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Abstract: Predicting and characterising groundwater flow and solute transport in engineering and
hydrogeological applications, such as dimensioning tracer experiments, rely primarily on numerical
modelling techniques. During software selection for numerical modelling, the accuracy of the results,
financial costs of the simulation software, and computational resources should be considered. This
study evaluates numerical modelling approaches and outlines the advantages and disadvantages of
several simulators in terms of predictability, temporal control, and computational efficiency conducted
in a single user and single computational resource set-up. A set of well-established flow and transport
modelling simulators, such as MODFLOW/MT3DMS, FEFLOW, COMSOL Multiphysics, and DuMuX

were tested and compared. These numerical simulators are based on three numerical discretisation
schemes, i.e., finite difference (FD), finite element (FE), and finite volume (FV). The influence of
dispersivity, potentially an artefact of numerical modelling (numerical dispersion), was investigated
in parametric studies, and results are compared with analytical solutions. At the same time, relative
errors were assessed for a complex field scale example. This comparative study reveals that the FE-
based simulators COMSOL and FEFLOW show higher accuracy for a specific range of dispersivities
under forced gradient conditions than DuMuX and MODFLOW/MT3DMS. FEFLOW performs better
than COMSOL in regard to computational time both in single-core and multi-core computing. Overall
computational time is lowest for the FD-based simulator MODFLOW/MT3DMS while the number
of mesh elements is low (here < 12,800 elements). However, for finer discretisation, FE software
FEFLOW performs faster.

Keywords: tracer transport; numerical modelling; numerical dispersion; numerical efficiency; paral-
lel computing

1. Introduction

Geoengineering and hydrogeological applications for groundwater flow and solute
transport use tracer experiments. These are often planned and dimensioned using numeri-
cal simulators. Mathematical model prediction efficiency highly depends on the quality
of the numerical simulator itself, which is evaluated in code inter-comparison studies,
or so-called benchmarking experimentation. For decades, these testing experiments for
the numerical software used to simulate flow and solute transport in georeservoirs have
been state-of-the-art. Usually, the developers of software or analytical approximations
verify and optimise their codes by conducting forward simulations for a given set of bench-
mark problems (e.g., [1–7]). They illustrate the accuracy of the numerical simulators for
single-phase flow in porous or fractured porous media by comparing established analytical
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solutions. Most of the software user manuals or reference books (e.g., [2,3]) include such
examples of benchmark problems demonstrating solution accuracy or as an independent
study to simulated breakthrough concentration (BTCs) at the outlet in column or lab scale
porous media (e.g., [8,9]). Further, some developers present and document user experi-
ences on their web pages or newsletters. Here, independent studies, such as ‘software
spotlight’ in the journal Groundwater are worth mentioning. Though some benchmarks
also include software applicability, e.g., solution efficiency, code parallelisation, resource
uses, or user-friendliness; these usually refer only to a single software package and do not
allow a comparison between numerical simulators (e.g., [10]). Moreover, these benchmark
simulations applied to different software packages differ in problem set-up, e.g., discretisa-
tion (time and space) or mesh type, etc. Therefore, a comparison is hard to comply with.
Konikow [11] described that solute transport at different flow boundaries significantly
varies depending on the software and methods used. Although many codes have a long
history of application in field problems, revealed good agreement with the field data might
not necessarily imply numerical solution efficiency [12] and may fail to converge in basic
transport simulation (e.g., [9]). Further aspects, such as financial costs (e.g., purchasing
licenses), should also be considered, making it even more difficult for the user to decide on
the numerical simulator for a particular problem.

The partial differential equations relating to groundwater flow and transport can be
solved mathematically using analytical or numerical solutions. Because of the underlying
assumptions and simplifications, analytical solutions imply differences between modelled
and measured state variables (e.g., pressure potential) in the simulation of complex field
set-ups. The most crucial parameter controlling transport in most aquifers is hydraulic
conductivity, which controls transport velocity. On the other hand, dispersivity is conceived
as a measurable hydraulic parameter representing the heterogeneity of a flow system [13],
where dispersivity determines the spreading of solutes in the porous media beyond advec-
tive transport. Hence, solute spreading will be represented by local differences in advection,
uncertainty in estimating dispersivity, and conceptual errors in the mathematical represen-
tation of the dispersion process will be less critical. However, numerical dispersion occurs
during computation due to spatial and temporal discretisation. Numerical stability and
dispersion control can be ascertained by following appropriate spatial discretisation, i.e.,
Peclet number (flow velocity × grid length/Dispersivity) < 2, and the Courant criterion (flow
velocity× time step/grid length) < 1 throughout the model domain [14], which is generally
hard to implement. Moreover, it is difficult to distinguish between physical and numerical
dispersion just based on simulated breakthroughs. In many instances, a new modeller is
unaware of the details of the numerical method, including the derivative approximations,
spatial, and temporal discretisation, and the matrix solution techniques. Consequently,
errors can be introduced and remain undetected due to the highly optimised, user-friendly
graphical interface [11]. For instance, an iteratively solved flow equation with a generalised
convergence criterion may still produce a plausible solution with or without a mass balance
issue. Finding an ideal numerical method for a wide range of transport problems is un-
likely [11]. Therefore, this study tests four numerical simulators in three benchmark solute
transport problems for single-phase flow in porous media and compares the resulting con-
centration breakthrough curves with the respective analytical solution. The sensitivity of
each simulator with respect to dispersivity is also studied. Several numerical simulators are
selected considering the different features they offer. FEFLOW and MODFLOW/MT3DMS
are dedicated numerical simulators for solving porous media flow and solute transport
problems. Furthermore, COMSOL Multiphysics and DuMuX are chosen. These numerical
simulators are developed for extended applications; we apply them to solve single-phase
flow and transport in porous media problems. MODFLOW/MT3DMS is based on the
finite difference (FD) method for spatial discretisation, being the most popular with more
than 2950 citations [15] and a pioneer in numerical simulations of fluid flow. FEFLOW
and COMSOL Multiphysics use the finite element (FE) method, which allows for more
flexible meshing. Lastly, DuMuX is an academic, free, open-source numerical simulator
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based on the finite volume (FV) method, which is dedicated to solving multi-phase flow,
and transport in porous media problems. Thus, the main objective of this research is to
compare the four simulators with respect to solution accuracy, efficiency, i.e., time and
computer resources required, user-friendliness, and financial cost.

