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Abstract: Quantifying hydrological losses in a catchment is crucial for developing an effective flood
forecasting system and estimating design floods. This can be a complicated and challenging task when
the catchment is urbanised as the interaction of pervious and impervious (both directly connected
and indirectly connected) areas makes responses to rainfall hard to predict. This paper presents the
challenges faced in estimating initial losses (IL) and proportional losses (PL) of the partly urbanised
Brownhill Creek catchment in South Australia. The loss components were calculated for 57 runoff
generating rainfall events using the non-parametric IL-PL method and parametric method based on
two runoff routing models, Runoff Routing Burroughs (RORB) and Rainfall-Runoff Routing (RRR).
The analysis showed that the RORB model provided the most representative median IL and PL for
the rural portion of the study area as 9 mm and 0.81, respectively. However, none of the methods
can provide a reliable loss value for the urban portion because there is no runoff contribution from
unconnected areas for each event. However, the estimated non-parametric IL of 1.37 mm can be
considered as IL of EIA of the urban portion. Several challenges were identified in the loss estimation
process, mainly when selecting appropriate storm events, collecting data with the available temporal
resolution, extracting baseflow, and determining the main-stream transmission losses, which reduced
the urban flow by 5.7%. The effect of hydrograph shape in non-parametric loss estimation and how
combined runoff from the effective impervious area and unconnected (combined indirectly connected
impervious and pervious) areas affects the loss estimation process using the RORB and RRR models
are further discussed. We also demonstrate the importance of identifying the catchment specific
conditions appropriately when quantifying baseflow and runoff of selected events for loss estimation.

Keywords: partly urbanised catchment; initial loss; proportional loss; IL-PL model; RORB model;
RRR model; transmission losses

1. Introduction

One of the most critical issues associated with the prediction of urban floods is de-
termining catchment response to rainfall, which impacts the delay in flow through the
catchment and the hydrological losses that determine what proportion of catchment rain-
fall appears as runoff. Hydrological loss is defined as precipitation that does not appear
as direct runoff and is attributed to interception by vegetation, infiltration into the soil,
evaporation, retention on the surface (depression storage), and transmission loss through
the stream bed and banks as per Australian Rainfall & Runoff, 2016 [1].

Estimating hydrological loss for a catchment is complicated by several factors in-
cluding catchment topography, soil characteristics, and climate [2,3]. While several recent
studies have identified methods to quantify losses in rural Australian catchments in for
the purpose of design flood estimation and forecasting [4–7], literature on loss estimation
for urban and partly urbanised catchments is limited [8]. Urban catchments contain a
significant proportion of impervious areas (directly connected impervious areas (DCIA)
and indirectly connected impervious areas (ICIA)) that challenge urban loss estimation,
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as the response of the impervious areas is notably different to that of the pervious areas.
Further, accurate determination of urban loss depends on an estimation of unconnected
areas (a combination of ICIA and pervious areas), and effective impervious area (EIA) of
the catchment, which are generally difficult to quantify [9]. Phillips et al. [8] suggested that
EIA was roughly 70–80% of DCIA when the DCIA was obtained based on the GIS based
mapping analysis of a catchment. Other conceptual methods, including regression analysis,
calibration of a rainfall-runoff model, and direct analysis of rainfall and streamflow records
have been highlighted in Book 5 of ARR 2019 as suitable techniques to estimate EIA [10].

Several loss models have been used to estimate hydrological losses in Australia and
elsewhere. These models are categorised into three main types; simple, empirical, and
process models under Chapter 3, Book 5 of ARR, 2016 [10]. The simple models estimate the
infiltration portion of the total runoff as losses, and evaporation and depression losses are
ignored. The Green–Ampt, Horton, Philip, and Richards equations are simple and widely
used models in many studies [11–13]. The process models consider a complex steps to
consider flow through the surface and soil layers [14]. Empirical models typically provide
lump-sum loss value at the catchment scale and conceptualise the loss elements from
interception, depressions and infiltration [15,16]. Therefore, many studies have utilised
empirical models rather than simple and process models to estimate losses. The most
rainfall runoff excess models, including the Initial Loss-Continuing Loss model (IL-CL),
the Initial Loss-Proportional Loss model (IL-PL), SCS Curve Number method, Variable
Continuing Losses model, and Soil Water balance Model (SWMOD), fall within this empiri-
cal category [17–19]. Out of these models, the IL-CL and IL-PL have been widely used to
estimate losses in Australian catchments [4,16,20,21]. Initial loss (IL) occurs before the start
of surface runoff, while continuing loss (CL) and proportional loss (PL) occur throughout
the remainder of the storm. Although Lang et al. [6] and Hill et al. [5] have indicated that
the IL-CL loss model was the best loss model for design flood estimation, Dyer et al. [22]
and Goyen [23] have shown that the IL-PL model outperforms the IL-CL model. Further,
the PL rate varies during the rainfall period, which is one of the advantages over the CL [5].
Additionally, some rainfall-runoff models such as RORB have recommended using IL-PL
over IL-CL model for urban and partly urbanised catchments [24]. However, research on
using the IL-PL loss model for urban loss estimation is limited [5,25].

