain velocity in the study.

Figure 2. Flow diagram for single grain velocity estimation.
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2.1.2. Input Parameters

EATBAR (λ) is the ratio of the exposed area (Ae) to the base area (Ab) of the particle,
which changes with the change in the discharge and slope of the channel for the same
particle and is calculated as

EATBAR (λ) =
Ae
Ab

(1)

The shear velocity (U*) is evaluated by the following formula:

U∗ =
√

gRS (2)

R represents the hydraulic radius in a section. S is the channel bed slope in fraction,
and g is the gravitational acceleration.

Relative depth (y/d) is the ratio of flow depth to thickness (d).
The weight (W) is one of the fundamental parameters in sediment transport, which

affects the particle’s movement. Due to varying submergence, the particle’s submerged
weight also varies, altering the entire force dynamics for sediment transport.

2.2. Multiple Linear Regression—MLR

MLR stands for regression analysis, which involves more than one independent
variable. The benefit of MLR is that it is straightforward, demonstrating how dependent
and independent variables are related. The general form of the MLR model is:

Vp = −3.284 + 1.935λ − 0.008 W + 25.953U ∗ + 0.503 (y/d) (3)

where Vp denotes the grain velocity (m/s), λ is EATBAR, W is the weight of the sediment
particle, g, U* denotes the shear velocity (m/s), and y/d are the relative depth. These
values are derived using the least square approach and reflect localized behavior, e.g., Kisi
and Çobaner [36].

2.3. Artificial Neural Network—ANN

ANN is based on the training knowledge of the biological nervous system. It consists
of several processing elements related to varying weights. The network consists of many
layers of parallel processing elements called neurons. The most commonly used among
ANN paradigms, the multilayer backpropagation network (MLP), was considered for
this study. The MLP has a three-layered construction, namely, (a) an input layer, (b) a
hidden layer, and (c) an output layer [37]. The input layer accepts data, handles it by the
hidden layer, and shows the model’s results in the output layer. The input layer signals are
dispersed to every hidden layer node depending on connection weights assigned between
input (i.e., first layer) and hidden (i.e., middle) layers. These interconnection weights have
been determined for respective inputs. In this present study, a hyperbolic tangent activation
function (ranging from −1 to +1) was used as architecture for data normalization. Epoch =
1000 and threshold value = 0.001 were used to train the models based on trial-and-error
methods. Each neuron in the middle and output layers receives the weighted sum of the
previous layer’s output as input. The net output (NETh) for layer j is given as:

NETh = ∑ N
n=1
(
WihOpi + bh

)
(4)

where bh represents the neuron threshold value for h, Opi is the i-th output of the previous
layer, and Wih is the weight between the layers i and h. The Levenberg-Marquardt (LM)
training algorithm was considered to adjust the weights for the current study.

2.4. Support Vector Machine-SVM

SVM is a concept that was proposed by Vapnik [28]. The SVM technique finds a
hyperplane between the input spaces. It disintegrates a given dataset and allows as much
distance as close to both sides of the hyperplane to determine the points at which estimated
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errors are equal to and more significant than the so-called SVM tube scale. SVM techniques
facilitate the development of a non-linear boundary by mapping the original input space
to a higher-dimensional space. This dimensional space is called feature space. A kernel
function characterizes this feature space mapping from a given input space. A penalty
factor C is added for error classification to optimize this model. The cumulative penalty can
be achieved by applying the penalties for each misclassification. As a result, the technique
identifies a hyperplane that minimizes the margin and the total penalty. For optimization
of the model, the combined penalty function is used as an objective function of the model.
It has good generalization performance and is applicable in an approximation of both linear
and non-linear datasets.

Considering a training dataset, T, represented as

T = (x1, y1), (x2, y2), . . . , (xm, ym) (5)

where × X ⊂ Rn represents the training inputs, and y Y ⊂ Rn represents the training
outputs. that a nonlinear function f (x) which is non-linear, is given by:

f (x) = wTΦ(xi) + b (6)

where w represents the weight vector, b represents the bias, and Φ(xi) denotes the high-
dimensional feature space. Furthermore, data set T and, Equation (6) is transformed into
Equation (7) as a constrained complex optimization problem stated as

Minimize: 1
2 wTw

subject to :
{

yi −
(

wTΦ(xi) + b
)
≤ εyi −

(
wTΦ(xi) + b

)
≥ ε (7)

where ε (≥0) represents the maximum acceptable deviation.
Furthermore, the derived Equation for SVM is given in [15,38,39].
The final expansion of support vector regression is given by;

f (x) = ∑ m
i=1
(
α+i − α−i

)
K
(
xi, xj

)
+ b (8)

where, α+i ,α−i are Lagrangian multipliers, and the term K
(
xi, xj

)
is the kernel function.