2. Materials and Methods
2.1. Mathematical Model

The analytical solution and the numerical method solved the flow equation as follows:

S0
∂p
∂t

+∇ · qi −Qp = 0 (1)

with qi = −
{

ρ
K
µ
(∇p− ρg)

}
(2)

where S0 [L−1]—storage term, K[L2]—intrinsic permeability, p [ML−1T−2]—pressure,
qi[LT−1]—Darcy velocity vector, t—temporal discretisation vector, Qp [L3T−1]—source
or sink for fluid, µ [ML−1T−1]—dynamic viscosity, ρ [ML−3]—fluid density, and g [LT−2]—
gravitational acceleration.

Solute transport in the porous medium is computed by the advection–dispersion equation
of divergent form solved numerically for an incompressible fluid as in Equation (3) [16,17]:

∂C
∂t

+∇ ·
(
qiC− Dij∇C

)
+ R = 0 (3)

where qi [LT−1] —Darcy velocity vector, Dij [L2T−1]—dispersion tensor with the diagonal
term of longitudinal dispersion DL = αLqx + D∗, D∗—molecular diffusion, transversal
dispersion DT = αTqx, αL [L]—longitudinal dispersivity, and C [ML−3]—volumetric
concentration, R [ML−2T−1] —reaction term.

For radial symmetry (Problem 2, 2D), the transport equation can be written as [18]

∂C
∂t

+
ρb
n

∂S
∂t
− DL

∂2C
∂r2 + qi

∂C
∂r

= 0 (4)

Here, ρb [ML−3]—density of solid in porous media, n [-]—porosity, S [-]—storage
coefficient, r—distance as radial coordinate from the injection well. Hence, only one velocity
exists in a representative elementary volume (REV) in time and space; therefore, velocity
fluctuations within the REV are neglected. They are considered in the transport equation as
mechanical dispersion. The numerical simulator results are compared with the analytical
solution for the 1D and 2D problems described below.

The analytical solution for the 1D problem used here are derived from [1],

c(x, t) =
co

2
{er f c

[
x− qxt
2
√

DLt

]
+ exp

[
qxx
DLt

]
.er f c

[
x + qxt
2
√

DLt

]
(5)

The adapted and modified 2D problem solution from [18] after Gelhar and Collins [19]
are used for the concentration estimation:

C
C0

=
1
2

er f c


(

r2 − r2
inj

)
√

16
3 αLr3

inj

, here rinj =

√
Qt

πnRd
(6)

where rinj [L]—radial length the solute advances during injection, Rd [-]—retardation.
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2.2. Numerical Simulators
2.2.1. MODFLOW/MT3DMS

MODFLOW is a well-tested, FD method-based numerical simulator employed for
decades for fluid flow and solute transport [15], available as open-source code from the
U.S. Geological Survey (USGS). A number of modified commercial generic versions are
also available. MODFLOW 6 has superseded the MODFLOW-2005 of 2018 by integrating
unstructured gridding techniques for groundwater flow and transport [20,21]. The USGS
also provides a pre-and post-processing graphical user interface (GUI) ModelMuse, which
is also freely available. This study uses ModelMuse for model building and simulation
result visualisation. The FD-based space and time discretisation method is a well-known
technique with relatively low memory demands and low simulation time costs. The LKMT3
packages in the MT3DMS transport model connect the flow model interface to read model
geometries and hydraulic characteristics, such as saturated thickness, fluxes across the cell,
positions, and flux of the various sources and sinks through an unformatted flow transport
link file saved in MODFLOW. For the flow simulation study, the preconditioned conjugated
gradient solver (PCG) in MODFLOW with layer-centred grid, and for solute transport,
generalised conjugate gradient solver (GCG) in MT3DMS is used. The advective flow is
solved in third-order total-variation-diminishing (TVD) Runge–Kutta scheme.

2.2.2. FEFLOW 6.0

FEFLOW (FE subsurface FLOW and transport system) is an interactive groundwater
modelling software for 2D and 3D fully coupled or decoupled, thermo–hydro–chemical
(THC) processes in saturated or variably saturated systems [3]. The reactive multi-species
transport can be modelled in subsurface water environments with or without one or
multiple free surfaces (e.g., [22]). The programming interface (interface manager, IFM)
allows the use and develop user-specific plug-ins to FEFLOW. It has a user-friendly model
builder interface. Besides the parallelised (OpenMP) computational core, it has powerful
pre-and post-processing capabilities, including 2D and 3D GIS data. FEFLOW is available
for Windows systems as well as for different Linux distributions. The FEFLOW 7.0 launched
with a different GUI compared to FEFLOW 6.0 version with a few new features, such as
multi-layer wells and parameter visualisation. However, FEFLOW 6.0 is used for this study,
which supports both old and new GUIs.