Losses can be estimated using either parametric or non-parametric method. The simple
non-parametric method widely used in many Australian studies uses the catchment’s water
balance to estimate losses [6,26]. However, Hill et al. [5] argued that loss values based on this
approach were highly subjective, relating largely to the hydrograph shape. Alternatively,
loss values can be determined using runoff routing models based on the observed rainfall
and runoff data and model specific parameters [27]. In these parametric methods, loss
values are adjusted until the rainfall excess hydrograph shows the best fit with the recorded
hydrograph [24]. As noted earlier, runoff in an urban catchment is a combined output
of EIA and unconnected areas, which are difficult to quantify, but rainfall-runoff routing
models should have the capacity to model the combined runoff of these two areas. By
comparison, many models do not assess the EIA and unconnected area losses separately [8].
Table 1 compares the rainfall-runoff models that can be used to estimate IL-PL loss from the
recorded storm events. Though the listed rainfall and runoff models are similar, RORB is the
commonly used runoff routing program to quantify losses from the Australian catchments.
The ‘ROR’ of ‘RORB’ stands for ‘runoff routing’. The ‘B’ no longer has significance but
at one time indicated that the program was developed and maintained on a Burroughs
B6700 computer [24]. The main reasons for this extensive use of the RORB model are free
access and minimum required inputs. The other advantage of using the RORB model is
that the results can be easily compared with the already available literature. However,
there are some significant challenges to be overcome when using RORB to estimate the
runoff [28]. One of the limitations is that the result of the model depends on the number of
sub-areas [22]. Further, RORB estimates the losses using one runoff process based on the
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unconnected area. Therefore, a more reliable loss estimation can be obtained if a model
with two or three runoff processes can be used.

Table 1. Empirical loss models used in rainfall runoff models.

Rainfall Runoff
Model Method Incorporated Loss

Models References Model Structure Model
Access

RORB-Runoff
Routing for a

Burroughs
Computers

Non-linear storage
routing IL/CL and IL/PL Laurenson, et al.

[24]

Loss calculation
based on pervious
area runoff. Losses

from one runoff
process only (direct

surface runoff).

Free

URBS-Unified Basin
Simulator Model

Non-linear storage
routing

IL/CL, IL//PL
and

Manley-Phillips
Carroll [29]

The URBS models
rainfall losses for
impervious and
pervious areas

separately. Losses
from one runoff

process only (direct
surface runoff).

A license copy is
required

WBNM-Watershed
Bounded Network

Model

Non-linear storage
routing IL/CL and IL/PL Boyd, et al. [30];

Milevski [31]

The WBNM models
rainfall losses for
impervious and
pervious areas

separately. Losses
from one runoff

process only (direct
surface runoff).

A license copy is
required

RAFTS Non-linear storage
routing

IL/CL, IL/PL and
Australian

Representative
Basins Model

XP Software
(2009)

Loss calculation
based on pervious
area runoff. Losses

from one runoff
process only (direct

surface runoff).

A license copy is
required

RRR-Rainfall Runoff
Routing

Linear channel
storage and

non-linear storage
routing

IL/PL Kemp [28]

Three runoff
processes for rural
sub-areas and two

runoff processes for
urban sub-areas

Not publicly
available yet

RORB is a commonly used runoff routing model in Australia [6,21,32] and recom-
mends IL-PL loss models for urban catchments [24]. One drawback of RORB is that it is a
single runoff process that assesses losses using only the surface runoff process. The latest
version of RORB (version 6.45) can consider losses from DCIA, ICIA, and pervious area
separately for urban and partly urbanised catchments. However, RORB does not calculate
loss contributions separately. Instead, it factors the losses across the components. Therefore,
it is still challenging to identify loss from EIA and unconnected areas for urban catchments
using the RORB model.

Kemp [28] introduced an alternate runoff routing model, namely the Rainfall-Runoff
Routing (RRR) model, which can also be used to estimate losses from rural and urban
catchments. The RRR uses the IL-PL loss model, and it is capable of modelling three
processes, namely slow flow (subsurface), fast flow (surface), and baseflow processes. The
other advantage of the RRR model is that it can estimate losses from the impervious and
pervious areas of an urban catchment separately. Despite these attractions, the version of
this updated RRR model is not yet available in the public domain. In addition, the spatial
variability of rainfall cannot be accounted for in RRR, as it is still a single node model [28].
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Channel transmission loss (TL) is the streamflow reduction due to water absorbed
through the stream bed and banks, evaporation, and infiltration from floodplains when
runoff travels away from the stream [10,33,34]. Like other losses, TL varies both spatially
and temporally, and changes the input hydrograph for the runoff routing model. Therefore,
for a reliable account of losses, accurate estimation of the TL of the stream is a critical factor
in the water balance of a catchment. Several approaches, including regression models,
differential equations, and field experiments, have been used to estimate TLs of the natural
channels [35–38]. However, most of these models are complex and require more data than
is generally available. Further, developed methods using these approaches are always
unique to the case-study catchment and are therefore challenging to transfer to other
catchments. McMahon et al. [39] found that most research used a simple water balance
equation to estimate TL, and recommended additionally considering groundwater inflow,
evaporation losses and bed infiltration with inflow and outflow to calculate TL. However,
a lack of required field data resolution [40] and data uncertainty [41] make adding these
functions challenging.

Depending on focus and research objectives, studies followed different criteria to select
rainfall events for modelling. Criteria used to define rainfall events include depth, duration,
inter-event gap and temporal pattern [21,42]. Selection based only on these few criteria may
not be sufficient for loss estimation of the urban catchments for flash flood purposes. Thus,
priority should also be given to modelling runoff generated by high intensity storm events.
Flash flood is rapid flooding usually occurs within less than six hours of the intense rainfall
events [43,44]. When estimating losses for urban flash flooding using historical storm
events, short-duration rainfall bursts that generate runoff from EIA and unconnected areas
should be used. However, high-intensity, short-duration events that produce runoff from
unconnected urban areas are uncommon, and only a few historical events are available in
SA for urban catchments [45]. Therefore, obtaining sufficient high intensity events for such
catchments to estimate losses is a challenge.