The kernel function allows for non-linear approximations. The kernel function used in the
study was the linear kernel. The simplest type of kernel function is given as [40]:

K
(
xi, xj

)
=
(

xi, xj
)

(9)

The three key parameters (kernel, C, γ, and ε) on which the performance of SVM
techniques depends (Figure 3).

Figure 3. Soft margin loss setting for a linear SVM and ε-insentive loss function adapted after Lin et al. [41].
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However, the C and ε values influence the complexity of the final model for every
specific kernel type. The parameters ε are responsible for regulating the number of support
vectors. The values support vectors intuitively, when ε values are larger, lesser support
vectors exit and thus lead to lower regression estimates. On the other side, the C value is
essential in optimization. It represents the trade-off between the model’s sophistication
and the degree of deviation. As a result, a higher C value reduces model complexity [42].

2.5. Performance Evaluation

Three performance criteria were used to evaluate the goodness of fit of the models in
the present study. These are the root mean square error (RMSE), the Pearson correlation
coefficient (PCC), and the Wilmot index (WI). The usage of RMSE, PCC, and WI offers a
sufficient evaluation of each model’s performance. It compares the precision of the various
trial and modeling methodologies employed in this work, further discussed by Ghorbani,
Khatibi, Goel, FazeliFard and Azani [29], Kumar, Pandey, Sharma and Flügel [30], and
Kumar et al., 2020.

RMSE =

√√√√∑N
i=1

(
Vpobs,i −Vppre,i

)2

N
(0 to ∞) (10)

PCC =
∑N

i=1

(
Vpobs,i −Vpobs,i

)(
Vppre,i −Vppre,i

)
√

∑N
i=1

(
Vpobs,i −Vpobs,i

)2
∑N

i=1

(
Vppre,i −Vppre,i

)2
(−1 to 1) (11)

WI = 1−
∑N

i=1

(
Vpobs,i −Vppre,i

)2

∑N
i=1 (|Vppre,i −Vpobs,i|+ |Vpobs,i −Vpobs,i|

)2 (0 < WI ≤ 1) (12)

where, Vpobs,i and Vppre,i are observed and predicted grain velocity of i-th observation,

whereas, Vpobs,i and Vppre,i are the average of the i-th observation, and N is the total number
of observations.

3. Results and Discussion

As per the objectives of this study, the grain velocity was analyzed for several combi-
nations of particle size, selected discharges, and channel slopes. To achieve these objectives,
experiments were conducted on a hydraulic tilting flume in the laboratory. Three sizes
of particles such as (2 × 2 × 3) cm, (2 × 2 × 4) cm, and (3 × 3 × 4) cm were used in
this study. Six discharges of (12.8, 17.6, 23.2, 25.9, 29.6, and 33.6) L/s/m and bed slopes
of 1, 1.5, 2, 2.5, 3 and 4% were considered for experimentation. The grain velocity with
a particular orientation increased with channel slope and discharge but decreased with
sediment particle weight. After critically analyzing the experimental results, four input
parameters, shear velocity, EATBAR, relative depth, and particle weight, were selected as
important variables to model grain velocity. Figure 4 and Table 1 show the details of the
observations from the experimentation. The shear velocity increased with discharge and
channel slope for particular particle sizes. The shear velocity ranged from 0.0529 m/s to
0.1030 m/s. It was also observed that the EATBAR and relative depth values changed under
three conditions first when there was a change in discharge, but the slope and particle size
remained fixed; second, with a change in slope, but the other two variables remained fixed,
and the third, when discharge and slope were fixed. However, the size of the sediment
particle was changed. The EATBAR and relative depth values ranged from 0.57–1.00 and
0.25–2.35, respectively. When the sediment particle was fully submerged, i.e., particle
height was less than the depth of flow of the particle. The exposed area and the base area
remained the same. The value of EATBAR became 1.00, which was the maximum in this
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study. As depth flow decreased due to increased channel slope or decrease in discharge,
the EATBAR value deviated from 1.0 due to a change in the exposed area.