2.2.3. COMSOL Multiphysics

COMSOL Multiphysics (formerly FEMLAB) is an FE-based numerical simulator for
various physical applications. It is mainly employed for technical applications and received
increasing attention for environmental applications during recent years (e.g., [23–28]).
In addition to several available interfaces for standard applications, e.g., flow in porous
media, COMSOL offers the possibility to implement individual PDEs without requiring
access to the source code. This makes COMSOL highly flexible. The software focuses
on the interconnection and interaction between different physical processes allowing for
multiphysics and multidimensional couplings. COMSOL is available for Windows, Mac,
Linux, or Unix systems. It offers several direct and iterative solvers for various applications.
The interfaces to external software allow easy transfer of model results and geometries,
e.g., MathWorks MATLAB (https://www.comsol.com/livelink-for-matlab (accessed on 10
February 2022)). Additionally, COMSOL allows pre-and post-processing within the same
interface. The “flow and solute transport” module of COMSOL Multiphysics v.4.4, used in
this study, solves the flow and transport equations for saturated and unsaturated porous
media. The flow and transport equations are managed in separate interfaces. COMSOL
allows the equations to be solved simultaneously or step-wise, reducing simulation time.
The PCG solver is used for our study since this is also the standard solver in FEFLOW.

https://www.comsol.com/livelink-for-matlab
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2.2.4. DuMuX

DuMuX [29] is a multi-scale, multiphysics toolbox based on the Distributed and
Unified Numerics Environment (DUNE) [30] for simulation flow and transport processes
in porous media. DuMuX comes as an extension to DUNE, inheriting functionality from all
available DUNE modules. It provides a framework for implementing porous media flow
problems, including problem formulation, spatial and temporal discretisation selection,
and coupling in non-linear solvers to general concepts modelling. The free and open-
source academic software is available to download at www.dumux.org (accessed on 1
February 2022) from a series of ready-to-use models. DuMuX builds and runs on Linux,
Unix, and Mac operating systems. Installation in Windows is possible using a virtual
machine using Linux or employing Windows Subsystem for Linux. The one-phase flow
two-component transport numerical model, 1p2c, implemented in DuMuX is used in this
study. A BOX scheme [31] is used for the space discretisation and a standard implicit Euler
scheme for time discretisation. The non-linear equations are linearised and solved using
Newton–Raphson method, allowing adaptive time-stepping [31].

2.3. Set Up of the Numerical Model

We installed the four studied numerical simulators and their required packages in a
Linux OS on a 4-core 2.32 GHz CPU with an 8 GB RAM computer. The parallel computing
efficiency for flow and solute transport is only tested for COMSOL and FEFLOW numerical
simulators. Therefore, computational performance is studied for both, single-core and
multi-core computing in these simulators. Though parallel computing is available in
DuMuX, it requires installing several software packages (such as UG-Grid, ALU Grid, and
parallel open MPI), which were not activated for our study.

Each simulator has its requirements and technicalities, e.g., defining each model’s
boundary and initial conditions, which can be partly overcome when one modeller im-
plements the same problem in all four simulators. All numerical simulators, including
all necessary software packages, were installed, and all problem models were set up and
run by the first author on the same machine. This is done to enhance understanding
and interpretation of boundary conditions and reduce errors while transitioning from the
conceptual model (on the paper) into the computer program.

2.4. Problem Definition

For selecting the benchmark problems, we considered problems where analytical
solutions are readily available. We explicitly defined and described the problem including
flow and transport boundary conditions in a clear way that could be implemented in all
tested simulators. Moreover, we chose benchmark problems that could be implemented
in all simulators, in order to assess their relative performance (e.g., the reservoirs have
no fractures, and have layered structure and not are dome-shaped). Therefore, three
benchmark problems with gradually increasing geometrical complexity (i.e., 1D in Problem
1, 2D in Problem 2, and 3D in Problem 3) are defined for this study.

2.4.1. Problem 1D—Solute Tracer Transport for Steady-State Flow in a Homogenous
Aquifer Forced Head Gradient

The analytical solution for solute transport in any homogeneous aquifer with a head
gradient condition was formulated in [1]. Figure 1 depicts benchmark problem 1, which
is aimed at testing the quasi-one-dimensional flow and solute transport. The solute is
injected at the left-hand boundary with a pressure head of 12 m. The advective–dispersive
transport is monitored at the observation point. The 100 m long flow domain is assumed as
a homogenous and isotropic porous medium. Hydraulic conductivity is 1 × 10−4 m/s, and
porosity 0.25. The constant head difference between the two sides is 2 m. The simulation
period is 200 days. The time step is set at one day (maximum time step size), and the
domain is discretised using a mesh size of 1 m. The observation point is located at a 50 m
distance from the inlet (i.e., middle of the domain). At the left-hand side, the boundary

www.dumux.org
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is defined as fixed concentration Cin = 1 mg/L (i.e., Dirichlet), and free outflow at the
right-hand side. Different dispersivity values (0.1, 0.3, 0.5, 0.7, 1, 3, 5, 7, and 10 m) were
simulated to conduct the comparison and sensitivity of each simulator to dispersion.
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Figure 1. A 1D model domain assuming a free flow boundary at the right end and a higher gradient
at the left end with a constant concentration point solute source.