The work presented here is part of the first author’s PhD research project, which
investigates relationships between initial soil moisture content and the initial loss. The case
study catchment selected in this research is Brownhill Creek (BHC), a partly urbanised
catchment in the SA metropolitan region. The work involved in this analysis included
data collection and preparation, storm event selection, and rainfall-runoff modelling for
calculating losses. During this investigation, we came across several challenges when:

• Selecting storm events for the determination of partly urban losses.
• Selecting the most appropriate temporal resolution of the storm event.
• Extracting baseflow using Lyne and Hollick algorithm.
• Estimating transmission loss
• Choosing loss estimation method between the parametric and non-parametric for the

rural and urban portions of the study area.

This paper aims to explain the strategies we adopted to overcome the above challenges.

2. Materials and Methods
2.1. Study Area

The Brownhill Creek (BHC) catchment is a small, partly urbanised catchment located
in the eastern Adelaide metropolitan region of South Australia (Figure 1). It extends for
approximately 24 km from the Mount Lofty Ranges to Patawalonga Lake before discharging
into Holdfast Bay. The study area has a Mediterranean climate with a comparatively dry
summer and wet winter.

The study area consists of two sub-catchments defined by gauging stations, as shown
in Figure 2a. The upper catchment (rural portion) has an area of approximately 17.9 km2,
zoned as a hill face, with limited development potential. The lower catchment (urban
portion) covers 14 km2 with areas of low relief and substantial urban land use. A piped
urban drainage system collects surface runoff from this portion of the catchment before
discharging into Brownhill Creek at several locations. A considerable part of the creek (more
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than 18% of the channel length) in this urban portion has been modified into concrete-lined
and masonry channels during the urban development process [46].
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Observed data from six rainfall gauging stations and two flow gauge stations in the
study area were used for this analysis (Figure 2a). Annual average rainfall variation from
2001 to 2019 (Figure 2b) shows that the upper rural portion of the catchment, receives
between 15% to 41% more rainfall than the lower urban portion. Based on historical flood
data, BHC has been categorised as a high-risk floodplain for flash floods in SA [47].

2.2. Methodology

The nature of the BHC catchment is partly urbanised. The literature supports the
loss estimation using IL-PL over IL-CL for such catchments [22,23]. The recommended
approach to loss estimation using the RORB rainfall-runoff model that we adopt for this
investigation is also IL-PL [24]. Hence, IL-PL was considered to be the most appropriate
empirical approach to quantify losses in the BHC catchment. A systematic approach
presented in Figure 3 was used to conduct this assessment and details of individual steps
are detailed in following sections.
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2.2.1. Selection of the Events

Runoff generating events with lower annual exceedance probability (AEP, less frequent
events) were prioritised as the focus of the study is to quantify losses for urban flash
flooding. However, some additional criteria need to be identified to select the appropriate
storm events.

Selecting a method to choose the storm events for loss estimation is a challenge because
no recommended criteria are available. The literature showed that different criteria were
used in various studies depending on the purpose of the loss estimation. For example,
Rahman et al. [48] defined a rainfall event using three rainfall characteristics, namely
rainfall duration, intensity, and temporal pattern, when estimating the hydrological losses
for design flood estimation of rural catchments in Victoria, Australia. Slightly different
criteria, such as cumulative depth of rainfall (10 mm), no rainfall between the storm events
(5 h), maximum intensity (0.25 m/h), and maximum rainfall during (1.2 mm) within a 6 h
dry period, were used by Gamage et al. [20] to select the complete storm events for the loss
calculation of SA rural catchments. Hill et al. [5] defined the complete storm using 12 h.
inter-event gap and the end time when surface runoff had effectively ended for the loss
assessment of 38 rural catchments in Australia. When it comes to the urban loss estimation,
event selection criteria are again different from the rural catchment. For example, Phillips
et al. [8] adopted some criteria when they extracted storm events to estimate losses for
the urban catchment in Australia. The current study is also to assess the losses from the
urban catchment in Australia. Therefore, it was decided to use the criteria listed in Table 2
adopted by Phillips et al. [8]. The end of runoff for each event was determined by taking
the earliest overlap between recorded and baseflow hydrographs. When runoff overlapped
with a following event, the end point of the runoff for the first event was taken as the
starting time of the following event.
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Table 2. Criteria adopted for selection of the storm events.

Parameter Value Adopted Units

Select event when period of no rainfall (before and after the event) [8] 5 hours
Minimum cumulative depth of rainfall [8] 10 mm

2.2.2. Rainfall Data Preparation

The catchment weighted average rainfall of the selected events was obtained using
the Thiessen Polygon feature under the Analysis toolbox in ArcGIS 10.7. Figure 4 shows
the Thiessen Polygon areas and the relative weights used for each gauging station when
obtaining the mean catchment rainfall. Based on the extracted events, we observed that
time to peak was between 5 and 12 h for the rural portion while that was only between 3
and 6.5 h for the urban portion. Therefore, we considered that the catchment response time
is quick for the study catchment. Hence, rainfall and runoff data at 15 min steps were used.
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2.2.3. Flow Preparation–Upper Rural Portion

The baseflow must be separated using an external algorithm from the observed
streamflow hydrographs before using it to the non-parametric method and RORB model
for the upper catchment. However, the RRR model uses the observed flow as it can separate
quick flow and baseflow.