Figure 4. Plots of the dependent variable Vp (m/s) and input variable: (a) EATBAR, (b) weight (gm),
(c) shear velocity (m/s), (d) relative depth.

Table 1. Statistical analysis of dependent (Vp) and independent variables (λ, W, U*, and y/d).

Variables Mean Median Minimum Maximum Std. Dev. C.V. Skewness

All Data
λ 0.9707 1.000 0.5700 1.000 0.0823 0.0848 −3.283
W 51.733 49.60 32.200 73.40 16.966 0.32795 0.1874
U* 0.0754 0.0731 0.0529 0.1030 0.0120 0.1598 0.4072

y/d 0.8573 0.7142 0.2500 2.352 0.4281 0.4994 1.220
Vp 0.5473 0.600 0.0 1.174 0.3352 0.6124 −0.2776

Training Data
λ 0.9793 1.0 0.6 1.0 0.0706 0.0721 −3.964
W 51.476 49.6 32.2 73.4 17.035 0.3309 0.2091
U* 0.0696 0.0688 0.0529 0.0862 0.008 0.1150 0.0828

y/d 0.7894 0.6667 0.25 2.222 0.4031 0.5106 1.295
Vp 0.4070 0.474 0.0 0.8440 0.2793 0.6863 −0.3741

Testing Data
λ 0.9503 1.0 0.57 1.0 0.1035 0.1089 −2.368
W 52.344 49.6 32.2 73.4 17.05 0.3258 0.1369
U* 0.0892 0.0903 0.0774 0.103 0.0081 0.0914 0.1011

y/d 1.0185 0.8012 0.5714 2.352 0.4489 0.4407 1.1701
Vp 0.8806 0.8855 0.333 1.174 0.1901 0.2159 −0.6570

(Where λ = EATBAR, W = particle weight, U* = shear velocity, y/d = relative depth, Vp = grain velocity).

In contrast, the base area remained the same. The grain velocity was maximum at
1.174 m/s for lighter weight particles of 32.2 gm, at 0.103 m/s shear velocity, 0.606 relative
depth, and 1.0 EATBAR, at 4% channel bed slope and 33.6 L/s/m discharge, respectively.
At the 1% slope of the channel bed, no movement in particles was observed in the discharge
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range of 12.8 L/s/m to 23.2 L/s/m. The movement in particles with a weight of 32.2 gm
could be observed at a discharge of 25.9 L/s/m with 0.0033 m/s grain velocity.

3.1. Statistical Parameters

The statistical analysis of different independent variables, that is, EATBAR (λ), weight
(gm), U* (m/s), y/d, and dependent variable Vp of all data, training, and testing sets
included various statistical parameters such as mean, median, minimum and maximum
value, standard deviation, CV and skewness. These statistical parameters showed data
heterogeneity over the whole time series. Cross-validating is essential for the same statistical
population if the data is divided into training and test subsets. Due to the high skewness,
the model’s efficiency was adversely affected. The standard deviation values suggest that
the values are farther from zero, indicating that the data heterogeneity is more significant.
The mean value variance is greater (Table 1).

3.2. Trial Selection

MLR, ANN, and SVM were analyzed in two phases to select the best model: the
training and testing phases. The performance was evaluated based on the lower value
of RMSE (0: +: satisfactory: unsatisfactory), the higher value of PCC, and WI (close to
+1) for selections of the best model. Several trials were performed on a single output
in the best model selection process for ANN and SVM. The best trials of the developed
models during the training and testing phases are presented in Table 2. Trial-3 of both
ANN and SVM, respectively, given in Table 2, were more promising than the other trials
for the combination.

Table 2. During the training and testing phase, performance evaluations of MLR, ANN, and
SVM models.