2.4.2. Problem 2D-Solute Tracer Transport in a Forced Gradient Confined Homogenous
Aquifer Point Source

In this problem, the concentration change is simulated at an observation well after
tracer injection at a constant rate at a fully penetrating injection well. The aquifer is confined.
A constant solute concentration of 1 mg/L in the water injected by the well at a constant rate
is assumed. Moreover, three sides of the domain are assigned as constant head boundaries,
assuming a ‘free outflow’ of fluid and solute during the simulation period of 200 days.
The maximum time step size is set as one day. Storage is set to zero so that steady-state
flow conditions are achieved instantaneously after injection. Since symmetric radial flow
and transport behaviour is expected for the stated model set-up, the numerical models
developed only half of the domain, assuming symmetry at the middle of the domain at the
injection point.

A numerical model with a spatial discretisation of 40 elements on the x-direction
20 elements on the y-direction is implemented in all used simulator platforms to simulate
the concentration breakthrough at the observation point at a 25 m distance from the
injection well. Simulation results are compared with the analytical solution given by Gelhar
and Collins [19], adapted and modified by Schroth et al. [18]. The initial and boundary
conditions and model domain flow and transport properties are shown in Figure 2.
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Figure 2. The half model domain shows radial symmetry of flow and solute boundary at the injection
point of solute. The injection well and point source are applied at the centre point of the lower
(cross-section of the domain) boundary, and the rest of the lower border is constrained by no-flow
caused by a homogeneous radial flow field.
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2.4.3. Problem 3D—Solute Transport for Confined Homogeneous Multi-Layered Forced
Gradient Conditions

This section describes the field-scale application of a tracer experiment. This involves
the evaluation of a tracer experiment in a dipole-forced gradient setting with multi-layered
injection and pumping wells. The problem is intended to illustrate the performance of the
different simulators for complex geometries and flow conditions commonly occurring in
reservoir engineering applications, i.e., a layered aquifer with alternating layers of high
and low permeability and porosity. The geological cross-section of the model domain
represents five layers of different thicknesses [32,33]. The lateral extent of the domain
is 100 × 100 m. Three layers represent sandstone aquifers with hydraulic conductivity
values of 8.03 × 10−8, 1.97 × 10−7, and 4.36 × 10−8 m/s from the top to the bottom layer,
respectively. Less permeable layers or aquitards (9.69 × 10−12 m/s) of 1 m thick silty clay
lenses separate them (Figure 3). The modelled formation is assumed to be confined due
to thick clay lenses at the top and at the bottom. Hence, those layers are assumed to be
impermeable and hydraulically not connected. The porosity values are 14.5% (top), 16.3%
(middle), and 13.3% (bottom) for the permeable sandstone and 3.9% for the aquitards
specified (Figure 3). Injection and pumping wells are placed in the three conductive
layers, and each layer is discretised with a uniform thickness of 0.5 m. For the numerical
simulation, vertical symmetry is assumed; hence, only half of the domain is modelled.
The model is discretised into a rectangular mesh of 2.5 m. The injection and pumping
rates are 8.64 m3/day. The simulation period is 200 days with a maximum time step of
0.5 days used for time discretisation. However, time-stepping varied in different simulators;
hence, the individual model simulation results are compared using the ‘cubic interpolation’
(a third-degree polynomial) method in MATLAB by interpolating the data and RMSE
value between the curves calculated. Again, the concentration variation with time at the
pumping well is compared against MODFLOW/MT3DMS data since no analytical solution
is available for such a 3D problem. MODFLOW/MT3DMS has been chosen as a reference
since it is widely used and verified for saturated groundwater flow and solute transport for
many test sites worldwide.

Figure 3. Permeability and porosity distribution over the layers in the 3D model domain. Injection
well at the left side is 25 m apart from the pumping well at the right side.
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3. Results

This section provides a description of the results of the numerical experiments, their
interpretations, and conclusions drawn. Thus, results of the three benchmark problems
are described based on geometric complexity (1D, 2D, and 3D), spatial discretisation, and
computation efficiency of different software.

3.1. Problem 1D—Solute Transport in a Homogeneous Aquifer

The temporal variation of concentration of the analytical solution [1] and the numerical
simulation of the breakthrough curves (BTCs) at the observation point, 50 m from the point
source, is presented in Figure 4, for two different dispersivity values, i.e., 0.7 and 5 m. The
dispersivity value of 5 m is used as a standard scenario since it represents a median value of
the studied dispersivity range 0.01 to 10 m, and because 5 m is a common field dispersivity
measured [34,35]. The relative error is estimated by comparing numerically simulated
BTCs with that obtained by the analytical solution using the standard Root mean squared
error method (RMSE). The two distinct sets of curves in Figure 4a reveal that all four
numerical and the analytical solution are sensitive with respect to changes in dispersivity,
i.e., 0.7 m and 5 m. The numerically simulated BTCs reveal a good match with the analytical
solution since the RMSE value is less than 0.1 mg/l (i.e., <10% of C0). The RMSE of the
BTCs for different dispersivity values is shown in Figure 4b for the participating numerical
simulators in problem 1D.
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Figure 4. (a) Tracer breakthrough from four numerical simulators with dispersivities of 0.7 and
5 m. (b) The relative difference of concentration computed in numerical simulators and analytical
solutions for different dispersivity values.

The simulation with a dispersivity of 0.7 m shows larger variations between the
simulated breakthrough curves. The numerical dispersion is especially pronounced for
DuMuX. It is important to note that the RMSE significantly decreases for higher dispersivity
values (Figure 4b). Though DuMuX shows high RMSE values < 3 m dispersivity, the errors
are comparable to the other simulators as well as for higher dispersivity values. However,
the errors (maximum) value ranged between 2% and 8% of C0, being well below the
threshold of 10% of peak concentration, indicating reasonable accuracy.