Baseflow separation can be done by graphical methods or more automated digital
filter techniques [49]. Many review studies showed that the digital filter techniques had
been used over the graphical separation methods in recent studies [50,51]. Lyne and Holick,
Chapman, Furey and Gupta, and Eckhardt algorithms are some of the most commonly used
approaches. Latuamury et al. [52] showed that Eckhardt’s filters, a two-parameter digital
filter performed better than the other algorithms for small island watersheds in Indonesia.
Chapman et al. [53] criticised the Lyne–Hollick filter method for assuming a constant
baseflow during no quick flow. However, a few studies showed no significant difference
in the outcome using Lyne and Holick and Chapman techniques [51]. In addition, Zhang
et al. [54] recommended the Lyne–Holick method by using five catchments in Eastern
Australia. The same method was suggested by Kang et al. [55] using some catchment data
in the Nakdong River in the Republic of Korea. Further, the Lyne–Holick filter method has
been widely used with daily and hourly data for catchments across Australia [49]. Because
of these reasons, and given this study is based on the Australian catchment data and follows
ARR recommendations, the Lyne and Hollick filter, Equation (1), was used to separate
baseflow from the observed flow [56]. One of the advantages of using the Lyne–Holick
filter method is that the results can be easily compared with the other Australian based
studies. However, Eckhardt [57] showed that the catchment size and conditions influenced
filtering results. So, a comparison of baseflow using a few other filter methods would
provide a chance to select a better method for the study area.

fk = afk−1 + 1/2(Yk − Yk−1)(1 + a) (1)
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where Yk is the filtered quick response at the kth sampling instant. Yk is the observed
streamflow, and ‘a’ is the filter parameter (recession constant).

The Lyne and Hollick algorithm commonly uses three passes with a filter parameter
value of 0.925 for daily data sets [58]. Evans et al. [59] have suggested some modifications to
the Lyne and Hollick algorithm when using smaller time step data. Rachel et al. [60] found
that nine passes with a filter parameter value of 0.925 is suitable for a 1-h time step which
was then used by several studies to extract baseflow [26,49,54,61]. This study also used a
filter parameter of 0.925 for our 15 min time step as we could find no studies supporting
shorter time steps.

2.2.4. Flow Preparation–Lower Urban Portion

A significant part of the urban portion’s runoff resulted from EIA, while the remainder
was inflow from the upper portion and so did not contribute to baseflow. Therefore,
baseflow separation was not necessary for the downstream urban part of the catchment.
The travel time between the two gauging stations was found to be approximately 1 h [62],
and when a 1-h lagged inflow hydrograph from the upstream station was compared to the
hydrograph at the downstream station, TL was evident within the urban channel. TL was
excluded from the inflow hydrograph by considering the simple water balance of inflow
and outflow. For consistency, TL was estimated for the selected events in the following
manner. First, this TL assessment was performed for each 15 min time interval. Then, event
TL was obtained by adding all 15 min TL together for the entire event duration:

1. If there is no inflow from the upper portion, it is taken that there is no TL.
2. If the lagged inflow is greater than the outflow, then the flow difference is taken as the TL.
3. At certain time steps of the event, the lagged inflow can be less than the outflow. In

such cases, TL cannot be derived directly, and an estimated value was used for each
15 min time interval which was the average TL value obtained for 15 min on the rest
of the event duration.

2.2.5. Estimation of IL and PL by Non-Parametric Method

Figure 5 shows a rainfall hyetograph and corresponding hydrograph for a typical
storm event along with an IL-PL loss model. In calculating IL and PL with this approach,
quick flow (total flow−baseflow) was used for the upper rural portion, while urban stream-
flow (total flow−inflow−transmission losses) was used for the lower urban portion.

The flow depth in mm
(

Q f

)
was calculated by using Equation (2), where q f (i) is the

filtered flow in m3/s for the ith time interval, ∆t is the time step in seconds, and A is the
catchment area in m2.

Q f =
n

∑
i=1

q f (i) × 1000× ∆t/A (2)

The PL is the proportion of the rainfall lost at each time step after the IL has been
satisfied. The PL was obtained using Equation (3) [20].

PL = 1− TSV/
(

TRV − IL
(

A× 10−3
))

(3)

TSV is the total surface runoff volume in m3 from Equation (4), and TRV is the total
rainfall volume in m3 from and Equation (5).

TSV =
n

∑
i=1

∆t ∗ q f (i) (4)

TRV =
n

∑
i=1

ri ∗ A/1000 (5)
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where ri is the 15 min rainfall in mm during the ith time interval and n is the total number
of time steps within the storm duration.
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2.2.6. Estimation of IL-PL by Parametric Method-RORB

The storm file and catchment file for each event were prepared as per steps recom-
mended in the RORB manual. The 15-min mean catchment rainfall (Section 2.2.2) and
instantaneous flow (Section 2.2.3 and Section 2.2.4) were used when developing storm files
for the selected events.

When the catchment and storm files were prepared for an event, the RORB model
calibration was performed through an interactive trial and error fitting procedure by
changing model parameters (m, kc and IL). The model automatically adjusts the PL value at
each calibration run to give the best fit between the observed and the modelled hydrographs.
The model parameters that provided the best overall fit were considered essential when
fitting the hydrographs, and the errors in peak discharge were used as the objective function
and kept minimal.

Losses calculated using the RORB model for the rural portion represented the accu-
mulated losses from the pervious areas of each sub-area. Hence, the impervious fraction
computed using Google Maps for each sub-area was used as an input to the catchment file.
However, a different approach was taken for the urban portion, as EIA and unconnected
area contribution had to be considered separately. Therefore, a minor modification was
made to the urban catchment file by breaking each sub-area into two parts to assign sep-
arate EIA and unconnected areas. The EIA of each subarea was obtained from the study
done by Kemp, et al. [45]. The fraction impervious was set to 1 for the EIAs and 0 for the un-
connected areas to set the catchment’s areal variability. The losses estimated from the RORB
model for the urban catchment represent the losses belonging to the unconnected areas.