Model
Training Testing

RMSE (m/s) PCC WI RMSE (m/s) PCC WI

MLR 0.1340 0.8756 0.7532 0.1459 0.8375 0.6789

ANN
Trial-1 0.1266 0.8911 0.8106 0.3109 0.1509 0.3420
Trial-2 0.0873 0.9502 0.8756 0.2154 0.3636 0.4579
Trial-3 0.0689 0.9692 0.8799 0.1721 0.5176 0.5012
Trial-4 0.0663 0.9728 0.8999 0.2302 0.1945 0.3666
Trial-5 0.0699 0.9678 0.8916 0.1906 0.4365 0.4751
Trial-6 0.0759 0.9625 0.9439 0.1821 0.4900 0.5058

SVM
Trial-1 0.1423 0.8595 0.7475 0.1208 0.8852 0.7231
Trial-2 0.1381 0.8675 0.7531 0.1341 0.8688 0.7022
Trial-3 0.1431 0.8577 0.7479 0.1195 0.8877 0.7243
Trial-4 0.1408 0.8622 0.7513 0.1247 0.8795 0.7150

3.3. Quantitative Performance Evaluation

After considering the three techniques for best tests (Table 2), the values of the RMSE,
PCC, and WI values of the MLR techniques for the training phase were obtained as 0.1340,
0.8756, and 0.7532; respectively, while for the testing phase, these values were 0.1459, 0.8375,
and 0.6789. In the ANN-based model, the value of RMSE was obtained in the range of
0.0663 to 0.1266, and PCC was obtained in the range of 0.8911 to 0.9728. In contrast, WI
was obtained in the range of 0.8106 to 0.8999 during the training phase. During the testing
phase in the RMSE ANN model, the value was obtained in the range of 0.1721 to 0.3109,
and PCC was observed to be in the range of 0.1509 to 0.5176. In contrast, WI was observed
in the range of 0.3420 to 0.5012. The results of the ANN model did not improve when
the number of layers in the hidden layer was increased to two (Trial 5) and three (Trial 6).
The performance indices in SVM techniques were as RMSE ranged from 0.1381 to 0.1431,
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PCC ranged from 0.8577 to 0.8675, and WI ranged from 0.7475 to 0.7531 training phase. In
contrast, in the testing phase of the SVM techniques, the value of RMSE was obtained in the
range of 0.1195 to 0.1341, PCC was in the range of 0.8688 to 0.8877, and WI was observed
in the range of 0.7022 to 0.7243. The architecture used for all developed ANN and SVM
models is shown in Table 3.

Table 3. The architecture used for the development of ANN and SVM models.

Model/Trial Architecture

ANN
Trial-1 4-1-1
Trial-2 4-4-1
Trial-3 4-5-1
Trial-4 4-7-1
Trial-5 4-5-5-1
Trial-6 4-4-4-4-1

SVM
Trial-1 C = 10, γ = 0.25, ε = 0.01
Trial-2 C = 10, γ = 0.25, ε = 0.1
Trial-3 C = 10, γ = 0.45, ε = 0.01
Trial-4 C = 10, γ = 0.45, ε = 0.05

Based on the values of the performance indices during the testing phase of the models
developed using three different techniques, the values of RMSE were obtained as SVM
(0.1195) > MLR (0.1459) > ANN (0.1721). The values of PCC were obtained as SVM (0.8877)
> MLR (0.8375) > ANN (0.5176) of the values was obtained as SVM (0.7243) > MLR (0.6789)
> ANN (0.5012). Thus, the overall comparison of performance indicators for these models
revealed that the model’s performance based on the SVM technique was the best. In
contrast, the model’s performance developed using ANN was the worst. To assess the
dissimilarity among the results obtained from various models, a t-test was performed,
which provided the p-value of these three models (P = 1.11 × 10−6 for ANN, P = 6.34 ×
10−5 for MLR, and P = 9.4× 10−5 for SVM), which is less than 0.05 and suggested that there
is a significant difference between observed and predicted mean values of grain velocity
in all three models. The observed mean values of grain velocity were 0.8806 m/s. They
predicted that the mean grain velocity was 0.7565 m/s, 0.970815 m/s, and 0.9529 m/s for
the ANN, MLR, and SVM models. Thus, the mean absolute difference between observed
and predicted grain velocities was 0.1240 for ANN, 0.09019 for MLR, and 0.07236 for SVM.
Therefore, it is confirmed that the SVM-based model predicted close to the corresponding
observed values than MLR and ANN-based models. The Friedman test also verified a
significant (p < 0.05) difference between observed and predicted grain velocity in MLR,
ANN, and SVM models.