3.2. Problem 2D-Solute Transport in a Homogeneous Aquifer in Forced Gradient

Divergent radial flow and mass transport from an ‘injection well’ in a homogeneous
and confined aquifer was studied. Tracer concentrations are monitored at a 25 m distance
from the injection well. The change in concentration with time for the four different
numerical tools revealed significant differences for the 200 days of simulation (results
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presented for the time slice of 120 days in Figure 5). The deviation between the numerically
simulated BTCs and the analytical solution is low. For DuMuX, this is particularly true.
For low dispersivity values, the best convergence is achieved at the cost of significant
numerical dispersion. Since truncation error comprised major part of numerical dispersion
in FD schemes while mesh size is relatively small [36]. The numerical errors increases
again for high dispersivity values >5 m. The lowest RMSE for COMSOL is observed for
low dispersivity values (<1 m), and for FEFLOW lowest RMSE value is achieved at low to
average values of dispersity (Figure 5b). The MODFLOW/MT3DMS results also reveal a
similar trend with the dispersivity values, while the lowest RMSE is found for dispersivity
value 1–3 m. The numerical dispersion increases for high dispersivity > 5 m. For the fixed
grid size and variable velocity field, the numerical dispersion would increase after a mesh
threshold as it cannot satisfy the Courant criterion and mesh Peclet number throughout the
grid size range.
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3.3. Problem 3: 3D Flow and Solute Transport Simulation in a Layered Georeservoir

Figure 6a–c shows the simulated breakthrough curves in the reservoir’s top, middle,
and lower aquifer, respectively. Since no analytical solution is available for this 3D case,
the breakthrough curves were only compared. The tracer breakthrough in the different
layers varies significantly in peak concentration and arrival time (Figure 6a–c). Peak
concentrations are maximum in all layers simulated in COMSOL. This is especially evident
in the top aquifer (Figure 6a). DuMuX indicates a significantly stronger “smoothing”, i.e.,
higher concentrations during the rising limb and the tail and lower peak concentration,
than the other simulators. This effect is already revealed in the 2D and 1D simulations for
low dispersivities. FEFLOW and MODFLOW/MT3DMS range in the sharp peak between
COMSOL and DuMuX. While MODFLOW/MT3DMS shows significantly lesser peak
concentrations than COMSOL for all layers, FEFLOW has comparable concentrations to
MODFLOW in the top layer (Figure 6a), concentrations to COMSOL in the middle layer
(Figure 6b), and in the bottom layer, the concentration peak lies in between those two
(Figure 6c). The peak arrival (BTC) in MODFLOW/MT3DMS is the slowest, while DuMuX

is the fastest for all three layers.
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Figure 6. Simulated tracer concentration using MODFLOW/MT3DMS, FEFLOW, COMSOL Multi-
physics, and DuMuX at three different layers for Problem 3; (a) top layer; (b) middle layer; (c) bottom
layer with a dispersivity value of 5 m.

The difference in the tracer BTCs is studied using MODFLOW/MT3DMS as a reference
since MODFLOW/MT3DMS is widely used and eventually verified for groundwater flow
for the most occasion than other software. The root mean squared differences for various
dispersivity values (Figure 7a–c) show significantly higher variations comparing 1D and
2D cases. While the lower dimensional (1D and 2D) problem errors range between 0.1
and 8%, the difference range between approximately 0.1 and 0.7 mg/L or 4% to 25% in 3D
cases compared to the MODFLOW/MT3DMS concentration. As for the other simulations,
dispersivity around 3 m achieves the “best” fit for COMSOL and FEFLOW. For DuMuX,
the fit can be improved further if slightly higher dispersivity around 7 m is chosen.
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3.4. Spatial Discretisation Effects on Computational Efficiency

The accuracy of the advective dispersive equation (Equation (3)) is estimated through
BTCs by solving the transport equation only using different grid sizes and assuming
the tracer is conservative. Figure 8 shows the influence of spatial discretisation on the
accuracy of the solution for benchmark Problem 2. Here, grid sensitivity is conducted
for a dispersivity value of 5 m. All simulators show a lower RMSE value for a mesh,
80 × 40 elements, than the 40 × 20 element mesh. For finer discretisation, the decrease of
the RMSE is low compared to the difference between the 40 × 20 element mesh and the
80 × 40 element mesh. Spatial discretisation is usually a ‘trade-off’ to the accuracy of the
results and ‘resource cost’. Here, the resource cost is estimated from the computer’s virtual
memory requirements to generate the grid and the computational time. For COMSOL,
DuMuX, and FEFLOW, the RMSE value increases again for the finer mesh. FEFLOW has
revealed higher accuracy compared with other software.
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3.5. Computational Time (CPU Time) of Single Processor and Parallelisation

The computational time of the four numerical simulators is estimated for the 2D and
3D benchmarking problems using an automatic time step refinement approach rather than
enforcing an artificial time-stepping. The simulation time is 200 days with a maximum
time step size of 0.5 days. The time steps used in 3D simulation by COMSOL, FEFLOW,
and MT3DMS are 503, 402, and 409, respectively. Computational time is correlated to the
degrees of freedom and local criteria, such as the advective part Courant number. The same
grid is used for all four numerical simulators (in the 2D problem), but simulation time
varies since each simulator uses a different discretisation method. The degrees of freedom
signify the element numbers used in MODFLOW/MT3DMS, the number of nodes for
FEFLOW and COMSOL, the number of cells for DuMuX. Generally, there are two ways
to significantly shorten the computing time of a numerical simulator to solve a specific
problem. The first way is to adjust the solver settings and, secondly, by parallel computing
the numerical software in multiprocessor (multi-core) systems.