2.2.7. Estimation of IL-PL by Parametric Method-RRR

The RRR model runs multiple runoff processes, including baseflow, slow flow, and fast
flow, when predicting event runoff [28]. Therefore, during the model calibration process,
the catchment loss parameters, including IL and PL for base flow and slow flow and
catchment storage parameters were adjusted to get the best fit between the observed and
the modelled hydrographs, minimising the mean square error.

A similar procedure was applied to calibrate RRR for the urban portion by changing
model parameters to get the best fit between the calculated urban flow and the modelled
flow. However, unlike in RORB, there is no provision in the current version of the RRR
model to obtain losses from the EIA and unconnected areas separately. Therefore, the loss
values presented in the urban portion mainly belong to the total catchment area.
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3. Results and Discussion
3.1. Challenges of Selecting Appropriate Storm Events

The recorded storm events with lower AEP values were given higher priority as the
focus of this study was to quantify losses for flash flood catchments [63,64]. However,
storm events that generated flash floods were limited. Only 19 storm events were found
to be at 20% AEP or less within the 26 years since 1993, but six of them had 20% AEP or
less resulting flow and only a few of them had caused flash floods in the area. The AEPs
of the rainfall event and resulting flow data of the selected events are provided in Table 3.
So, the historical flood records showed that, the highest flood events were on the 26th of
December 2016 with 2.5% AEP (one in 40 years), the 6th of November 2005 with 3% AEP
(one in 35 years), and the 13th of September2016 with 6% AEP (one in 17 years) around
the study area. Most of the other flood events were less than 15% AEP (one in seven years)
and caused minor damage to the people and assets. As a result of a low number of flood
events available for the assessment, some additional high-frequent events with AEPs of
50% and 63.5% were also included by considering several other event criteria, including
high intensity, low duration, low time to peak, and high runoff. As a result, a total of
57 events were selected (Table 3).

As most of the selected storm events did not produce flash floods in the study area,
computed losses may not be sufficiently representative for analysis and for future forecast-
ing. Computing losses for flash flood forecasting without having sufficient representative
events is a challenge, and further analysis can provide contradictory results. As such,
assessments of losses when more representative data sets become available are urgently
needed for reliable flood forecasting, as climate change is expected to increase the frequency
and the intensity of extreme storm events [65,66].
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Table 3. Selected storm events.

Event Date (Rural
Portion)

Event
No

Total
Rainfall

(mm)

Total Runoff
Volume
×103 (m3)

BoM Design
Rainfall
AEP (%)

AEP of Flow
(%)

Event Date (Urban
Portion)

Event
No

Total
Rainfall

(mm)

Total Runoff
Volume
×103 (m3)

BoM Design
Rainfall
AEP (%)

AEP of
Flow (%)

21 July 1995 R1 43.6 264.6 63.2 25 03 July 1996 U1 18.4 51.0 63.2 80
30 October 1997 R2 73.6 58.2 10 100 30 July 1996 U2 25.8 170.7 63.2 100

07 February 1998 R3 22.3 6.0 50 100 21 August 1996 U3 23.5 201.1 63.2 65
19 April 1998 R4 49.0 21.4 20 100 30 October 1997 U4 86.9 323.6 5 90

22 Mar 2000 R5 35.6 5.3 20 63.2 07 February 1998 U5 20.8 36.7 50 55
12 May 2000 R6 44.9 8.9 50 100 11 April 1998 U6 50.4 125.0 50 80

06 September 2000 R7 37.9 132.4 50 24 19 April 1998 U7 41.4 122.1 20 60
17 October 2000 R8 72.7 172.2 20 25 12 June 1999 U8 28.6 175.1 63.2 70

06 June 2001 R9 19.6 12.9 20 50 22 Mar 2000 U9 31.6 56.6 20 65
18 May 2002 R10 86.8 62.2 10 63.2 12 May 2000 U10 14.8 38.6 63.2 75
26 June 2003 R11 41.5 41.2 50 63.2 26 June 2000 U11 25.7 118.8 63.2 65
17 May 2004 R12 47.4 24.1 50 100 17 October 2000 U12 53.1 300.6 20 65

02 August 2004 R13 46.5 413.7 63.2 16.5 25 January 2001 U13 28.7 41.5 5 24
23 October 2005 R14 55.7 273.4 50 23 06 June 2001 U14 25.4 72.9 50 20

06 November 2005 R15 97.7 464.3 5 3 23 September 2001 U15 29.4 101.5 63.2 85
24 August 2010 R16 45.1 247.2 63.2 33 18 May 2002 U16 57.9 208.0 20 55

03 September 2010 R17 44.8 235.1 63.2 31 19 February 2003 U17 46.6 117.2 20 65
20 June 2012 R18 74.8 196.9 20 45 26 June 2003 U18 35.8 135.1 50 45
31 May 2013 R19 59.6 95.9 50 100 17 May 2004 U19 31.3 81.0 63.2 85
18 July 2013 R20 51.1 519.6 63.2 19.5 19 January 2005 U20 25.9 40.9 50 55
08 July 2014 R21 44.7 181.1 63.2 42 10 June 2005 U21 14.0 57.5 63.2 20
04 July 2016 R22 65.1 285.0 50 32 11 December 2008 U22 28.7 51.1 63.2 85