3.4. Qualitative Performance Evaluation

To assess the qualitative performance of these models, the observed data was plotted
with the model estimated data of the model, as shown in Figure 5. These plots revealed
that the developed models slightly over-predicted higher grain velocity in MLR and SVM-
based models. In contrast, the grain velocity was underpredicted in the entire range in
the ANN-based model variation. The values of the coefficient of determination (R2) were
highest (0.8608) for the SVM model, and the lowest value (0.6729) was obtained for the
ANN-based model. The value of (R2) was 0.7967 in the case of the MLR-based model.
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Figure 5. Observed versus predicted grain velocity by the (a) MLR, (b) ANN, and (c) SVM models
during the testing phase.

Taylor diagrams (Figure 6) indicated that although the model correlation was sat-
isfactory, it was highest in the case of SVM and lowest in the case of ANN. As another
comprehensive graphical presentation, a Taylor diagram compared the observed and pre-
dictive values using three statistical parameters: the CC, the root mean square difference
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(RMSD), and the standard deviation. The best model is the one that has less distance to the
observed point [30,43].

Figure 6. Taylor diagram of MLR, ANN, and SVM corresponding to observed grain velocity (Vp).

From Taylor diagrams (Figure 6), the order of correlation value from best to worst
was the same as explained earlier, i.e., SVM (0.9277) > MLR (0.8926) > ANN (0.8203). The
standard deviation value for the observed data was obtained as 0.1901. The MLR, ANN,
and SVM model predicted values; the standard deviation was 0.2487, 0.1025, and 0.2419,
respectively. Therefore, the deviation between observed and model-predicted values was
lowest (0.0518) for the SVM technique, followed by MLR- (0.0586) and ANN- (0.0876) based
models. Thus, from a qualitative evaluation of observed data and predicted data using
different techniques, it was found that the SVM technique performed better, followed by the
MLR and then ANN techniques. Based on this analysis, it thus could be inferred in terms
of the input parameters such as EATBAR, weight, shear velocity, and relative depth; the
model developed using the support vector machine technique was superior for predicting
single grain velocity compared to the models developed using ANN and MLR techniques.

Further, the MLR-based model better predicted the performance of single grain veloc-
ity than the model developed using the ANN technique. Previous studies on the simulation
of experimental data have been made in Kumari [44], which integrates the soft computing
techniques with experimental results to estimate post-fire bond behavior. The bond strength
and bond-slip behavior have been estimated using gene expression programming (GEP)
and the ANN. The ANN has a significant positive association with experimental results
and makes more precise predictions than the investigated codes. Further, Sheikh Khozani,
Safari, Danandeh Mehr and Wan Mohtar [24] developed incipient sediment motion models
with ensemble genetic programming in rectangular form. The new models incorporate
dimensionless input factors such as relative particle size, relative deposited bed thickness,
channel friction factor, and channel bed slope to evaluate the particle Froude number in
rectangular channels. It was revealed that the combined use of fluid, flow, sediment and
channel characteristics was superior in estimating incipient motion. Earlier, Wan Mohtar,
Afan, El-Shafie, Bong, and Ab. Ghani [27] estimated incipient sediment motion by the
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effects of bed deposits in sewers using ANN. For predicting the motion of sediment, feed-
forward neural network (FFNN) and radial basis function (RBF) were two algorithms of
ANN employed to predict the critical velocity over varying sediment thickness, median
grain size, and water depth. Thus, soft computing techniques have been an effective tool
for simulating experimental data.

4. Conclusions

The experimental results showed that the grain velocity increased with an increase
in channel slope and discharge but decreased with sediment particle weight. The models
developed to simulate the output parameter, grain velocity in input parameters such as the
exposed area to base area ratio, relative depth, shear velocity, and particle weight using
SVM, ANN, and MLR techniques were developed to predict grain velocity. However, based
on the prediction performance in terms of statistical indices, namely, RMSE, PCC, and WI,
the SVM technique-based model with RMSE = 0.1195, PCC = 0.8877. WI = 0.7243 was found
to be the best. The lowest prediction performance was obtained for the ANN technique’s
model. Similar findings were obtained with the scatter plot and Taylor diagram.
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