Recent parallel computer architectures increase computational performance and offer
higher memory storage that significantly exceeds traditional single CPU computers. Among
the participating simulators, parallelisation was implemented in MODFLOW by some
independent developers [37,38] and compared the simulation efficiency with the established
software. In addition, multithread computing has been available in FEFLOW since 2008
and COMSOL from the beginning. DuMuX also supports parallel simulations using
a distributed memory model based on MPI. Flow computation time in MODFLOW is
relatively short compared with transport computation time in MT3DMS for the 2D and 3D
problems. Yet, parallel computing time was not estimated for MODFLOW/MT3DMS as in
MT3DMS transport simulation; parallelisation was not supported.



Water 2022, 14, 1310 12 of 18

Tables 1 and 2 reveal that computational time is significantly reduced with parallel com-
puting implementation in the simulators FEFLOW and COMSOL. MODFLOW/MT3DMS
performs the best, having the fastest computation time for the coarse mesh. However, for
a mesh with a higher number of elements, the transport simulation software MT3DMS
computational time increases significantly due to the poor convergence, which reduces
the time step size and increases the total number of time steps to complete the simulation.
Overall, when running the simulations on a single processor, the computational efficiency
is higher for MODFLOW/MT3DMS, while in parallel (multi-core) computing, the FEFLOW
has the higher efficiency. We noted that COMSOL requires more random-access memory
(RAM > 8 GB) than available on the machine to run the simulation.

Table 1. Simulation times for Problem 2 (2D domain) with respect to different mesh refinements.

Number of Simulation Time (in Seconds)

Elements Computation in Single Core Computation in 4 Cores
(Parallel Computing)

100 × 200 m COMSOL FEFLOW MODFLOW/MT3DMS DuMuX COMSOL FEFLOW

20 × 40 10 12.6 0.831 19.853 12 11.2

40 × 80 17 24.5 3.051 73.654 19 24.5

80 × 160 49 46.7 39.91 298.689 44 41.1

160 × 320 205 120.6 583.299 1267.602 175 92.9

320 × 640 977 517.6 9307.75 6893.497 802 369.2

Table 2. Simulation times for Problem 3 (3D layered domain) with respect to different mesh refinements.

Number of Simulation Time (in Seconds)

Elements Computation in Single Core Computation in 4 Cores
(Parallel Computing)

50 × 100 × 12
m COMSOL FEFLOW MODFLOW/MT3DMS DuMuX COMSOL FEFLOW

20 × 40 × 24 1421 150 23.28 167859 1392 83.2

40 × 80 × 24 ** 616 151.5 * 68400 273.9

80 × 160 × 24 ** 2307 2024 * ** 1125.6

160 × 320 × 24 ** 12,850 24,038 * ** 6331.8

320 × 640 × 24 ** 61,880 570,001 * ** 50623

* Grid creation failure, grid error; ** out of memory—low or no virtual memory that leads to stop the simulation.

One problem experienced with DuMuX, was to inability to create finer grids (for
a mesh with more than 22,000 elements). Therefore, the computation of the 3D prob-
lem was not successful in our computer used for running the benchmarks. Contrary to
our expectation that the FE method-based simulators require more memory and have
a slower computational speed than the FV method-based ones [39], we observe higher
computational efficiency.

4. Discussion
4.1. Resource Use Efficiency and Discretisation

The advantage of FE-based software (i.e., FEFLOW and COMSOL) is not explored
explicitly through FE techniques that can create meshes for complex geometrical domains
to avoid differences in degrees of freedom solved by different software packages. Although,
recently, the unstructured mesh has been introduced to overcome the limitation of discreti-
sation using control volume FD software MODFLOW 6 [20,40]). All simulators, except
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FEFLOW, show stable pressure conditions at the multi-layered injection and pumping
well throughout the simulation period. Pressure values at the injection and pumping
well in FEFLOW show oscillations during the early simulation period (simulation time
0–5 days) and achieve a steady condition before the tracer reaches the observation point.
The fact to be noted is that in the well-boundary or highly variable boundary condition
cases, FEFLOW requires a higher mesh density to simulate a stable flow condition. Nu-
merical stability and convergence in the codes FEFLOW, COMSOL, and DuMuX respond
more sensitively with respect to spatial discretisation, while this is not observed in MOD-
FLOW/MT3DMS simulations. Maina et al. [9] reported as well that both FEFLOW and
MODFLOW/MT3DMS suffer from numerical dispersion/diffusion. Though by using
finer discretisations, the truncation and rounding errors of the numerical scheme generally
decrease [41], i.e., reducing the numerical dispersion, we found a slight improvement in
FD for the 2D problem (Figure 8). Similar to [9], we found that FE-based software FEFLOW
and COMSOL and FD-based MODFLOW/MT3DMS have to be applied under restricted
conditions to limit problems with numerical stability. Furthermore, MODFLOW/MT3DMS
has a slightly higher accuracy for a coarse discretised model domain (40 × 20) than the
other three simulators (Figure 8), but by increasing the mesh discretisation, the accuracy of
the other simulators becomes better.