13 September 2016 R23 84.6 944.2 10 6 31 May 2013 U23 47.9 230.2 50 40
28 September 2016 R24 78.6 634.5 20 15 17 July 2013 U24 15.1 43.4 63.2 85
26 December 2016 R25 51.5 98.8 50 31 12 September 2013 U25 23.9 85.3 63.2 8

17 July 2017 R26 51.8 202.0 63.2 32 13 February 2014 U26 40.5 116.6 20 21
14 February 2014 U27 40.7 135.7 20 50

22 January 2016 U28 27.4 48.3 10 21
28 September 2016 U29 49.6 762.8 63.2 12

11 October 2017 U30 46.16 67.9 20 2.5
17 May 2018 U31 40.4 111.2 50 85

Note: The AEPs of the rainfall event was gathered from BOM design IFD data (http://www.bom.gov.au/water/designRainfalls/revised-ifd/, accessed on 5 January 2022) while AEPs
of the resulting flow data of the events were decided using flood frequency analyses.

http://www.bom.gov.au/water/designRainfalls/revised-ifd/


Water 2022, 14, 1313 12 of 21

3.2. Impact of Data Resolution (Shorter Time Step)

As noted in Section 2.1, BHC is a small catchment and has a quick response time. It
was observed that, on average, the time to peak flow after a storm event is less than 3.5 h
for the rural portion and 1.5 h for the urban portion. Hence, the study area requires rainfall
data with fine resolution in time for representative hydrological analysis to estimate losses.

Several authors have identified the effect of the temporal resolution of rainfall data
when simulating hydrological response in urban areas [67–71]. Lyu et al. [70] recommended
that rainfall data of 5-min resolution for urban areas smaller than 1 km2 or at least 15-min
for larger sizes were needed to estimate the flood peak accurately. Ficchì et al. [72] ran
rainfall-runoff models with rainfall inputs of eight different time steps ranging from 6 min
to one day and found a significant performance improvement with shorter time steps. In
this study, 15-min time step data were selected as no data for time steps shorter than 15 min
were available. However, according to the finding of the previous research, shorter time
steps lower than 15 min would be more likely to provide a better outcome from RORB and
RRR models.

3.3. Challenges of Extracting Baseflow

When losses are derived for historical storm events using the non-parametric method
and RORB model, baseflow must be extracted from the observed hydrograph data to obtain
surface flow. The standard Lyne and Hollick filter is one of the widely used baseflow
separation methods utilised by several computer packages [58]. This method generally
aims to separate the baseflow component of the total hydrograph for rainfall-runoff routing
models. As detailed in Section 2.2.3, the modified standard Lyne and Hollick filter with
a 1-h time step [60] has been used in many studies to extract baseflow for rural catch-
ment analysis [26,49,54,61]. However, urban or partly urbanised catchments have a much
quicker response time and generally shorter time step data is needed for loss calculation,
as discussed in Section 3.2. Baseflow estimation for time steps less than 1 h is challenging
with the standard Lyne and Hollick filter method as there are no available studies focusing
on shorter time steps. Further, identifying baseflow in urban catchments is challenging as
some catchments have excess irrigation water from urban land use activities, including gar-
dens, sports fields, and recreation areas, which appears as baseflow during dry seasons. In
addition, some urban channel sections are lined, and the chances of water fed into channels
by delayed pathways are low, affecting the baseflow. In some channels, baseflow does not
exist, but transmission loss (TL) is more likely. In this study, baseflow separation was only
considered for the event selected in the rural portion as the urban portion response did not
show any baseflow excepting TL. Therefore, identifying the individual catchment specific
conditions is critical for a successful loss estimation in urban/partly urbanised catchments.

3.4. Challenges of Estimating Urban Channel Transmission Loss

The average annual TL for the urban channel is 0.054 m3/s and reduces the urban flow
by 5.7%. Figure 6 shows how TL varies with the average inflow of the urban downstream
portion based on the storm events selected in the dry season (November to May) and wet
season (June to October). There is no correlation between the inflow and TL of the event
selected from the dry season. Figure 6a shows that the average TL of an event is negligible
at 0.01 m3/s. So, it can be concluded that TL is not required to consider the events occurring
in the dry season. However, a relatively strong linear correlation between inflow and TL
can be observed for the storm event during the wet season (Figure 6b). However, still, the
average TL is around 0.04 m3/s for the wet seasonal storm events that had generated inflow
less than or equal to 0.8 m3/s. So, the TL of the wet seasonal events can be categorised into
two zones. If the inflow of a storm event is greater than 0.8 m3/s, then TL can be estimated
using TL = 0.1442 × Inflow + 0.009. The main reason for this better correlation between
inflow and TL during wet seasonal events is the higher wetted perimeter flow, leading to
high TL.
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This study uses a relatively simple TL calculation introduced by McMahon, et al. [39]
based on the continuity of the catchment flow mass balance. Figure 7 shows the three
different runoff events from the urban portion and the resultant urban flow after considering
the TL. The estimated TL in Figure 7a,b (based on U17 and U1of Table 3) was small, and this
was the general flow observation in the urban portion of the BHC. However, the estimated
average TL (1.65 m3/s) of the event shown in Figure 7c (event on 13/09/2016) was much
higher than that of the events in Figure 7a,b. This was because the recorded inflow was
significantly higher than the outflow observed at the downstream urban gauge station.
If this observation was not due to an error in data recording or the rating curve, another
possibility is the unaccounted outflow from the rural portion flow before it reaches the
downstream urban gauge station. Figure 7c represents a big event, and there is a chance of
flowing upper catchment (rural portion) inflow out into the low-lying areas beyond the
channel. Hence, the effective inflow for estimating TL should be less than the observed
inflow. However, getting an accurate inflow estimate is a challenge. As a result, this type
of outlier event was removed from the loss analysis in this study, which could affect the
estimated TL value for the catchment. In a separate analysis, Teoh [38] estimated a much
higher daily average channel TL in Brownhill Creek up to 5 Ml/d (1.39 m3/s), based on
the correlation between flows measured at the upstream rural gauge and downstream
urban gauge using continuous five years hourly flow data. Though the loss estimation
methods in both the studies are the same, the difference in input data, including data
resolution and continuous versus event-based made a notable difference in the results.
Potentially, the estimated TL in this study provides better results because it used shorter
time steps (15 min) and event-based for an extended data period (25 years). As detailed in
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Section 1, other methods are available to estimate TL. As such, further investigation based
on another method and when extensive data are available could verify this result for the
BHC study area.
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3.5. Challenges of Estimating Losses

The statistical analysis of IL and PL values obtained from non-parametric (water
balance) and parametric methods (RORB and RRR) for the BHC upper catchment (rural
portion) are shown using boxplots in Figure 8. The results show that the median IL from all
three methods is between 1.15 mm and 9 mm. However, these values are considerably low
when compared with the previously estimated IL values for rural catchments in SA. For
example, Gamage et al. [20] estimated mean IL between 7.9 mm and 17.2 mm for six rural
catchments in SA, while Hill et al. [5] used four rural catchments and obtained IL between
15 mm to 25 mm. One reason for these differing findings is the storm event selection process
differences, as noted earlier in Section 2.2.1. The focus of this study was to quantify losses
for a flash flood catchment. Hence, our selection was based on including high-intensity
storm events. In addition, any storm events that did not produce runoff were not chosen.
Therefore, the estimated loss values were biased towards the wet antecedent conditions
and highly likely to have lower loss values as found by Hill et al. [21].

The non-parametric approach of loss estimation is highly subjective to the catchment
characteristics and the shape of the hydrograph [5]. Hill et al. [5] further described that
the start of the hydrograph rise generally reflects the runoff from the catchment area close
to the gauge station and does not indicate the runoff from upper catchment areas due to
different time of concentration. In addition, the point of runoff commencement depends
on data resolution and human judgment. Therefore, the non-parametric method may
underestimate the potential IL values for our rural portion. As pointed out, the upper and
the lower limits of the IL values estimated for the rural portion (0 mm–4.08 mm) using the
non-parametric method are relatively low compared to past studies [5,20]. In this analysis,
the variation of IL based on the non-parametric method was only between 0 mm and
4.08 mm. So, confidence in using the non-parametric method to estimate rural losses for
similar catchments is low.

The loss values obtained from the RORB model are based on the pervious areas. As a
result, RORB estimates losses better in the rural catchments [5,27,73]. The catchment area
of the rural portion of the BHC study area is about 92%, hence the estimated median IL
value of 9 mm using the RORB model can be a good representation of the potential losses
for our rural portion. However, the results in Figure 8 highlighted that the observed IL and
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PL values based on the RORB model have a high range across the selected rainfall events
(0.6 < IL (mm) < 32 and 0.49 < PL < 1).
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The statistics summary of the losses based on the RRR model in Figure 8 shows that the
median IL for the rural portion was 8.2 mm, and PL was 0.8. Though the PL values obtained
from RORB and RRR are close, the IL values obtained by the two models reveal that the
mean values from RORB are 9% higher than that of the RRR method. One reason for this
difference may be that RORB allows for spatial variability in rainfall across the catchment
through sub-areas, but the RRR model uses average rainfall in a single catchment [28]. In
addition, the RRR model uses the total catchment area for loss calculation, while RORB
uses only the pervious area. Thus, the IL values obtained from the RORB model are more
advanced for the rural portion.

Based on the rainfall and runoff volume comparison (Figure 9a), there is a poor linear
relationship with R2 (0.3144) and low p value (0.0029). This suggests that the relationship
does not explain much of variation of the data, but it is statistically significant. This is
expected as the rainfall-runoff process of a natural catchment is non-linear due to the
storage effect of the soil sub-surface and other factors, such as antecedent wetness and
vegetative cover, that significantly influence losses and runoff. On the other hand, a
relatively strong linear relationship between rainfall and runoff volume with R2 (0.806) and
P value (7.86 × 10−12) was observed for the urban portion of the study area (Figure 9b).
This means that the runoff contribution of each selected event for the urban portion is
almost in proportion to the rainfall volume and has little effect on the other factors. Thus,
it can be concluded that the runoff contribution of each event is mainly from EIA, with
no contribution from unconnected areas in the urban portion. Therefore, some challenges
need to be addressed when estimating IL values using the selected methods because each
method interprets losses differently for the urban portion and provides different results.