In the 3D problem, the total number of mesh elements in FEFLOW (19,392 elements)
and DuMuX (22,400 elements) was higher than those used in MODFLOW and COMSOL
(19,200 elements). The vertex-centred FV-based DuMuX simulator requires the construction
of the FE mesh and the assignment of flow and transport properties (i.e., porosity and
permeability) in the FE nodes. The FE nodes are then the centres of the control volumes
in the secondary FV mesh, constructed by uniting the barycentres of the FEs and the mid-
points of the FE edges (i.e., BOX method, [31]). Therefore, imposing the FE nodes at the
interface separating two layers cannot represent the hydraulic properties precisely. This
problem can be solved by placing two FE nodes at equal distances from the actual interface
between the layers, both assigned with the individual property of the respective layer.

4.2. Transport Simulation Efficiency

The 1D problem addresses tracer transport from point source contamination for
homogenous, isotropic conditions with a constant head gradient. The FE-based FEFLOW
and COMSOL time-concentration curves are the closest to the analytical solution revealed
by a low RMSE (Figure 4) for this problem. For the 1D case, the differences between
these two simulators are significantly lower than 5% of C0 except for the low dispersivity
values (0.1–1 m). In the 2D case, COMSOL and FEFLOW show the difference is lower
than 2% of the initial concentration, C0. Exceptionally low dispersivity (0.1–0.7 m) cases
show higher relative errors than the analytical solution that might be associated with
larger mesh size than dispersivity values, i.e., higher mesh Peclet number-related numerical
dispersion. Significant higher differences in concentration values were shown for lower
dispersivity values (0.1–1 m) in the 2D problem. However, the difference is insignificant
for higher dispersivity values (3–10 m). In that instance, it is worth mentioning that the
numerical dispersion handling from different software packages varies with software
and methods. Moreover, the numerical error that is estimated in relatively simple 1D
cases reveals a plausible numerical solution can only be achieved for dispersion values
ranging between 0.7 and 7 m or highly discretised (space and time), simple flow condition,
close to a linear problem, which is sufficiently limit expectation of a numerical solute
transport modelling output. We found that except for MODFLOW/MT3DMS, all software
showed higher sensitivity to spatial discretisation. Hence, grid size significantly impacts
solution accuracy in simulations employing FE and FV software codes, while a finer
discretisation does not affect FD accuracy. However, Maina et al. [9] reported that both
MODFLOW/MT3DMS and FEFLOW are sensitive to spatial discretisation. They also
reported that FE simulators computed an early tracer breakthrough in homogenous uniform
flow simulation. We also found similar behaviour for FV-based DuMuX and FE-based
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FEFLOW and COMSOL simulators in both 1D and 2D problems (Figures 4a and 5a).
Moreover, for a lower dispersivity, numerical dispersion is higher with DuMuX (Figure 5b).

Therefore, a difference in tracer breakthrough from different software for the dif-
ferent aquifer layers in the 3D problem is well expected. If they are only compared for
commonly perceived dispersion cases (5 and 7 m), the observed concentration variations
among the software are highly significant (e.g., Figure 7). The simulated peak arrival
time variation should only be associated with a change in permeability and porosity. The
3D case demonstrates that the results vary depending on how boundary conditions are
implemented in the different codes and how hydraulic parameters vary across the layers.
Therefore, we observed a varied peak arrival time, peak concentration, and BTCs for all
four simulators (Figure 6). Yet, it can be observed that all software codes properly simulate
all relevant processes. The efficiency of a numerical method varies depending on the PDEs
(e.g., parabolic, hyperbolic) to be solved. We selected four different software codes to
solve the transport equation by a hyperbolic PDE. The mathematical properties of the
solute transport equation vary depending upon the terms in the equation dominating in a
particular situation. Hence, numerical methods would be deficient in solving groundwater
transport problems of varied flow and transport situations encountered in the field [11].
In our 3D reservoir problem, the velocity may be close to zero in low permeability layers,
and the transport processes are dominated by dispersion, i.e., non-Fickian transport [19]
compared to advection-dominated transport processes in high permeability zones or at
the pumping wells of three high permeability layers in 3D problem. Thus, for the 3D
simulation, the governing equation may show more hyperbolic character in one area, such
as near the well (or at one time), and more parabolic in another area, such as at a low
permeability zone (or at another time).

4.3. Computation Time and Memory Use Efficiency

The computational time of the participating software (Tables 1 and 2) revealed a sig-
nificant difference in the numerical performance considering the degrees of freedom that
were solved by each simulator. The same rectangular grid is used for all four simulators.
However, numerous choices are available even with the same numerical simulator, such as
adding restrictions on time-stepping or adding regularisations (such as a constraint control-
ling the pressure). These may improve the accuracy at the cost of longer runtimes. Typical
for FE software, COMSOL requires a larger memory (RAM) to run the simulation [39].
Memory reliance by DuMuX mainly arises when the grid is created (UG-Grid module was
used in the 3D problem). Furthermore, COMSOL requires a larger memory to store the
solution for each time step during the simulation. In contrast to Huebner et al. [39], the
FE simulation by COMSOL and FEFLOW is faster for 2D problems than the FV-based
software DuMuX.