With a little modification to the catchment file, as detailed in Section 2.2.6, the RORB
model can treat EIA and unconnected areas separately when calculating losses for the urban
portion. The challenge is that when there is no runoff contribution from the unconnected
areas, RORB cannot calculate losses. As detailed above, the unconnected area contribution
of the urban portion of the BHC study area is negligible for most of the selected events.
Therefore, the RORB model cannot estimate losses for the urban portion. On the other hand,
the RRR model used the entire area of the urban portion for loss estimation and could not
distinguish between EIA and unconnected areas separately. As a result, the estimated IL
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values from the RRR did not reflect the actual loss of either the unconnected areas or EIA.
With these observations, we can conclude that the loss values obtained from parametric
methods did not reflect the actual loss of the urban portion.
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The non-parametric method provided different loss values for the urban portion. The
start of the hydrograph rise reflects the runoff from the area with a quick response time which
is generally from the EIA of the urban portion. Therefore, the IL of the urban portion estimated
using the non-parametric method shown in Figure 10 (mean and median are 1.37 mm and
1.06 mm) can be considered as the IL of the EIA. However, there are no studies performed in
SA to validate IL of EIA of the urban areas, but this finding goes along with the ARR 2016
recommendation that the IL values for the EIA should be between 1–2 mm [8]. This finding is
still valid for the urban catchments that produce runoff mainly from EIA. Because the runoff
contributes only from EIA in the urban portion, PL is not a proportional loss on the EIA
but reflects the percentage of EIA. However, it should be noted that these findings are not
valid when the runoff contribution exists from both EIA and unconnected areas of an urban
catchment. If that is the scenario, the IL estimation based on the non-parametric method will
be higher as it represents the IL from unconnected areas as well.

This section discusses a few critical challenges faced during the loss estimating process
conducted for the partly urbanised Brownhill Creek catchment in the Adelaide metropolitan
region in SA. The challenges were mainly found when selecting the rainfall events, the
storm event’s time resolution, and the most appropriate loss estimation method. In addition,
extracting baseflow using the Lyne and Hollick algorithm and estimating transmission
losses were also challenged for the selected events because of some data limitations. Further,
this section provides some strategies that can be used to minimise the adverse effects of
these challenges with the available resources.

However, it is always challenging to have adequate intense rainfall events with low
AEP floods for an urban catchment in the Mediterranean climate. As a result, obtaining
a representative loss estimation for flash flood forecasting systems is challenging. On the
other hand, most of the other challenges, mainly the IL estimation of urban portions of the
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catchment and baseflow separation, can be improved if the selected rainfall-runoff model
is a multi-process model.
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4. Conclusions

This study explores the challenges when determining IL and PL values of the partly ur-
banised BHC catchment using the runoff generated low AEP rainfall events. The following
conclusions can be drawn:

• The selection of an appropriate method of estimating losses is critical to obtaining
reliable IL and PL values in a partly urbanised catchment. The parametric methods
based on a rainfall-routing model, such as RORB and RRR, can overcome some
challenges attached to the non-parametric method and provide more accurate loss
estimation for the rural portion of the BHC catchment.

• The mean IL values estimated for the rural portion using the RORB model were 9%
higher than that of the RRR model. This is mainly because the RORB model uses spatial
variability in rainfall through sub-areas and applies only to the unconnected areas, 92%
of the total. However, the RRR model used average rainfall for the whole catchment.

• The loss estimations are based on the runoff generated by mainly the low AEP rainfall
events. Hence, the estimated loss values are biased towards wet antecedent conditions,
and lower loss values can be observed. The recommended median IL and PL are
9 mm and 0.79 respectively for the rural portion of the study area, estimated using the
RORB model.

• The loss values estimated for the urban portion were slightly different as it was
necessary to assess losses from EIA (23% of the catchment area) and unconnected
areas separately. The RORB model generally provides losses of unconnected areas.
Therefore, a minor modification to the catchment file was done by breaking each
sub-area into two parts to assign separate EIA and unconnected areas. Still, RORB did
not estimate the losses of the unconnected areas of the urban portion as the catchment
response to the rainfall events is mainly from EIA and runoff contribution did not
exist in unconnected areas. Hence, the RORB model cannot be used to extract the
representative loss values of the event selected for the urban portion. Similarly, the
simple RRR model used in this study does not discriminate the runoff from EIA and
unconnected areas. Hence, it also did not provide the representative loss values for
the urban portion.

• IL estimated from the non-parametric method can be considered as IL of EIA of the
urban portion. The estimated mean and median IL were around 1.37 mm and 1.06 mm,
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respectively. However, this finding is not valid for the catchment where the runoff
contribution exists from EIA and unconnected areas.

• Though 19 storm events were found to be at 20% AEP or less since 1993, only eight
events had 20% AEP or less resulting flow. So, a few more storm events with higher
AEP (up to 63.5% AEP) were selected for the completeness of the study. Therefore, the
estimated losses may not accurately represent the losses of the flash flood events.

• TL was observed at the channel in the urban portion of the study area and the con-
tinuity of the catchment flow mass balance was used to estimate TL. Some outlier
events, potentially due to possible errors in data, challenged the average annual TL,
0.054 m3/s. A higher average TL of 0.14 m3/s was estimated for the wet season mainly
because of the higher unaccounted outflow into the low-lying area adjacent to the
channel. However, TL can be considered as 0.04 m3/s when the inflow is less than
0.8 m3/s and otherwise, using TL = 0.1442× Inflow + 0.009. The TL of the dry seasonal
events were between 0 and 0.04 m3/s. When extensive data are available, further
investigations are recommended to review the TL estimations.

• A 15-min temporal resolution of rainfall and flow data was used to obtain losses in
this study. However, to obtain better outcomes, it is recommended to use data with
even shorter time steps, such as 10- or 5-min temporal resolution.

Baseflow separation was performed for the events selected in the upper rural portion
adopting the widely used Lyne and Holick filter method. Though 15-min temporal reso-
lution data were used, the recession constant used for the filter method was 0.925, which
is generally used for the 1-h time step. If the appropriate recession constant for 15-min
time steps can be used, a better output can be obtained. In addition, baseflow was not
separated from the events selected from the urban portion as the catchment response did
not show any baseflow. So, careful analysis of catchment specific conditions is required
before starting the flow calculation. This leads to determining the catchment-specific flow
values, which is critical for estimating the losses.
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