4.4. Implementation of BC in Software

In transport simulations, mal-defined boundary conditions are common sources of
errors. When a Dirichlet BC (constant concentration) is selected in a transport model, for
example, in our 1D and 3D problems, a solute flux will be forced into or out of that cell to
maintain concentration in that particular cell, and the flux, which can occur by both advec-
tion and dispersion processes (e.g., [11]). Moreover, in real hydrogeological or geochemical
applications, a constant concentration over time is unlikely regardless of the accompanying
flow field changes or local concentration gradients. Thus, it is inappropriate to apply a
constant concentration boundary condition to a field problem to represent concentration in
open water bodies bounding an aquifer with a head or open flow boundary, or for a bound-
ary far from an area containing a solute plume of interest [13]. For flux boundary conditions,
such as implementing multi-layer injection well, we find that assigning a well boundary
without a wellbore storage condition works better. However, with a wellbore storage
condition, a higher mass transfer is estimated in MODFLOW/MT3DMS and FEFLOW
(30% of the total fluid mass in the 3D model), whereas COMSOL shows a minor influence
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from the open flow boundary. Again, hydraulic conductivity can vary significantly over
short distances, and heterogeneity can exhibit significant spatial correlations, persistence,
and connectedness. Hence, simulation of the “true” velocity distribution in space and time
directly correlated to the accuracy and precision of actual distribution of K in the model
domain. Notably, the 3D problem revealed that, once heterogeneities and anisotropy are
introduced, model predictions differ. This is probably a consequence of the differences in
implementing the hydrogeological parameters (e.g., permeability, porosity) in the simula-
tors due to different spatial discretisation methods [42]. For instance, permeability contrast
layers are introduced and additionally discretised in the vertex-centred DuMuX model,
while a cell-centred parameter distribution is used in MODFLOW/MT3DMS. Hence, the
differences in implementation between the models are:

− Implementation of the model grid;
− Implementation of flow and transport boundary conditions.

4.5. User-Friendliness

The first author implemented the three problems (1D, 2D, and 3D) in each of the four
simulators. Before conducting this study, the first author familiarised himself with the use
and implementation of flow and solute transport in FEFLOW. The implementation of the
other three simulators was achieved by discussing with the other authors, familiar/experts
in other participating numerical simulators. This way, the first author has experienced and
acquainted himself with all software used within the frame of this work and, hence, used
that software to set up the models, run simulations, and extract the data for further analysis.
Therefore, the first author was in a position to judge the user-friendliness for new users for
the three simulators, COMSOL, MODFLOW/MT3DMS, and DuMuX. Moreover, several
master’s students working with the authors for their project familiarised themselves with
the software and exchanged their experiences. Eventually, during the follow-up discussion,
sources of errors and the difference in simulation results were identified, and different
implementation approaches such as refined grid, time-steps, boundary condition imple-
mentation were considered. COMSOL and FEFLOW model builder UI (user interface)
are beneficial and easy to grasp by a new user to implement a problem in the software
package. The COMSOL program window is well organised and particularly intuitive. The
model setup is tailored by defining a series of PDEs to describe the simulated physical
phenomena. All the components of the constructed model can be accessed and edited
in a panel (Model Tree) program window in COMSOL. Hence, the COMSOL simulation
environment facilitates all steps of the modelling process: defining geometry, specifying
physics, meshing, solving, and post-processing. The same applies to FEFLOW as well.
Commercial user interfaces (e.g., Visual MODFLOW) or freeware, e.g., ModelMuse, sup-
ports pre-and post-processing in MODFLOW/MT3DMS. Its feature-based boundary and
naming special functions (e.g., evaporation, recharge, river boundary conditions) are easy
for a new modeller to understand. On the other hand, DuMuX is not supported by any
pre-processing GUI, which may be regarded as a disadvantage. Though it offers higher
control over the simulation process and parameter estimation through building the problem
script, modifying and updating it for the desired process or simulation in any C++ editor,
the result can be visualised and post-processed with specialised software, such as Paraview.
Additionally, the COMSOL and FEFLOW GUIs allow for easy modification of parameters.
However, the user cannot edit or view the source code, which reduces the control and
overall insight into the simulation process.

5. Conclusions

For very low dispersivity values, such as 0.5 m or lower, numerical simulation results
show significant oscillations or are not converging in FE software packages FEFLOW and
COMSOL, but FD software MODFLOW/MT3DMS simulations were found to generate
stable results, which also applies to the FV software code DuMuX. However, relative errors
are significantly higher for low dispersivity cases than for the analytical solution. This



Water 2022, 14, 1310 16 of 18

error is especially prominent for DuMuX, for which the excellent convergence comes at
the cost of more significant numerical dispersion. For 1D and 2D cases, all numerical
simulations show good agreement with the analytical results. Moreover, increasing spatial
discretisation (grid refinement) improves accuracy for all four software packages. COMSOL
Multiphysics needs a finer mesh to produce the same level of accuracy as FEFLOW and
DuMuX simulations for the 2D cases. For the choice of the appropriate simulation software,
the specific demands of the problem statement need to be considered for transport simula-
tions. For a forced gradient set-up, where a commonly higher dispersion value is expected,
the FE software FEFLOW is the best choice. Due to the high requirements for mesh refine-
ment assembling the model in virtual memory, COMSOL Multiphysics has the highest
demand for computer resources. However, the more significant solution time of COMSOL
is compensated by its intuitive ‘user interface’, implementing different problems relatively
fast as it does not need any changes in the source code. On the other hand, DuMuX is an
academic, open-source code that is freely distributed, which is an advantage compared
to purchasing commercial software. Furthermore, with the program code being generally
available, modifications can easily be made, and the source code can be adapted to specific
non-standard problems. For single-phase transport problems, COMSOL represents a good
choice for a simulator; however, for more complex physics (e.g., multi-phase flow [43,44],
hydromechanical coupling [6,45], etc.), further benchmarking studies need to be conducted
to test the efficiency of these simulators.
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